Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (11): 999-1009.DOI: 10.17521/cjpe.2019.0141
• Research Articles • Previous Articles Next Articles
YIN Shuang,WANG Chuan-Kuan,JIN Ying,ZHOU Zheng-Hu()
Received:
2019-06-10
Accepted:
2019-09-16
Online:
2019-11-20
Published:
2020-03-26
Contact:
ZHOU Zheng-Hu
Supported by:
YIN Shuang, WANG Chuan-Kuan, JIN Ying, ZHOU Zheng-Hu. Changes in soil-microbe-exoenzyme C:N:P stoichiometry along an altitudinal gradient in Mt. Datudingzi, Northeast China[J]. Chin J Plant Ecol, 2019, 43(11): 999-1009.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0141
Fig. 1 Soil carbon (C), nitrogen (N), and phosphorus (P) concentrations and their stoichiometric ratios under different altitudes in Mt. Datudingzi (mean + SE, n = 3). Different uppercase letters represent significant differences at 0.05 level among different altitudes.
Fig. 2 Microbial biomass carbon (C), nitrogen (N), and phosphorus (P) concentrations and their stoichiometric ratios under different altitudes in Mt. Datudingzi (mean + SE, n = 3). Different uppercase letters represent significant differences at 0.05 level among different altitudes.
Fig. 3 Exoenzyme carbon (C), nitrogen (N), and phosphorus (P) activities and their stoichiometric ratios under different altitudes in Mt. Datudingzi (mean + SE, n = 3). Different uppercase letters represent significant differences at 0.05 level among different altitudes. AP, acid phosphomonoesterase; BG, β-1,4-glucosidase; NAG, N-acetyl-β- glucosaminidase.
Fig. 5 Relationship between mean annual temperature and the slope of linear relationship between soil C storage and altitude. The data is from the global meta-analysis of Tashi et al. (2016). The open triangle is the slope from the current study. The open circle is the outlier. The slope stands for the change in soil C storage (kg·m-2) per km increase in elevation.
[1] | Allison SD, Vitousek PM ( 2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry, 37, 937-944. |
[2] | Allison SD, Weintraub MN, Gartner TB, Waldrop MP ( 2010). Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In: Shukla G, Varma A eds. Soil Enzymology. Springer, Berlin. 229-243. |
[3] | Allison VJ, Condron LM, Peltzer DA, Richardson SJ, Turner BL ( 2007). Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology & Biochemistry, 39, 1770-1781. |
[4] | Brookes PC, Landman A, Pruden G, Jenkinson DS ( 1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842. |
[5] | Buchkowski RW, Schmitz OJ, Bradford MA ( 2015). Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling. Ecology, 96, 1139-1149. |
[6] | Cao R, Wu FZ, Yang WQ, Xu ZF, Tan B, Wang B, Li J, Chang CH ( 2016). Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions. Chinese Journal of Applied Ecology, 27, 1257-1264. |
[ 曹瑞, 吴福忠, 杨万勤, 徐振锋, 谭波, 王滨, 李俊, 常晨晖 ( 2016). 海拔对高山峡谷区土壤微生物生物量和酶活性的影响. 应用生态学报, 27, 1257-1264.] | |
[7] | Chapin CT, Bridgham SD, Pastor J, Updegraff K ( 2003). Nitrogen, phosphorus and carbon mineralization in response to nutrient and lime additions in peatlands. Soil Science, 168, 409-420. |
[8] | Chen J, Luo YQ, LI JW, Zhou XH, Cao JJ, Wang RW, Wang YQ, Shelton S, Jin Z, Walker LM, Feng ZZ, Niu SL, Feng WT, Jian SY, Zhou LY ( 2017). Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biology, 23, 1328-1337. |
[9] | Cleveland CC, Liptzin D ( 2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252. |
[10] | Davidson ECA, Belk E, Boone RD ( 1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[11] | Ensslin A, Rutten G, Pommer U, Zimmermann R, Hemp A, Fischer M ( 2015). Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere, 6, art45. DOI: 10.1890/ES14-00492.1. |
[12] | Fierer N, Mccain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R ( 2011). Microbes do not follow the elevational diversity patterns of plants and animals. Ecology, 92, 797-804. |
[13] | Garten Jr CT, Hanson PJ ( 2006). Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma, 136, 342-352. |
[14] | Gu XN, He HS, Tao Y, Jin YH, Zhang XY, Xu ZW, Wang YT, Song XX ( 2017). Soil microbial community structure, enzyme activities, and their influencing factors along different altitudes of Changbai Mountain. Acta Ecologica Sinica, 37, 8374-8384. |
[ 谷晓楠, 贺红士, 陶岩, 靳英华, 张心昱, 徐志伟, 王钰婷, 宋祥霞 ( 2017). 长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子. 生态学报, 37, 8374-8384.] | |
[15] | Hofmann K, Lamprecht A, Pauli H, Illmer P ( 2016). Distribution of prokaryotic abundance and microbial nutrient cycling across a high-alpine altitudinal gradient in the Austrian Central Alps is affected by vegetation, temperature, and soil nutrients. Microbial Ecology, 72, 704-716. |
[16] | Hu ZD, Liu SR, Shi ZM, Liu XL, He F ( 2012). Variations of soil nitrogen and microbial biomass carbon and nitrogen of Quercus aquifolioides forest at different altitudes in Balangshan, Sichuan. Forest Research, 25, 261-268. |
[ 胡宗达, 刘世荣, 史作民, 刘兴良, 何飞 ( 2012). 川滇高山栎林土壤氮素和微生物量碳氮随海拔变化的特征. 林业科学, 25, 261-268.] | |
[17] | Jenkinson DS, Brookes PC, Powlson DS ( 2004). Measuring soil microbial biomass. Soil Biology & Biochemistry, 36, 5-7. |
[18] | Kang HZ, Zhuang HL, Wu LL, Liu QL, Shen GR, Berg B, Man RZ, Liu CJ ( 2011). Variation in leaf nitrogen and phosphorus stoichiometry in Picea abies across Europe: An analysis based on local observations. Forest Ecology & Management, 261, 195-202. |
[19] | Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N ( 2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 112, 10967-10972. |
[20] | Li HJ, Liu JW, Yang L, Zheng HF, Liu Y, Yang WQ, Zhang J ( 2016). Effects of simulated climate warming on soil microbial biomass carbon, nitrogen and phosphorus of alpine forest. Chinese Journal of Applied and Environmental Biology, 22, 599-605. |
[ 李洪杰, 刘军伟, 杨林, 郑海峰, 刘洋, 杨万勤, 张健 ( 2016). 海拔梯度模拟气候变暖对高山森林土壤微生物生物量碳氮磷的影响. 应用与环境生物学报, 22, 599-605.] | |
[21] | Li XY, Zhang WY, Liu F, Zhang ZM, He TB, Lin CH ( 2016). The distribution characteristics of soil carbon, nitrogen and phosphorus at different altitudes in Fanjingshan Mountain. Research of Soil & Water Conservation, 23(3), 19-24. |
[ 李相楹, 张维勇, 刘峰, 张珍明, 何腾兵, 林昌虎 ( 2016). 不同海拔高度下梵净山土壤碳、氮、磷分布特征. 水土保持研究, 23(3), 19-24.] | |
[22] | Li Y, Wu JS, Liu SL, Shen JL, Huang DY, Su YR, Wei WX, Syers JK ( 2012). Is the C:N:P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China? Global Biogeochemical Cycles, 26, GB4002. DOI: 10.1029/2012GB004399. |
[23] | Liu BR ( 2010). Changes in soil microbial biomass carbon and nitrogen under typical plant communities along an altitudinal gradient in east side of Helan Mountain. Ecology and Environmental Sciences, 19, 883-888. |
[ 刘秉儒 ( 2010). 贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征. 生态环境学报, 19, 883-888.] | |
[24] | Looby CI, Treseder KK ( 2018). Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest. Soil Biology & Biochemistry, 117, 87-96. |
[25] | Margesin R, Jud M, Tscherko D, Schinner F ( 2009). Microbial communities and activities in alpine and subalpine soils. FEMS Microbiology Ecology, 67, 208-218. |
[26] | Martens DA, Johanson JB, Frankenberger Jr WT ( 1992). Production and persistence of soil enzymes with repeated addition of organic residues. Soil Science, 153, 53-61. |
[27] | Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A ( 2014). Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology, 5, 22. DOI: 10.3389/fmicb.2014.00022. |
[28] | Morrissey EM, Berrier DJ, Neubauer SC, Franklin RB ( 2014). Using microbial communities and extracellular enzymes to link soil organic matter characteristics to greenhouse gas production in a tidal freshwater wetland. Biogeochemistry, 117, 473-490. |
[29] | Peng XQ, Wang W ( 2016). Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biology & Biochemistry, 98, 74-84. |
[30] | Schimel JP, Bennett J ( 2004). Nitrogen mineralization: Challenges of a changing paradigm. Ecology, 85, 591-602. |
[31] | Sinsabaugh RL, Hill BH, Follstad Shah JJ ( 2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-798. |
[32] | Štursová M, Baldrian P ( 2011). Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant and Soil, 338, 99-110. |
[33] | Tashi S, Singh B, Keitel C, Adams M ( 2016). Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Global Change Biology, 22, 2255-2268. |
[34] | Wallenius K, Rita H, Mikkonen A, Lappi K, Lindström K, Hartikainen H, Raateland A, Niemi RM ( 2011). Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities. Soil Biology & Biochemistry, 43, 1464-1473. |
[35] | Wang XC ( 2004). Response of Subalpine Timberline in Northeast China to Global Climate Change. PhD dissertation. Northeast Forestry University, Harbin. |
[ 王晓春 ( 2004). 中国东北亚高山林线对全球气候变化的响应. 博士学位论文, 东北林业大学, 哈尔滨.] | |
[36] | Wardle DA ( 1992). A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews, 67, 321-358. |
[37] | Waring BG, Weintraub SR, Sinsabaugh RL ( 2014). Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry, 117, 101-113. |
[38] | Wei J, Wu G, Wang H, Hao YJ, Shang WY ( 2005). Phosphorus and sulphur bio-cycling in alpine tundra ecosystem of Changbai Mountains. Chinese Journal of Applied Ecology, 16, 1230-1234. |
[ 魏晶, 吴钢, 王欢, 郝莹婕, 尚文艳 ( 2005). 长白山高山冻原生态系统磷硫生物循环的研究. 应用生态学报, 16, 1230-1234.] | |
[39] | Xu QF, Jiang PK, Shen Q ( 2005). Comparison of organic carbon pool of soil in bush and broad-leaved forests. Journal of Beijing Forestry University, 27(2), 18-22. |
[ 徐秋芳, 姜培坤, 沈泉 ( 2005). 灌木林与阔叶林土壤有机碳库的比较研究. 北京林业大学学报, 27(2), 18-22.] | |
[40] | Xu XF, Thornton PE, Post WM ( 2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 22, 737-749. |
[41] | Xu ZW, Yu GR, Zhang XY, Ge JP, He NP, Wang QF, Wang D ( 2015). The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain. Applied Soil Ecology, 86, 19-29. |
[42] | Xu ZW, Yu GR, Zhang XY, He NP, Wang QF, Wang SZ, Wang RL, Zhao N, Jia YL, Wang CY ( 2017). Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in Eastern China (NSTEC). Soil Biology & Biochemistry, 104, 152-163. |
[43] | Zhang P, Zhang GQ, Zhao YP, Peng SZ, Chen YM, Cao Y ( 2018). Ecological stoichiometry characteristics of leaf-litter-soil interactions in different forest types in the Loess hilly-gully region of China. Acta Ecologica Sinica, 38, 5087-5098. |
[ 张萍, 章广琦, 赵一娉, 彭守璋, 陈云明, 曹扬 ( 2018). 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征. 生态学报, 38, 5087-5098.] | |
[44] | Zhao PP, Zhou JC, Lin KM, Lin WS, Yuan P, Zeng XM, Su Y, Xu JG, Chen YM, Yang YS ( 2019a). Effects of different altitudes on soil microbial biomass and enzyme activities in Pinus taiwanensis forests on Daiyun Mountain, Fujian Province. Acta Ecologica Sinica, 39, 2676-2686. |
[ 赵盼盼, 周家聪, 林开淼, 林伟盛, 袁萍, 曾晓敏, 苏莹, 徐建国, 陈岳民, 杨玉盛 ( 2019a). 不同海拔对福建戴云山黄山松林土壤微生物生物量和土壤酶活性的影响. 生态学报, 39, 2676-2686.] | |
[45] | Zhao PP, Zhou JC, Lin KM, Zhang QF, Yuan P, Zeng XM, Su Y, Xu JG, Chen YM, Yang YS ( 2019b). Effect of different altitudes on soil microbial biomass and community structure of Pinus taiwanensis forest in mid-subtropical zone. Acta Ecologica Sinica, 39, 2215-2225. |
[ 赵盼盼, 周嘉聪, 林开淼, 张秋芳, 袁萍, 曾晓敏, 苏莹, 徐建国, 陈岳民, 杨玉盛 ( 2019b). 海拔梯度变化对中亚热带黄山松土壤微生物生物量和群落结构的影响. 生态学报, 39, 2215-2225.] | |
[46] | Zheng MH, Zhou ZH, Luo YQ, Zhao P, Mo JM ( 2019). Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A meta-analysis. Global Change Biology, 25, 3018-3030. |
[47] | Zhou ZH, Wang CK ( 2017). Soil-microbe-mineralization carbon and nitrogen stoichiometry under different land-uses in the Maoershan region. Acta Ecologica Sinica, 37, 2428-2436. |
[ 周正虎, 王传宽 ( 2017). 帽儿山地区不同土地利用方式下土壤-微生物-矿化碳氮化学计量特征. 生态学报, 37, 2428-2436.] | |
[48] | Zhou ZH, Wang CK, Jin Y ( 2017). Stoichiometric responses of soil microflora to nutrient additions for two temperate forest soils. Biology and Fertility of Soils, 53, 397-406. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn