Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (1): 56-67.DOI: 10.17521/cjpe.2022.0343 cstr: 32100.14.cjpe.2022.0343
Special Issue: 生物多样性
• Research Articles • Previous Articles Next Articles
CHEN Yu-Ting1, MA Song-Mei1,*()(), ZHANG Dan2, ZHANG Lin1, WANG Chun-Cheng2
Received:
2022-08-24
Accepted:
2023-02-08
Online:
2024-01-20
Published:
2023-03-01
Contact:
(Supported by:
CHEN Yu-Ting, MA Song-Mei, ZHANG Dan, ZHANG Lin, WANG Chun-Cheng. Diversity pattern and formation mechanism of sympatric Haloxylon ammodendron and Haloxylon persicum in Xinjiang, China[J]. Chin J Plant Ecol, 2024, 48(1): 56-67.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0343
采样区域 Region | 种群名称 Population name | 编码 Code | 经纬度 Latitude (N)/ longitude (E) | 采样个数 Sample size | cpDNA | |||
---|---|---|---|---|---|---|---|---|
单倍型组成 Haplotypes | 单倍型多样性 Hd | 核苷酸多样性 π | ||||||
梭梭 H. ammodendron | 225 | 4/12 | 0.734 | 0.000 8 | ||||
DSW (SG) | 博乐火车站旁沙漠 Desert near the Bole Train Station | XBL | 44.93°/82.65° | 7 | 0/2 | 0.457 | 0.007 0 | |
克拉玛依碳汇林基地 Karamay Carbon Sequestration Base | XKM | 44.92°/83.94° | 12 | 1/1 | 0.442 | 0.003 0 | ||
甘家湖梭梭自然保护区 Ganjiahu Saxoul Nature Reserve | XGH | 44.92°/83.97° | 13 | 0/2 | 0.485 | 0.005 0 | ||
DZS (SG) | 石河子134团下野地镇 Xiayedi Town of Shihezi Group 134 | XSY | 44.74°/85.42° | 15 | 0/3 | 0.476 | 0.002 1 | |
石河子135团沙门子镇 Shamenzi Town of Shihezi Group 135 | XSB | 44.88°/85.25° | 14 | 0/4 | 0.539 | 0.004 0 | ||
石河子134团安吉海镇 Anjihai Town of Shihezi Group 134 | XSS | 44.71°/85.39° | 15 | 0/3 | 0.133 | 0.004 0 | ||
石河子市南山风景区 Nanshan Scenic Spot of Shihezi City | XSN | 44.73°/85.29° | 13 | 0/1 | - | - | ||
石河子市丰泽镇 Fengze Town of Shihezi City | XSA | 44.60°/85.59° | 14 | 0/1 | - | - | ||
沙湾市四道河子镇 Sidaohezi Town of Shawan City | XSW | 44.74°/85.69° | 8 | 0/2 | 0.429 | 0.004 0 | ||
石河子149团莫索湾垦区 Mosuowan Reclamation Area of Shihezi Group 149 | XSC | 45.22°/86.27° | 11 | 0/3 | 0.691 | 0.002 0 | ||
石河子150团 Shihezi Group 150 | XSD | 45.19°/86.35° | 10 | 0/2 | 0.429 | 0.003 0 | ||
DES (SG) | 昌吉回族自治州芳草湖农场 Fangcaohu Farm in Changji Hui Zu Autonomous Prefecture | XFH | 44.51°/86.83° | 12 | 0/1 | - | - | |
阜康市222团 Fukang City Group 222 | XFK | 44.26°/87.96° | 12 | 0/2 | 0.476 | 0.004 0 | ||
奇台县北沙窝 Beishawo of Qitai County | XQT | 44.62°/88.37° | 8 | 1/2 | 0.607 | 0.008 0 | ||
和硕县马兰 Malan of Heshuo County | XML | 42.17°/87.26° | 11 | 0/1 | - | - | ||
ALT (NG) | 布尔津大桥 Burqin Bridge | XBJ | 47.68°/86.87° | 11 | 1/2 | 0.546 | 0.003 0 | |
布尔津县 Burqin County | XBE | 47.54°/87.15° | 14 | 0/2 | 0.264 | 0.004 0 | ||
北屯-布尔津 Beitun-Burqin | XBB | 47.35°/87.67° | 10 | 1/2 | 0.200 | 0.001 0 | ||
乌伦古湖 Ulungur Lake | XWG | 47.02°/87.35° | 15 | 0/1 | - | - | ||
白梭梭 H. persicum | 106 | 1/9 | 0.749 | 0.001 0 | ||||
DSW | 甘家湖梭梭自然保护区 Ganjiahu Saxoul Nature Reserve | BGH | 44.92°/83.97° | 12 | 0/3 | 0.530 | 0.003 0 | |
DZS | 石河子135团沙门子镇 Shamenzi Town of Shihezi Group 135 | BSB | 44.89°/85.25° | 13 | 0/2 | 0.282 | 0.003 5 | |
石河子134团安吉海镇 Anjihai Town of Shihezi Group 134 | BSS | 44.71°/85.39° | 8 | 0/3 | 0.400 | 0.004 0 | ||
石河子134团下野地镇 Xiayedi Town of Shihezi Group 134 | BSY | 44.75°/85.42° | 15 | 0/4 | 0.457 | 0.004 2 | ||
石河子147团北部沙漠 Desert of Northern Shihezi Group 147 | BSM | 44.73°/85.93° | 5 | 0/3 | 0.733 | 0.008 0 | ||
沙湾市柳屯县 Liutun County, Shawan City | BLT | 44.37°/88.57° | 10 | 0/3 | 0.250 | 0.002 0 | ||
古尔班通古特沙漠南缘 Southern edge of Gurbantünggüt Desert | BGN | 45.22°/86.27° | 9 | 1/0 | 0.303 | 0.002 0 | ||
石河子150团 Shihezi Group 150 | BSD | 45.07°/86.41° | 10 | 0/2 | 0.533 | 0.003 0 | ||
石河子149团莫索湾垦区 Mosuowan Reclamation Area of Shihezi Group 149 | BSC | 44.98°/86.27° | 10 | 0/2 | - | - | ||
DES | 阜康市 Fukang City | BFK | 44.42°/88.33° | 12 | 0/3 | 0.603 | 0.003 0 | |
奇台县北沙窝 Beishawo of Qitai County | BQT | 44.62°/88.37° | 1 | 0/1 | - | - | ||
ALT | 阿勒泰地区福海县黄金海岸 Gold Coast of Fuhai County, Altay Region | BFH | 47.20°/87.28° | 1 | 0/1 | - | - |
Table 1 Genetic diversity of different geographic populations of Haloxylon ammodendron and H. persicum in Xinjiang, China
采样区域 Region | 种群名称 Population name | 编码 Code | 经纬度 Latitude (N)/ longitude (E) | 采样个数 Sample size | cpDNA | |||
---|---|---|---|---|---|---|---|---|
单倍型组成 Haplotypes | 单倍型多样性 Hd | 核苷酸多样性 π | ||||||
梭梭 H. ammodendron | 225 | 4/12 | 0.734 | 0.000 8 | ||||
DSW (SG) | 博乐火车站旁沙漠 Desert near the Bole Train Station | XBL | 44.93°/82.65° | 7 | 0/2 | 0.457 | 0.007 0 | |
克拉玛依碳汇林基地 Karamay Carbon Sequestration Base | XKM | 44.92°/83.94° | 12 | 1/1 | 0.442 | 0.003 0 | ||
甘家湖梭梭自然保护区 Ganjiahu Saxoul Nature Reserve | XGH | 44.92°/83.97° | 13 | 0/2 | 0.485 | 0.005 0 | ||
DZS (SG) | 石河子134团下野地镇 Xiayedi Town of Shihezi Group 134 | XSY | 44.74°/85.42° | 15 | 0/3 | 0.476 | 0.002 1 | |
石河子135团沙门子镇 Shamenzi Town of Shihezi Group 135 | XSB | 44.88°/85.25° | 14 | 0/4 | 0.539 | 0.004 0 | ||
石河子134团安吉海镇 Anjihai Town of Shihezi Group 134 | XSS | 44.71°/85.39° | 15 | 0/3 | 0.133 | 0.004 0 | ||
石河子市南山风景区 Nanshan Scenic Spot of Shihezi City | XSN | 44.73°/85.29° | 13 | 0/1 | - | - | ||
石河子市丰泽镇 Fengze Town of Shihezi City | XSA | 44.60°/85.59° | 14 | 0/1 | - | - | ||
沙湾市四道河子镇 Sidaohezi Town of Shawan City | XSW | 44.74°/85.69° | 8 | 0/2 | 0.429 | 0.004 0 | ||
石河子149团莫索湾垦区 Mosuowan Reclamation Area of Shihezi Group 149 | XSC | 45.22°/86.27° | 11 | 0/3 | 0.691 | 0.002 0 | ||
石河子150团 Shihezi Group 150 | XSD | 45.19°/86.35° | 10 | 0/2 | 0.429 | 0.003 0 | ||
DES (SG) | 昌吉回族自治州芳草湖农场 Fangcaohu Farm in Changji Hui Zu Autonomous Prefecture | XFH | 44.51°/86.83° | 12 | 0/1 | - | - | |
阜康市222团 Fukang City Group 222 | XFK | 44.26°/87.96° | 12 | 0/2 | 0.476 | 0.004 0 | ||
奇台县北沙窝 Beishawo of Qitai County | XQT | 44.62°/88.37° | 8 | 1/2 | 0.607 | 0.008 0 | ||
和硕县马兰 Malan of Heshuo County | XML | 42.17°/87.26° | 11 | 0/1 | - | - | ||
ALT (NG) | 布尔津大桥 Burqin Bridge | XBJ | 47.68°/86.87° | 11 | 1/2 | 0.546 | 0.003 0 | |
布尔津县 Burqin County | XBE | 47.54°/87.15° | 14 | 0/2 | 0.264 | 0.004 0 | ||
北屯-布尔津 Beitun-Burqin | XBB | 47.35°/87.67° | 10 | 1/2 | 0.200 | 0.001 0 | ||
乌伦古湖 Ulungur Lake | XWG | 47.02°/87.35° | 15 | 0/1 | - | - | ||
白梭梭 H. persicum | 106 | 1/9 | 0.749 | 0.001 0 | ||||
DSW | 甘家湖梭梭自然保护区 Ganjiahu Saxoul Nature Reserve | BGH | 44.92°/83.97° | 12 | 0/3 | 0.530 | 0.003 0 | |
DZS | 石河子135团沙门子镇 Shamenzi Town of Shihezi Group 135 | BSB | 44.89°/85.25° | 13 | 0/2 | 0.282 | 0.003 5 | |
石河子134团安吉海镇 Anjihai Town of Shihezi Group 134 | BSS | 44.71°/85.39° | 8 | 0/3 | 0.400 | 0.004 0 | ||
石河子134团下野地镇 Xiayedi Town of Shihezi Group 134 | BSY | 44.75°/85.42° | 15 | 0/4 | 0.457 | 0.004 2 | ||
石河子147团北部沙漠 Desert of Northern Shihezi Group 147 | BSM | 44.73°/85.93° | 5 | 0/3 | 0.733 | 0.008 0 | ||
沙湾市柳屯县 Liutun County, Shawan City | BLT | 44.37°/88.57° | 10 | 0/3 | 0.250 | 0.002 0 | ||
古尔班通古特沙漠南缘 Southern edge of Gurbantünggüt Desert | BGN | 45.22°/86.27° | 9 | 1/0 | 0.303 | 0.002 0 | ||
石河子150团 Shihezi Group 150 | BSD | 45.07°/86.41° | 10 | 0/2 | 0.533 | 0.003 0 | ||
石河子149团莫索湾垦区 Mosuowan Reclamation Area of Shihezi Group 149 | BSC | 44.98°/86.27° | 10 | 0/2 | - | - | ||
DES | 阜康市 Fukang City | BFK | 44.42°/88.33° | 12 | 0/3 | 0.603 | 0.003 0 | |
奇台县北沙窝 Beishawo of Qitai County | BQT | 44.62°/88.37° | 1 | 0/1 | - | - | ||
ALT | 阿勒泰地区福海县黄金海岸 Gold Coast of Fuhai County, Altay Region | BFH | 47.20°/87.28° | 1 | 0/1 | - | - |
Fig. 1 Sampling locality and geographic distribution of 21 chloroplast DNA haplotypes (labelled as H1-H21) identified from 31 populations of Haloxylon ammodendron and H. persicum in Xinjiang, China. DEM, digital elevation model. Number between haplotypes is mutation steps. Population code see Table 1.
梭梭 H. ammodendron | 白梭梭 H. persicum |
---|---|
最干月降水量 Bio14 | 等温性 Bio3 |
最湿季平均气温 Bio8 | 最暖季平均气温 Bio10 |
最干季降水量 Bio17 | 降水季节性变异系数 Bio15 |
土壤堆积密度 BD | 最湿月降水量 Bio13 |
最暖季降水量 Bio18 | 最湿季平均气温 Bio8 |
土壤热容量 TC | 土壤有机碳含量 SOC |
土壤有机碳含量 SOC | 平均气温日较差 Bio2 |
土壤氮含量 TND | 剖面有效水量 PAWC |
年平均气温 Bio1 | 土壤堆积密度 BD |
最干季平均气温 Bio9 | 最冷季平均气温 Bio11 |
最冷月最低气温 Bio6 | 土壤氮含量 TND |
Table 2 Key environmental variables affecting genetic diversity of Haloxylon ammodendron and H. persicum
梭梭 H. ammodendron | 白梭梭 H. persicum |
---|---|
最干月降水量 Bio14 | 等温性 Bio3 |
最湿季平均气温 Bio8 | 最暖季平均气温 Bio10 |
最干季降水量 Bio17 | 降水季节性变异系数 Bio15 |
土壤堆积密度 BD | 最湿月降水量 Bio13 |
最暖季降水量 Bio18 | 最湿季平均气温 Bio8 |
土壤热容量 TC | 土壤有机碳含量 SOC |
土壤有机碳含量 SOC | 平均气温日较差 Bio2 |
土壤氮含量 TND | 剖面有效水量 PAWC |
年平均气温 Bio1 | 土壤堆积密度 BD |
最干季平均气温 Bio9 | 最冷季平均气温 Bio11 |
最冷月最低气温 Bio6 | 土壤氮含量 TND |
Fig. 2 Spatial distribution of standardized regression coefficients of Geographical Weighted Regression model variables based on haplotype diversity of Haloxylon ammodendron and H. persicum. Population codes see Table 1, environmental variables codes see Table 2.
物种 Species | 总遗传多样性 Total genetic diversity (HT) | 种群内平均遗传多样性 Average genetic diversity within populations (HS) | 群体分化值 Population differentiation values (GST) | 群体分化值 Population differentiation values (NST) |
---|---|---|---|---|
梭梭 H. ammodendron | 0.869 (0.086) | 0.094 (0.094) | 0.892 (0.107) | 0.901 (0.096) |
白梭梭 H. persicum | 0.862 (0.040) | 0.155 (0.082) | 0.820 (0.099) | 0.832 (0.100) |
Table 3 Genetic diversity and coefficient of genetic differentiation for Haloxylon ammodendron and H. persicum
物种 Species | 总遗传多样性 Total genetic diversity (HT) | 种群内平均遗传多样性 Average genetic diversity within populations (HS) | 群体分化值 Population differentiation values (GST) | 群体分化值 Population differentiation values (NST) |
---|---|---|---|---|
梭梭 H. ammodendron | 0.869 (0.086) | 0.094 (0.094) | 0.892 (0.107) | 0.901 (0.096) |
白梭梭 H. persicum | 0.862 (0.040) | 0.155 (0.082) | 0.820 (0.099) | 0.832 (0.100) |
物种 Species | 变异来源 Source of variation | 自由度 df | 平方和 Sum of squares | 变异组成 Variance components | 变异所占比例 Percentage of variation (%) | 固定指数 Fixation index |
---|---|---|---|---|---|---|
梭梭 H. ammodendron | 种群间 Among populations | 18 | 15.38 | 0.66 | 76.08 | FST = 0.76 |
种群内 Within populations | 207 | 3.33 | 0.21 | 23.92 | ||
合计 Total | 225 | 18.71 | 0.87 | |||
南北组间 Among groups | 5 | 16.60 | 0.82 | 79.50 | FCT = 0.80 | |
南北组内种群间 Among populations within groups | 2 | 0.44 | 0.004 5 | 0.45 | FSC = 0.02 | |
种群内 Within populations | 11 | 3.33 | 0.21 | 20.05 | FST = 0.79 | |
合计 Total | 18 | 10.21 | 0.56 | |||
白梭梭 H. persicum | 种群间 Among populations | 12 | 6.75 | 0.69 | 80.65 | FST = 0.81 |
种群内 Among populations | 94 | 1.33 | 0.17 | 19.35 | ||
合计 Total | 106 | 8.08 | 0.86 |
Table 4 Analysis of molecular variance for Haloxylon ammodendron and H. persicum
物种 Species | 变异来源 Source of variation | 自由度 df | 平方和 Sum of squares | 变异组成 Variance components | 变异所占比例 Percentage of variation (%) | 固定指数 Fixation index |
---|---|---|---|---|---|---|
梭梭 H. ammodendron | 种群间 Among populations | 18 | 15.38 | 0.66 | 76.08 | FST = 0.76 |
种群内 Within populations | 207 | 3.33 | 0.21 | 23.92 | ||
合计 Total | 225 | 18.71 | 0.87 | |||
南北组间 Among groups | 5 | 16.60 | 0.82 | 79.50 | FCT = 0.80 | |
南北组内种群间 Among populations within groups | 2 | 0.44 | 0.004 5 | 0.45 | FSC = 0.02 | |
种群内 Within populations | 11 | 3.33 | 0.21 | 20.05 | FST = 0.79 | |
合计 Total | 18 | 10.21 | 0.56 | |||
白梭梭 H. persicum | 种群间 Among populations | 12 | 6.75 | 0.69 | 80.65 | FST = 0.81 |
种群内 Among populations | 94 | 1.33 | 0.17 | 19.35 | ||
合计 Total | 106 | 8.08 | 0.86 |
Fig. 4 Bayesian phylogenetic relationship and divergence time estimates for Haloxylon ammodendron and H. persicum. The values on the right of the nodes represent mean intervals of divergence time (in millions of years). H1-H21, 21 chloroplast DNA haplotypes.
离差平方和 SSD | 粗糙指数 Hrag | 错配分布Mismatch distribution | Fu’s Fs | Tajima’s D | |
---|---|---|---|---|---|
梭梭 H. ammodendron | 0.094* | 0.273* | 单峰 Unimodal | -0.205 | 0.564 |
白梭梭 H. persicum | 0.152* | 0.288* | 单峰 Unimodal | 1.259 | 1.264 |
Table 5 Results of neutrality tests and mismatch distribution analysis of Haloxylon ammodendron and H. persicum
离差平方和 SSD | 粗糙指数 Hrag | 错配分布Mismatch distribution | Fu’s Fs | Tajima’s D | |
---|---|---|---|---|---|
梭梭 H. ammodendron | 0.094* | 0.273* | 单峰 Unimodal | -0.205 | 0.564 |
白梭梭 H. persicum | 0.152* | 0.288* | 单峰 Unimodal | 1.259 | 1.264 |
[1] |
Abbott RJ, Comes HP (2004). Evolution in the Arctic: a phylogeographic analysis of the circumarctic plant, Saxifraga oppositifolia (purple saxifrage). New Phytologist, 161, 211-224.
DOI URL |
[2] |
Bandelt HJ, Forster P, Röhl A (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.
DOI PMID |
[3] | de Macedo PM, de Melo Teixeira M, Barker BM, Zancopé-Oliveira RM, Almeida-Paes R, do Valle ACF (2019). Clinical features and genetic background of the sympatric species Paracoccidioides brasiliensis and Paracoccidioides americana. PLoS Neglected Tropical Diseases, 13, e0007309. DOI: 10.1371/journal.pntd.0007309. |
[4] |
Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W (2002). Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics, 161, 1307-1320.
DOI PMID |
[5] |
Excoffier L, Lischer HEL (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567.
DOI PMID |
[6] |
Falchi A, Paolini J, Desjobert JM, Melis A, Costa J, Varesi L (2009). Phylogeography of Cistus creticus L. on Corsica and Sardinia inferred by the TRNL-F and RPL32-TRNL sequences of cpDNA. Molecular Phylogenetics and Evolution, 52, 538-543.
DOI URL |
[7] | Fan ZP, Wang Q, Li FY (2018). Seasonal dynamics of soil organic carbon in different forest types and its driving factors in mountainous region of eastern Liaoning. Chinese Journal of Ecology, 37, 3220-3230. |
[范志平, 王琼, 李法云 (2018). 辽东山地不同森林类型土壤有机碳季节动态及其驱动因子. 生态学杂志, 37, 3220-3230.] | |
[8] | Fang H, Zhang H, Yao ZP, Ma L, Wang Z, Jiang YY, Ma H (2015). Investigation of the phylogenetic relationships of different color of Haloxylon ammodendron fruit wing based on ITS2 sequence. Xinjiang Agricultural Sciences, 52, 1822-1827. |
[方辉, 张桦, 姚正培, 马林, 王泽, 蒋圆圆, 麻浩 (2015). 基于ITS2序列探讨不同果翅颜色梭梭的系统发育关系. 新疆农业科学, 52, 1822-1827.] | |
[9] |
Ferris KG, Willis JH (2018). Differential adaptation to a harsh granite outcrop habitat between sympatric Mimulus species. Evolution, 72, 1225-1241.
DOI URL |
[10] |
He YZ, Huang WD, Zhao X, Lü P, Wang HH (2021). Review on the impact of climate change on plant diversity. Journal of Desert Research, 41, 59-66.
DOI |
[何远政, 黄文达, 赵昕, 吕朋, 王怀海 (2021). 气候变化对植物多样性的影响研究综述. 中国沙漠, 41, 59-66.]
DOI |
|
[11] |
Hewitt GM (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 359, 183-195.
DOI URL |
[12] |
Huang WD, Zhao XY, Zhao X, Li YQ, Lian J, Yun JY (2014). Relationship between the genetic diversity of Artemisia halodendron and climatic factors. Acta Oecologica, 55, 97-103.
DOI URL |
[13] |
Jia SW, Zhang ML (2019). Pleistocene climate change and phylogeographic structure of the Gymnocarpos przewalskii (Caryophyllaceae) in the northwest China: evidence from plastid DNA, ITS sequences, and Microsatellite. Ecology and Evolution, 9, 5219-5235.
DOI URL |
[14] | Jiang W (2014). Effects of Warming and Grazing to Genetic Diversity of Stipa aliena and Elymus nutans Populations in Alpine Meadow of Qinghai-Tibetan Plateau. Master degree dissertation, Inner Mongolia University, Hohhot. |
[姜威 (2014). 增温与放牧对高寒草甸异针茅和垂穗披碱草种群遗传多样性的影响. 硕士学位论文, 内蒙古大学, 呼和浩特.] | |
[15] | Jiang YY, Zhang H, Yao ZP, Ma H, Wang Z, Li YJ, Fang H, Ma L (2015). Investigation on the phylogenesis of wild Haloxylon persicum based on ITS2 sequence. Journal of Xinjiang Agricultural University, 38, 200-204. |
[蒋圆圆, 张桦, 姚正培, 麻浩, 王泽, 李亚婕, 方辉, 马林 (2015). 基于ITS2序列探讨野生白梭梭的系统发育关系. 新疆农业大学学报, 38, 200-204.] | |
[16] |
Levins R (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237-240.
DOI URL |
[17] |
McMillen DP (2004). Geographically weighted regression: the analysis of spatially varying relationships. American Journal of Agricultural Economics, 86, 554-556.
DOI URL |
[18] |
Meng HH, Zhang ML (2013). Diversification of plant species in arid Northwest China: species-level phylogeographical history of Lagochilus Bunge ex Bentham (Lamiaceae). Molecular Phylogenetics and Evolution, 68, 398-409.
DOI URL |
[19] |
Peakall R, Smouse PE (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics, 28, 2537-2539.
PMID |
[20] |
Pons O, Petit RJ (1996). Measwring and testing genetic differentiation with ordered versus unordered alleles. Genetics, 144, 1237-1245.
DOI PMID |
[21] |
Rogers AR, Harpending H (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552-569.
DOI PMID |
[22] |
Shaw J, Lickey EB, Schilling EE, Small RL (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany, 94, 275-288.
DOI PMID |
[23] | Sheng Y, Zhen WH, Pei KQ, Ma KP (2004). Population genetic structure of a dominant desert tree, Haloxylon ammodendron (Chenopodiaceae), in the Southeast Gurbantunggut Desert detected by RAPD and ISSR markers. Acta Botanica Sinica, 46, 675-681. |
[24] |
Shi XJ, Zhang ML (2015). Phylogeographical structure inferred from cpDNA sequence variation of Zygophyllum xanthoxylon across north-west China. Journal of Plant Research, 128, 269-282.
DOI URL |
[25] | Sun FF, Nie YB, Ma SM, Wei B, Ji WQ (2019). Species differentiation of Haloxylon ammodendron and Haloxylon persicum based on ITS and cpDNA sequences. Scientia Silvae Sinicae, 55(3), 43-53. |
[孙芳芳, 聂迎彬, 马松梅, 魏博, 吉万全 (2019). 基于ITS和cpDNA序列的梭梭和白梭梭物种分化. 林业科学, 55(3), 43-53.] | |
[26] | The Editorial Committee of Chinese Vegetation (1980). Chinese Vegetation. Science Press, Beijing. |
[中国植被编辑委员会 (1980). 中国植被. 科学出版社, 北京.] | |
[27] | Wang J, Wu Y, Ren G, Guo Q, Liu J, Lascoux M (2011). Genetic differentiation and delimitation between ecologically diverged Populus euphratica and P. pruinosa. PLoS ONE, 6, e26530. DOI: 10.1371/journal.pone.0026530. |
[28] |
Wang Q, Abbott RJ, Yu Q, Lin K, Liu J (2013). Pleistocene climate change and the origin of two desert plant species, Pugionium cornutum and Pugionium dolabratum (Brassicaceae), in northwest China. New Phytologist, 199, 277-287.
DOI URL |
[29] |
Wen ZB, Xu Z, Zhang HX, Feng Y (2016). Chloroplast phylogeographic patterns of Calligonum sect. Pterococcus (Polygonaceae) in arid Northwest China. Nordic Journal of Botany, 34, 335-342.
DOI URL |
[30] |
Wolfe KH, Li W, Sharp PM (1987). Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences of the United States of America, 84, 9054-9058.
DOI PMID |
[31] | Xu ZP, Wan T, Cai P, Zhang XM, Yi WD, Wan YC (2017). Study on the relevance between genetic diversity of Gymnocarpos przewalskii populations and soil factors. Ecology and Environmental Sciences, 26, 1473-1479. |
[徐振朋, 宛涛, 蔡萍, 张晓明, 伊卫东, 宛诣超 (2017). 裸果木种群遗传多样性及其与土壤因子的关联性研究. 生态环境学报, 26, 1473-1479.]
DOI |
|
[32] |
Yin JF, Zhou XB, Yin BF, Li YG, Zhang YM (2021). Species-dependent responses of root growth of herbaceous plants to snow cover changes in a temperate desert, Northwest China. Plant and Soil, 459, 249-260.
DOI |
[33] | Zeng YF, Zhang JG, Abuduhamiti B, Wang WT, Jia ZQ (2018). Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations. BMC Evolutionary Biology, 18, 75. DOI: 10.1186/s12862-018-1194-1. |
[34] | Zhang HX, Zhang ML (2012). Genetic structure of the Delphinium naviculare species group tracks Pleistocene climatic oscillations in the Tianshan Mountains, arid Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 353- 355, 93-103. |
[35] | Zhang H, Zhang M, Sanderson SC (2016). Spatial genetic structure of forest and xerophytic plant species in arid Eastern Central Asia: insights from comparative phylogeography and ecological niche modelling. Biological Journal of the Linnean Society. DOI: 10.1111/bij.12903. |
[36] | Zhang HX, Zheng TY (2020). Effects of elevation on population genetic characteristics of Malus sieversii. Chinese Journal of Ecology, 39, 4031-4037. |
[张宏祥, 郑田勇 (2020). 海拔对新疆野苹果种群遗传特征的影响. 生态学杂志, 39, 4031-4037.] | |
[37] | Zhang L, Sun FF, Ma SM, Wang CC, Wei B, Zhang YL (2022). Phylogeography of Amygdalus mongolica in relation to Quaternary climatic aridification and oscillations in northwestern China. PeerJ, 10, e13345. DOI: 10.7717/peerj.13345. |
[38] | Zhang LY (2002). Haloxylon ammodendron and Haloxylon persicum in Xinjiang Desert (I). Plants, (4), 4-6. |
[张立运 (2002). 新疆荒漠中的梭梭和白梭梭(上). 植物杂志, (4), 4-6.] | |
[39] | Zhang P, Dong YZ, Wei Y, Hu CZ (2006). ISSR analysis of genetic diversity of Haloxylon ammodendron in Xinjiang. Acta Botanica Boreali-Occidentalia Sinica, 26, 1337-1341. |
[张萍, 董玉芝, 魏岩, 胡成志 (2006). 利用ISSR标记对新疆梭梭遗传多样性的研究. 西北植物学报, 26, 1337-1341.] | |
[40] | Zhong Y, Tang XH, Shi SH, Huang YL, Tan FX (1999). Effect of outgroups on construction of gene trees. Acta Scientiarum Naturalium Universitatis Sunyatseni, 38, 124-127. |
[钟扬, 唐先华, 施苏华, 黄椰林, 谈凤笑 (1999). 外类群对构建基因树的影响. 中山大学学报(自然科学版), 38, 124-127.] |
[1] | CHEN Yuting Song-Mei MA ZHANG dan Lingyun He. Genetic pattern and diffusion path simulation of Haloxylon persicum in Xinjiang based on GIS and Multi-source data [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | YANG Xin, REN Ming-Xun. Species distribution pattern and formation mechanism of mangrove plants around the South China Sea [J]. Chin J Plant Ecol, 2023, 47(8): 1105-1115. |
[3] | CHEN Tu-Qiang, XU Gui-Qing, LIU Shen-Si, LI Yan. Hydraulic traits adjustments and nonstructural carbohydrate dynamics of Haloxylon ammodendron under drought stress [J]. Chin J Plant Ecol, 2023, 47(10): 1407-1421. |
[4] | WANG Chun-Cheng, ZHANG Yun-Ling, MA Song-Mei, HUANG Gang, ZHANG Dan, YAN Han. Phylogeny and species differentiation of four wild almond species of subgen. Amygdalus in China [J]. Chin J Plant Ecol, 2021, 45(9): 987-995. |
[5] | YAN Qiao-Di, SU Pei-Xi, CHEN Hong-Bin, ZHANG Ling-Mei. COMPARATIVE STUDIES ON CRYSTAL IDIOBLASTS OF FIVE DESERT C4 PLANTS [J]. Chin J Plant Ecol, 2008, 32(4): 873-882. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn