Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (2): 195-201.DOI: 10.17521/cjpe.2017.0082
• Research Articles • Previous Articles Next Articles
YANG Jun-Jun1,*(),FENG Jian-Min1,HE Zhi-Bin2
Online:
2018-02-20
Published:
2018-04-16
Contact:
Jun-Jun YANG
Supported by:
YANG Jun-Jun, FENG Jian-Min, HE Zhi-Bin. Estimating whole-tree water use of Picea crassifolia based on heat ratio method[J]. Chin J Plant Ecol, 2018, 42(2): 195-201.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0082
样树编号 Sample tree number | 树高 Tree height | 胸径 Diameter at breast height | 冠幅宽度 Crown width | 冠幅投影面积 Crown projection area | 树皮厚度 Bark depth | 心材半径 Heartwood radius | 边材厚度 Sapwood width | 边材面积 Sapwood area |
---|---|---|---|---|---|---|---|---|
(m) | (cm) | (m) | (m2) | (cm) | (mm) | (mm) | (mm2) | |
1 | 16.1 | 22.2 | 4.24 | 14.07 | 0.6 | 67 | 37.5 | 20β327.0 |
2 | 14.2 | 16.0 | 4.29 | 14.16 | 0.6 | 42 | 32.1 | 11β694.6 |
3 | 13.0 | 15.5 | 3.38 | 10.35 | 0.6 | 40 | 31.7 | 11β090.7 |
4 | 11.3 | 11.4 | 2.68 | 8.13 | 0.6 | 22 | 28.6 | 6β599.9 |
5 | 5.5 | 6.2 | 2.01 | 6.34 | 0.3 | 8 | 20.5 | 2β286.3 |
6 | 5.3 | 5.0 | 1.60 | 5.50 | 0.3 | 8 | 14.5 | 1β343.8 |
7 | 4.2 | 5.1 | 2.26 | 6.91 | 0.3 | 8 | 15.0 | 1β413.7 |
8 | 3.8 | 4.1 | 2.11 | 6.55 | 0.3 | 8 | 10.0 | 785.4 |
Table 1 Biometric and physiological parameters of sap flow measurements for Picea crassifolia
样树编号 Sample tree number | 树高 Tree height | 胸径 Diameter at breast height | 冠幅宽度 Crown width | 冠幅投影面积 Crown projection area | 树皮厚度 Bark depth | 心材半径 Heartwood radius | 边材厚度 Sapwood width | 边材面积 Sapwood area |
---|---|---|---|---|---|---|---|---|
(m) | (cm) | (m) | (m2) | (cm) | (mm) | (mm) | (mm2) | |
1 | 16.1 | 22.2 | 4.24 | 14.07 | 0.6 | 67 | 37.5 | 20β327.0 |
2 | 14.2 | 16.0 | 4.29 | 14.16 | 0.6 | 42 | 32.1 | 11β694.6 |
3 | 13.0 | 15.5 | 3.38 | 10.35 | 0.6 | 40 | 31.7 | 11β090.7 |
4 | 11.3 | 11.4 | 2.68 | 8.13 | 0.6 | 22 | 28.6 | 6β599.9 |
5 | 5.5 | 6.2 | 2.01 | 6.34 | 0.3 | 8 | 20.5 | 2β286.3 |
6 | 5.3 | 5.0 | 1.60 | 5.50 | 0.3 | 8 | 14.5 | 1β343.8 |
7 | 4.2 | 5.1 | 2.26 | 6.91 | 0.3 | 8 | 15.0 | 1β413.7 |
8 | 3.8 | 4.1 | 2.11 | 6.55 | 0.3 | 8 | 10.0 | 785.4 |
Fig. 3 Sap flow variation patterns of sapwood width for Qinghai spruce. Total transpiration was the transpiration of sample trees between July 23th and October 25th in 2015.
月份 Month | 样树编号 Sample tree number | ||||||
---|---|---|---|---|---|---|---|
1 | 3 | 4 | 5 | 6 | 7 | 8 | |
7月 July | 68.67 ± 6.49 | 29.97 ± 4.19 | 17.89 ± 2.24 | 5.37 ± 0.33 | 7.54 ± 0.87 | 3.81 ± 0.43 | 2.78 ± 0.11 |
8月 August | 44.55 ± 9.09 | 14.77 ± 4.41 | 9.74 ± 2.57 | 2.93 ± 0.89 | 4.36 ± 1.27 | 1.40 ± 0.53 | 1.81 ± 0.42 |
9月 September | 34.83 ± 9.50 | 9.98 ± 3.29 | 6.88 ± 3.01 | 1.72 ± 0.72 | 2.56 ± 1.29 | 0.53 ± 0.09 | 0.97 ± 0.28 |
10月 October | 25.81 ± 6.68 | 6.99 ± 1.43 | 3.16 ± 1.20 | 0.95 ± 0.31 | 1.64 ± 0.68 | 0.41 ± 0.03 | 0.79 ± 0.18 |
Table 2 The daily mean whole-tree water use in each month in the observational period (mean ± SD)(kg·d-1)
月份 Month | 样树编号 Sample tree number | ||||||
---|---|---|---|---|---|---|---|
1 | 3 | 4 | 5 | 6 | 7 | 8 | |
7月 July | 68.67 ± 6.49 | 29.97 ± 4.19 | 17.89 ± 2.24 | 5.37 ± 0.33 | 7.54 ± 0.87 | 3.81 ± 0.43 | 2.78 ± 0.11 |
8月 August | 44.55 ± 9.09 | 14.77 ± 4.41 | 9.74 ± 2.57 | 2.93 ± 0.89 | 4.36 ± 1.27 | 1.40 ± 0.53 | 1.81 ± 0.42 |
9月 September | 34.83 ± 9.50 | 9.98 ± 3.29 | 6.88 ± 3.01 | 1.72 ± 0.72 | 2.56 ± 1.29 | 0.53 ± 0.09 | 0.97 ± 0.28 |
10月 October | 25.81 ± 6.68 | 6.99 ± 1.43 | 3.16 ± 1.20 | 0.95 ± 0.31 | 1.64 ± 0.68 | 0.41 ± 0.03 | 0.79 ± 0.18 |
Fig. 4 Stand sap-flow pattern and tree sap-flow patterns on seven measured trees during the observational period (between July 23th and October 25th in 2015).
[1] |
Berdanier AB, Miniat CF, Clark JS (2016). Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees.Tree Physiology, 36, 1-10.
DOI URL PMID |
[2] |
Burgess SSO, Adams MA, Turner NC, Beverly CR, Ong CK, Khan AAH, Bleby TM (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants.Tree Physiology, 21, 589-598.
DOI URL PMID |
[3] | Chang XX, Zhao WZ, He ZB (2014a). Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River Basin of arid northwestern China.Agricultural and Forest Meteorology, 187, 14-21. |
[4] |
Chang XX, Zhao WZ, Liu H, Wei X, Liu B, He ZB (2014b). Qinghai spruce (Picea crassifolia) forest transpiration and canopy conductance in the upper Heihe River Basin of arid northwestern China. Agricultural and Forest Meteorology, 198, 209-220.
DOI URL |
[5] |
Chen XL, Ju X, Lin KL (2014). Development status, issues and countermeasures of China’s plantation.World Forestry Research, 27, 54-59.
DOI URL |
[陈幸良, 巨茜, 林昆仑 (2014). 中国人工林发展现状、问题与对策. 世界林业研究, 27, 54-59. ]
DOI URL |
|
[6] |
de Dios VR, Roy J, Ferrio JP, Alday JG, Landais D, Milcu A, Gessler A (2015). Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.Scientific Reports, 5, 10975. DOI: 10.1038/srep10975.
DOI URL PMID |
[7] |
Fiora A, Cescatti A (2008). Vertical foliage distribution determines the radial pattern of sap flux density in Picea abies. Tree Physiology, 28, 1317-1323.
DOI URL PMID |
[8] |
Gebauer T, Horna V, Leuschner C (2008). Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.Tree Physiology, 28, 1821-1830.
DOI URL PMID |
[9] |
He ZB, Zhao WZ, Liu H, Tang ZX (2012). Effect of forest on annual water yield in the mountains of an arid inland river basin: A case study in the Pailugou catchment on northwestern China’s Qilian Mountains.Hydrological Processes, 26, 613-621.
DOI URL |
[10] |
Hentschel R, Bittner S, Janott M, Biernath C, Holst J, Ferrio JP, Gessler A, Priesack E (2013). Simulation of stand transpiration based on a xylem water flow model for individual trees. Agricultural and Forest Meteorology, 182-183, 31-42.
DOI URL |
[11] |
Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013). Terrestrial water fluxes dominated by transpiration.Nature, 496, 347-350.
DOI URL PMID |
[12] |
Kume T, Otsuki K, Du S, Yamanaka N, Wang YL, Liu GB (2012). Spatial variation in sap flow velocity in semiarid region trees: Its impact on stand-scale transpiration estimates.Hydrological Processes, 26, 1161-1168.
DOI URL |
[13] |
McJannet D, Fitch P, Disher M, Wallace J (2007). Measurements of transpiration in four tropical rainforest types of north Queensland, Australia.Hydrological Processes, 21, 3549-3564.
DOI URL |
[14] |
Pataki DE, Oren R (2003). Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest.Advances in Water Resources, 26, 1267-1278.
DOI URL |
[15] |
Schlaepfer DR, Ewers BE, Shuman BN, Williams DG, Frank JM, Massman WJ, Lauenroth WK (2014). Terrestrial water fluxes dominated by transpiration: Comment. Ecosphere, 5, 1-9.
DOI URL |
[16] |
Shinohara Y, Tsuruta K, Ogura A, Noto F, Komatsu H, Otsuki K, Maruyama T (2013). Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest.Tree Physiology, 33, 550-558.
DOI URL PMID |
[17] |
Su L, Xu WT, Zhao CM, Xie ZQ, Ju H (2016). Inter- and intra-?specific variation in stemflow for evergreen species and deciduous tree species in a subtropical forest.Journal of Hydrology, 537, 1-9.
DOI URL |
[18] |
Sus O, Poyatos R, Barba J, Carvalhais N, Llorens P, Williams M, Vilalta JM (2014). Time variable hydraulic parameters improve the performance of a mechanistic stand transpiration model. A case study of Mediterranean Scots pine sap flow data assimilation.Agricultural and Forest Meteorology, 198, 168-180.
DOI URL |
[19] | Tian FX (2011). Study on Eco-hydrological Processes of Qinghai Spruce (Picea crassifolia) Forest in the Qilian Mountains. PhD dissertation, Lanzhou University, Lanzhou. |
[田风霞 (2011).祁连山区青海云杉林生态水文过程研究. 博士学位论文, 兰州大学, 兰州.] | |
[20] |
Ungar ED, Rotenberg E, Raz-Yaseef N, Cohen S, Yakir D, Schiller G (2013). Transpiration and annual water balance of Aleppo pine in a semiarid region: Implications for forest management.Forest Ecology and Management, 298, 39-51.
DOI URL |
[21] |
van de Wal BAE, Guyot A, Lovelock CE, Lockington DA, Steppe K (2015). Influence of temporospatial variation in sap flux density on estimates of whole-tree water use inAvicennia marina. Trees, 29, 215-222.
DOI URL |
[22] |
Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD (2001). A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance.Agricultural and Forest Meteorology, 106, 153-168.
DOI URL |
[1] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
[2] | WANG Xiu-Ying, CHEN Qi, DU Hua-Li, ZHANG Rui, MA Hong-Lu. Evapotranspiration interpolation in alpine marshes wetland on the Qingzang Plateau based on machine learning [J]. Chin J Plant Ecol, 2023, 47(7): 912-921. |
[3] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[4] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[5] | ZHAO Xiao-Ning, TIAN Xiao-Nan, LI Xin, LI Guang-De, GUO You-Zheng, JIA Li-Ming, DUAN Jie, XI Ben-Ye. Analysis of applicability of Granier’s original equation for calculating the stem sap flux density—Take Populus tomentosa as an example [J]. Chin J Plant Ecol, 2023, 47(3): 404-417. |
[6] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[7] | FENG Yin-Cheng, WANG Yun-Qi, WANG Yu-Jie, WANG Kai, WANG Song-Nian, WANG Jie-Shuai. Water vapor fluxes and their relationship with environmental factors in a conifer-broadleaf mixed forest ecosystem in Jinyun Mountain, Chongqing, China [J]. Chin J Plant Ecol, 2022, 46(8): 890-903. |
[8] | XIONG Bo-Wen, LI Tong, HUANG Ying, YAN Chun-Hua, QIU Guo-Yu. Effects of different reference temperature values on the accuracy of vegetation transpiration estimation by three-temperature model [J]. Chin J Plant Ecol, 2022, 46(4): 383-393. |
[9] | HUANG Ying, CHEN Zhi, SHI Zhe, XIONG Bo-Wen, YAN Chun-Hua, QIU Guo-Yu. Temporal and spatial variation characteristics and different calculation methods for the key parameter αe in the generalized complementary principle of evapotranspiration [J]. Chin J Plant Ecol, 2022, 46(3): 300-310. |
[10] | QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(2): 208-219. |
[11] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[12] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[13] | DU Jun, WANG Wen, HE Zhi-Bin, CHEN Long-Fei, LIN Peng-Fei, ZHU Xi, TIAN Quan-Yan. Spatial variability of phenological phenotype of Picea crassifolia in Qilian Mountains and its internal mechanism [J]. Chin J Plant Ecol, 2021, 45(8): 834-843. |
[14] | ZHAO Wen-Qin, XI Ben-Ye, LIU Jin-Qiang, LIU Yang, ZOU Song-Yan, SONG Wu-Ye, CHEN Li-Xin. Transpiration process and environmental response of poplar plantation under different irrigation conditions [J]. Chin J Plant Ecol, 2021, 45(4): 370-382. |
[15] | LI Tang-Ji, WANG Mao-Lin, CAO Ying, XU Gang, YANG Qi-Qi, REN Si-Yuan, HU Shang-Lian. Diurnal transpiration of bamboo culm and sheath and their potential effects on water transport during the bamboo shoot stage [J]. Chin J Plant Ecol, 2021, 45(12): 1365-1379. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 4742
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1363
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn