Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (5): 456-466.DOI: 10.17521/cjpe.2020.0140
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
XIANG Xiang, HUANG Yong-Mei*(), YANG Chong-Yao, LI Ze-Qing, CHEN Hui-Ying, PAN Ying-Ping, HUO Jia-Xuan, REN Liang
Received:
2020-05-11
Accepted:
2020-08-23
Online:
2021-05-20
Published:
2021-01-05
Contact:
HUANG Yong-Mei
Supported by:
XIANG Xiang, HUANG Yong-Mei, YANG Chong-Yao, LI Ze-Qing, CHEN Hui-Ying, PAN Ying-Ping, HUO Jia-Xuan, REN Liang. Effect of altitude on community-level plant functional traits in the Qinghai Lake Basin, China[J]. Chin J Plant Ecol, 2021, 45(5): 456-466.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0140
序号 Serial number | 海拔 Altitude (m) | 群系 Alliance | 优势种 Dominant species | 坡度 Slope (°) | 土壤类型 Soil type |
---|---|---|---|---|---|
1 | 3 373 | 紫花针茅+西北针茅草地 Stipa purpurea + S. sareptana Tussock Grassland Aliance | 紫花针茅、西北针茅 S. purpurea, S. sareptana | <5 | 砂质壤土 Sandy loam |
2 | 3 626 | 紫花针茅草地 S. purpurea Tussock Grassland Aliance | 紫花针茅 S. purpurea | 11 | 砂质壤土 Sandy loam |
3 | 3 719 | 高山嵩草+紫花针茅草地 Kobresia pygmaea + S. purpurea Tussock Grassland Aliance | 高山嵩草、紫花针茅 K. pygmaea, S. purpurea | <5 | 砂质壤土 Sandy loam |
4 | 3 973 | 高山嵩草草地 K. pygmaea Tussock Grassland Aliance | 高山嵩草 K. pygmaea | 13 | 壤质细砂土 Loam fine sand |
5 | 4 222 | 唐古红景天高山垫状植被 Rhodiola tangutica Alpine Cushion Vegetation | 唐古红景天 R. tangutica | <5 | 砂质壤土 Sandy loam |
Table 1 Geographical and vegetation characteristics of each site in the Qinghai Lake Basin, China
序号 Serial number | 海拔 Altitude (m) | 群系 Alliance | 优势种 Dominant species | 坡度 Slope (°) | 土壤类型 Soil type |
---|---|---|---|---|---|
1 | 3 373 | 紫花针茅+西北针茅草地 Stipa purpurea + S. sareptana Tussock Grassland Aliance | 紫花针茅、西北针茅 S. purpurea, S. sareptana | <5 | 砂质壤土 Sandy loam |
2 | 3 626 | 紫花针茅草地 S. purpurea Tussock Grassland Aliance | 紫花针茅 S. purpurea | 11 | 砂质壤土 Sandy loam |
3 | 3 719 | 高山嵩草+紫花针茅草地 Kobresia pygmaea + S. purpurea Tussock Grassland Aliance | 高山嵩草、紫花针茅 K. pygmaea, S. purpurea | <5 | 砂质壤土 Sandy loam |
4 | 3 973 | 高山嵩草草地 K. pygmaea Tussock Grassland Aliance | 高山嵩草 K. pygmaea | 13 | 壤质细砂土 Loam fine sand |
5 | 4 222 | 唐古红景天高山垫状植被 Rhodiola tangutica Alpine Cushion Vegetation | 唐古红景天 R. tangutica | <5 | 砂质壤土 Sandy loam |
植物功能性状 Plant functional trait | 简写 Abbreviation | 单位 Unit | 计算公式 Equation |
---|---|---|---|
植株高度 Plant height | H | cm | - |
比叶面积 Specific leaf area | SLA | cm2·g-1 | 叶面积/叶片干质量 Leaf area/dry mass |
叶片干物质含量 Leaf dry matter content | LDMC | g·g-1 | 叶干质量/叶饱和鲜质量 Leaf dry mass/saturated fresh mass |
叶片氮含量 Leaf nitrogen content | LNC | mg·g-1 | - |
叶片磷含量 Leaf phosphorus content | LPC | mg·g-1 | - |
叶片碳含量 Leaf carbon content | LCC | mg·g-1 | - |
叶片碳氮比 Leaf C:N ratio | C:N | - | - |
叶片氮磷比 Leaf N:P ratio | N:P | - | - |
比根长 Specific root length | SRL | cm·g-1 | 细根长度/细根干质量 Fine root length/dry mass |
比根表面积 Specific root surface area | SRA | cm2·g-1 | 细根表面积/细根干质量 Fine root surface area/dry mass |
根组织密度 Root tissue density | RTD | g·cm-3 | 细根干质量/细根体积 Fine root dry mass/volume |
Table 2 Plant functional traits and their equations selected in this study
植物功能性状 Plant functional trait | 简写 Abbreviation | 单位 Unit | 计算公式 Equation |
---|---|---|---|
植株高度 Plant height | H | cm | - |
比叶面积 Specific leaf area | SLA | cm2·g-1 | 叶面积/叶片干质量 Leaf area/dry mass |
叶片干物质含量 Leaf dry matter content | LDMC | g·g-1 | 叶干质量/叶饱和鲜质量 Leaf dry mass/saturated fresh mass |
叶片氮含量 Leaf nitrogen content | LNC | mg·g-1 | - |
叶片磷含量 Leaf phosphorus content | LPC | mg·g-1 | - |
叶片碳含量 Leaf carbon content | LCC | mg·g-1 | - |
叶片碳氮比 Leaf C:N ratio | C:N | - | - |
叶片氮磷比 Leaf N:P ratio | N:P | - | - |
比根长 Specific root length | SRL | cm·g-1 | 细根长度/细根干质量 Fine root length/dry mass |
比根表面积 Specific root surface area | SRA | cm2·g-1 | 细根表面积/细根干质量 Fine root surface area/dry mass |
根组织密度 Root tissue density | RTD | g·cm-3 | 细根干质量/细根体积 Fine root dry mass/volume |
序号 Serial number | 年平均气温 Mean annual air temperature (℃) | 年降水量 Mean annual precipitation (mm) | 0-10 cm土壤全氮含量 Soil total nitrogen content in 0-10 cm layer (mg·g-1) | 0-10 cm土壤全磷含量 Soil total phosphorus content in 0-10 cm layer (mg·g-1) | 10-20 cm土壤全氮含量 Soil total nitrogen content in 10-20 cm layer (mg·g-1) | 10-20 cm土壤全磷含量 Soil total phosphorus content in 10-20 cm layer (mg·g-1) |
---|---|---|---|---|---|---|
1 | 1 | 348 | 0.39 ± 0.003c | 0.66 ± 0.164a | 0.34 ± 0.033b | 0.62 ± 0.001ab |
2 | -1 | 434 | 0.39 ± 0.003c | 0.62 ± 0.008a | 0.31 ± 0.033c | 0.63 ± 0.004a |
3 | -2 | 430 | 0.43 ± 0.003b | 0.65 ± 0.004a | 0.26 ± 0.000d | 0.57 ± 0.015bc |
4 | -4 | 401 | 0.49 ± 0.001a | 0.59 ± 0.004a | 0.38 ± 0.000a | 0.59 ± 0.002b |
5 | -6 | 371 | 0.32 ± 0.003d | 0.53 ± 0.005a | 0.18 ± 0.033e | 0.53 ± 0.007d |
Table 3 Climate and soil nutrient content characteristics of each site in the Qinghai Lake Basin, China (mean ± SE, n = 3)
序号 Serial number | 年平均气温 Mean annual air temperature (℃) | 年降水量 Mean annual precipitation (mm) | 0-10 cm土壤全氮含量 Soil total nitrogen content in 0-10 cm layer (mg·g-1) | 0-10 cm土壤全磷含量 Soil total phosphorus content in 0-10 cm layer (mg·g-1) | 10-20 cm土壤全氮含量 Soil total nitrogen content in 10-20 cm layer (mg·g-1) | 10-20 cm土壤全磷含量 Soil total phosphorus content in 10-20 cm layer (mg·g-1) |
---|---|---|---|---|---|---|
1 | 1 | 348 | 0.39 ± 0.003c | 0.66 ± 0.164a | 0.34 ± 0.033b | 0.62 ± 0.001ab |
2 | -1 | 434 | 0.39 ± 0.003c | 0.62 ± 0.008a | 0.31 ± 0.033c | 0.63 ± 0.004a |
3 | -2 | 430 | 0.43 ± 0.003b | 0.65 ± 0.004a | 0.26 ± 0.000d | 0.57 ± 0.015bc |
4 | -4 | 401 | 0.49 ± 0.001a | 0.59 ± 0.004a | 0.38 ± 0.000a | 0.59 ± 0.002b |
5 | -6 | 371 | 0.32 ± 0.003d | 0.53 ± 0.005a | 0.18 ± 0.033e | 0.53 ± 0.007d |
Fig. 2 The one-way ANOVA of community-weighted mean functional traits along altitude (mean ± SE). Different lowercase letters indicate significant differences between different altitudes (p < 0.05). C:N, leaf carbon to nitrogen ratio; H, plant height; LCC, leaf carbon content; LDMC, leaf dry matter content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; N:P, leaf nitrogen to phosphorus ratio; RTD, root tissue density; SLA, specific leaf area; SRA, specific root surface area; SRL, specific root length.
Fig. 3 Decomposition of total variability in community- weighted mean functional traits. The space between the top of the column and the bar corresponds to the effect of covariation. If the bar is above the column, the covariation is positive, if the bar crosses the column, the covariation is negative. *, p < 0.05; **, p < 0.01. See Table 2 for abbreviation of traits.
Fig. 4 Principal component analysis (PCA) of six environmental factors. MAP, mean annual precipitation (mm); N10, soil total nitrogen content in 0-10 cm layer (mg·g-1); N20, soil total nitrogen content in 10-20 cm layer (mg·g-1); P10, soil total phosphorus content in 0-10 cm layer (mg·g-1); P20, soil total phosphorus content in 10-20 cm layer (mg·g-1); t, mean annual air temperature (°C).
Fig. 5 Proportion of variance in community-weighted mean functional traits explained by PC1 and PC2. PC1, temperature and deep soil nutrient content; PC2, precipitation and surface soil nutrient content. See Table 2 for abbreviation of traits.
[1] |
Asner GP,Martin RE(2016).Convergent elevation trends in canopy chemical traits of tropical forests.Global Change Biology,22, 2216-2227.
DOI URL |
[2] |
Both S,Riutta T,Timothy Paine CE,Elias DMO,Cruz RS,Jain A,Johnson D,Kritzler UH,Kuntz M,Majalap-Lee N,Mielke N,Montoya Pillco MX,Ostle NJ,Teh YA,Malhi Y,Burslem DFRP(2019).Logging and soil nutrients independently explain plant trait expression in tropical forests.New Phytologist,221, 1853-1865.
DOI URL |
[3] |
Campetella G,Chelli S,Wellstein C,Farris E,Calvia G,Simonetti E,Borsukiewicz L,Vanderplank S,Marignani M(2019).Contrasting patterns in leaf traits of Mediterranean shrub communities along an elevation gradient: measurements matter.Plant Ecology,220, 765-776.
DOI |
[4] |
Chapin III FS(1980).The mineral nutrition of wild plants.Annual Review of Ecology and Systematics,11, 233-260.
DOI URL |
[5] | Chen GC,Peng M(1993).Types and distribution of vegetation in Qinhai Lake region.Acta Phytoecologica et Geobotanica Sinica,17, 71-81. |
[陈桂琛,彭敏(1993).青海湖地区植被及其分布规律.植物生态学与地植物学学报,17, 71-81.] | |
[6] |
Chen HY,Huang YM,He KJ,Qi Y,Li EG,Jiang ZY,Sheng ZL,Li XY(2019).Temporal intraspecific trait variability drives responses of functional diversity to interannual aridity variation in grasslands.Ecology and Evolution,9, 5731-5742.
DOI URL |
[7] | Chevan A,Sutherland M(1991).Hierarchical partitioning.American Statistician,45, 90-96. |
[8] |
Cingolani AM,Cabido M,Gurvich DE,Renison D,Díaz S(2007).Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits?Journal of Vegetation Science,18, 911-920.
DOI URL |
[9] |
Cornelissen JHC,Lavorel S,Garnier E,Díaz S,Buchmann N,Gurvich DE,Reich PB,ter Steege H,Morgan HD,van der Heijden MGA,Pausas JG,Poorter H(2003).A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Australian Journal of Botany,51, 335-380.
DOI URL |
[10] |
de Bello F,Lavorel S,Díaz S,Harrington R,Cornelissen JHC,Bardgett RD,Berg MP,Cipriotti P,Feld CK,Hering D,da Silva PM,Potts SG,Sandin L,Sousa JP,Storkey J,Wardle DA,Harrison PA(2010).Towards an assessment of multiple ecosystem processes and services via functional traits.Biodiversity and Conservation,19, 2873-2893.
DOI URL |
[11] |
de Bello F,Lavorel S,Albert CH,Thuiller W,Grigulis K,Dolezal J,Janeček Š,Lepš J(2011).Quantifying the relevance of intraspecific trait variability for functional diversity.Methods in Ecology and Evolution,2, 163-174.
DOI URL |
[12] |
de Frenne P,Graae BJ,Rodríguez-Sánchez F,Kolb A,Chabrerie O,Decocq G,de Kort H,De Schrijver A,Diekmann M,Eriksson O,Gruwez R,Hermy M,Lenoir J,Plue J,Coomes DA,Verheyen K(2013).Latitudinal gradients as natural laboratories to infer speciesʼ responses to temperature.Journal of Ecology,101, 784-795.
DOI URL |
[13] |
de la Riva E,Pérez-Ramos IM,Tosto A,Navarro-Fernández C,Olmo M,Marañón T,Villar R(2016).Disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait- based approach at the whole-plant level in Mediterranean forests.Oikos,125, 354-363.
DOI URL |
[14] |
de Oliveira ACP,Nunes A,Rodrigues RG,Branquinho C(2020).The response of plant functional traits to aridity in a tropical dry forest.Science of the Total Environment,747, 141177. DOI:10.1016/j.scitotenv.2020.141177.
DOI URL |
[15] | Díaz S,Lavorel S,de Bello F,Quétier F,Grigulis K,Robson TM(2007).Incorporating plant functional diversity effects in ecosystem service assessments.Proceedings of the National Academy of Sciences of the United States of America,104, 20684-20689. |
[16] |
Garnier E,Cortez J,Billès G,Navas ML,Roumet C,Debussche M,Laurent G,Blanchard A,Aubry D,Bellmann A,Neill C,Toussaint JP(2004).Plant functional markers capture ecosystem properties during secondary succession.Ecology,85, 2630-2637.
DOI URL |
[17] |
Geng Y,Wang L,Jin DM,Liu HY,He JS(2014).Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits.Oecologia,175, 445-455.
DOI PMID |
[18] |
Graae BJ,de Frenne P,Kolb A,Brunet J,Chabrerie O,Verheyen K,Pepin N,Heinken T,Zobel M,Shevtsova A,Nijs I,Milbau A(2012).On the use of weather data in ecological studies along altitudinal and latitudinal gradients.Oikos,121, 3-19.
DOI URL |
[19] |
Güsewell S(2004).N:P ratios in terrestrial plants: variation and functional significance.New Phytologist,164, 243-266.
DOI URL |
[20] | He J,Yang K(2011).China Meteorological Forcing Dataset.Cold and Arid Regions Science Data Center,Lanzhou. |
[何杰,阳坤(2011).中国区域高时空分辨率地面气象要素驱动数据集.中国科学院寒区旱区科学数据中心,兰州.] | |
[21] | Hu H,Bao WK,Li FL(2020).Differencial vertical distribuction of functional traits of fine roots of four cultivated tree species in the upper reaches of Minjiang River.Chinese Journal of Ecology,39, 46-56. |
[胡慧,包维楷,李芳兰(2020).岷江上游4个栽培树种细根功能性状垂直分布的差异性.生态学杂志,39, 46-56.] | |
[22] | Huang JJ,Wang XH(2003).Leaf nutrient and structural characteristics of 32 evergreen broad-leaved species.Journal of East China Normal University (Natural Science),1, 92-97. |
[黄建军,王希华(2003).浙江天童32种常绿阔叶树叶片的营养及结构特征.华东师范大学学报(自然科学版),1, 92-97.] | |
[23] | Huang YM,Chen HY,Zhang JH,Sheng ZL,Li EG,Liu HY(2018).Advances and prospects of plant trait biogeography.Progress in Geography,37, 93-101. |
[黄永梅,陈慧颖,张景慧,盛芝露,李恩贵,刘鸿雁(2018).植物属性地理的研究进展与展望.地理科学进展,37, 93-101.] | |
[24] |
Jung V,Albert CH,Violle C,Kunstler G,Loucougaray G,Spiegelberger T(2014).Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events.Journal of Ecology,102, 45-53.
DOI URL |
[25] |
Kergunteuil A,Descombes P,Glauser G,Pellissier L,Rasmann S(2018).Plant physical and chemical defence variation along elevation gradients: a functional trait-based approach.Oecologia,187, 561-571.
DOI PMID |
[26] |
Kichenin E,Wardle DA,Peltzer DA,Morse CW,Freschet GT(2013).Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient.Functional Ecology,27, 1254-1261.
DOI URL |
[27] |
Klimešová J,de Bello F(2009).CLO-PLA: the database of clonal and bud bank traits of Central European flora.Journal of Vegetation Science,20, 511-516.
DOI URL |
[28] |
Kleyer M,Bekker RM,Knevel IC,Bakker JP,Thompson K,Sonnenschein M,Poschlod P,van Groenendael JM,Klimeš L,Klimešová J,Klotz S,Rusch GM,Hermy M,Adriaens D,Boedeltje G,et al.(2008).The LEDA Traitbase: a database of life-history traits of the Northwest European flora.Journal of Ecology,96, 1266-1274.
DOI URL |
[29] |
Körner C(2007).The use of “altitude” in ecological research.Trends in Ecology & Evolution,22, 569-574.
DOI URL |
[30] |
Laliberté E,Legendre P(2010).A distance-based framework for measuring functional diversity from multiple traits.Ecology,91, 299-305.
PMID |
[31] | Lamarque P,Lavorel S,Mouchet M,Quétier F(2014).Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services.Proceedings of the National Academy of Sciences of the United States of America,111, 13751-13756. |
[32] |
Lepš J,de Bello F,Šmilauer P,Doležal J(2011).Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects.Ecography,34, 856-863.
DOI URL |
[33] |
Midolo G,de Frenne P,Hölzel N,Wellstein C(2019).Global patterns of intraspecific leaf trait responses to elevation.Global Change Biology,25, 2485-2498.
DOI URL |
[34] |
Mitchell RM,Ames GM,Wright JP(2020).Intraspecific trait variability shapes leaf trait response to altered fire regimes.Annals of Botany,126, mcaa179. DOI:10.1093/aob/mcaa179.
DOI |
[35] |
Moles AT,Warton DI,Warman L,Swenson NG,Laffan SW,Zanne AE,Pitman A,Hemmings FA,Leishman MR(2009).Global patterns in plant height.Journal of Ecology,97, 923-932.
DOI URL |
[36] |
Mooney HA,Billings WD(1961).Comparative physiological ecology of arctic and alpine populations of Oxyria digyna.Ecological Monographs,31, 1-29.
DOI URL |
[37] |
Mouillot D,Graham NAJ,Villéger S,Mason NWH,Bellwood DR(2013).A functional approach reveals community responses to disturbances.Trends in Ecology and Evolution,28, 167-177.
DOI PMID |
[38] | Nian K,Zhang DS,Zhang YS,Chen JF,Huang M(1997).Distribution characteristics of plant communities in Qinghai Lake Basin.Science and Technology of Qinghai Agriculture and Forestry, (4), 9-12. |
[年奎,张登山,张有生,陈进福,荒漠(1997).青海湖流域植物群落分布特点.青海农林科技, (4), 9-12.] | |
[39] |
Niu KC,He JS,Lechowicz MJ(2016).Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows.Journal of Applied Ecology,53, 1554-1564.
DOI URL |
[40] |
Nunes A,Köbel M,Pinho P,Matos P,de Bello F,Correia O,Branquinho C(2017).Which plant traits respond to aridity? A critical step to assess functional diversity in Mediterranean drylands.Agricultural and Forest Meteorology,239, 176-184.
DOI URL |
[41] |
Pfennigwerth AA,Bailey JK,Schweitzer JA(2017).Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity.AoB Plants,9, plx027. DOI:10.1093/aobpla/plx027.
DOI |
[42] |
Poorter H,Niinemets Ü,Poorter L,Wright IJ,Villar R(2009).Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis.New Phytologist,182, 565-588.
DOI URL |
[43] | R Core Team(2019).R: a language and environment for statistical computing. [2020-05-11]. https://www.R-project.org/. |
[44] | Reich PB,Oleksyn J(2004).Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America,101, 11001-11006. |
[45] | Reich PB,Rich RL,Lu X,Wang YP,Oleksyn J(2014).Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections.Proceedings of the National Academy of Sciences of the United States of America,111, 13703-13708. |
[46] |
Roche P,Díaz-Burlinson N,Gachet S(2004).Congruency analysis of species ranking based on leaf traits: Which traits are the more reliable?Plant Ecology,174, 37-48.
DOI URL |
[47] |
Siefert A,Ritchie ME(2016).Intraspecific trait variation drives functional responses of old-field plant communities to nutrient enrichment.Oecologia,181, 245-255.
DOI PMID |
[48] |
Siefert A,Violle C,Chalmandrier L,Albert CH,Taudiere A,Fajardo A,Aarssen LW,Baraloto C,Carlucci MB,Cianciaruso MV,Dantas VdL,de Bello F,Duarte LDS,Fonseca CR,Freschet GT,et al.(2015).A global meta-analysis of the relative extent of intraspecific trait variation in plant communities.Ecology Letters,18, 1406-1419.
DOI PMID |
[49] |
Valencia E,Maestre FT,Le Bagousse-Pinguet Y,Quero LJ,Tamme R,Bӧrger L,García-Gómez M,Gross N(2015).Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands.New Phytologist,206, 660-671.
DOI PMID |
[50] |
van Wijk MT,Williams M,Gough L,Hobbie SE,Shaver GR(2003).Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?Journal of Ecology,91, 664-676.
DOI URL |
[51] |
Violle C,Navas ML,Vile D,Kazakou E,Fortunel C,Hummel I,Garnier E(2007).Let the concept of trait be functional!Oikos,116, 882-892.
DOI URL |
[52] | Violle C,Reich PB,Pacala SW,Enquist BJ,Kattge J(2014).The emergence and promise of functional biogeography.Proceedings of the National Academy of Sciences of the United States of America,111, 13690-13696. |
[53] |
Volf M,Redmond C,Albert ÁJ,Le Bagousse-Pinguet Y,Biella P,Götzenberger L,Hrázský Z,Janeček Š,Klimešová J,Lepš J,Šebelíková L,Vlasatá T,de Bello F(2016).Effects of long- and short-term management on the functional structure of meadows through species turnover and intraspecific trait variability.Oecologia,180, 941-950.
DOI URL |
[54] |
Wang RL,Yu GR,He NP,Wang QF,Zhao N,Xu ZW(2016).Latitudinal variation of leaf morphological traits from species to communities along a forest transect in eastern China.Journal of Geographical Sciences,26,15-26.
DOI URL |
[55] |
Zhou XL,Guo Z,Zhang PF,Du GZ(2018).Shift in community functional composition following nitrogen fertilization in an alpine meadow through intraspecific trait variation and community composition change.Plant and Soil,431, 289-302.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn