Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (10): 1140-1153.DOI: 10.17521/cjpe.2020.0142
Special Issue: 全球变化与生态系统; 生态系统结构与功能; 植物功能性状
• Reviews • Previous Articles Next Articles
PAN Quan1,2, ZHENG Hua1,2,*(), WANG Zhi-Heng3, WEN Zhi1,2, YANG Yan-Zheng1
Received:
2020-05-11
Accepted:
2020-11-08
Online:
2021-10-20
Published:
2020-12-17
Contact:
ZHENG Hua
Supported by:
PAN Quan, ZHENG Hua, WANG Zhi-Heng, WEN Zhi, YANG Yan-Zheng. Effects of plant functional traits on ecosystem services: a review[J]. Chin J Plant Ecol, 2021, 45(10): 1140-1153.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0142
生态系统服务类别 Ecosystem service type | 生态系统服务 Ecosystem service | 定义内涵 Definition and connotation | 参考文献 Reference |
---|---|---|---|
供给服务 Provisioning service | 生物量 Biomass | 生态系统内所有物种的总质量(干质量) The mass (dry mass) of all species in the ecosystem | Grigulis et al., et al., |
净初级生产力 Net primary production | 生态系统在给定的时间内积累的化学能的量, 通常由碳生物量表示 The amount of chemical energy, typically expressed as carbon biomass, that ecosystem accumulate in a given length of time | Quétier et al., | |
调节服务 Regulating service | 土壤有机碳含量 Soil organic carbon content | 生态系统中的土壤有机碳储量 Soil organic carbon sequestration in the ecosystems | Adair et al., |
水文调节 Water regulation | 生态系统参与水文过程而形成的调洪补枯效应 Ecosystems mitigate flood and increase base flow in dry season through participating hydrological processes | Wen et al., | |
温度调节 Heat regulation | 生态系统通过影响热量交换而调节大气温度 Ecosystems regulate air temperature by affecting heat exchange | Lundholm et al., | |
土壤保持 Soil retention | 生态系统固持土壤、减少土壤侵蚀的效应 Ecosystems retain soils and reduce soil erosion | Burylo et al., | |
生物控制 Biocontrol | 生态系统控制有害生物(如害虫、有害杂草等)的效应 Ecosystems control pests (e.g., harmful insects and weeds) | Storkey et al., | |
支持服务 Supporting service | 土壤肥力 Soil fertility | 生态系统通过促进物质分解和矿化从而提高土壤肥力的效应 Soil fertility is increased by promoting organic material decomposition and mineralization | Handa et al., |
授粉 Pollination | 生态系统通过支持授粉昆虫活动而产生的效应 Ecosystems provide habitats for pollinator to increase productivity | Fornoff et al., |
Table 1 Classification and connotation of ecosystem services
生态系统服务类别 Ecosystem service type | 生态系统服务 Ecosystem service | 定义内涵 Definition and connotation | 参考文献 Reference |
---|---|---|---|
供给服务 Provisioning service | 生物量 Biomass | 生态系统内所有物种的总质量(干质量) The mass (dry mass) of all species in the ecosystem | Grigulis et al., et al., |
净初级生产力 Net primary production | 生态系统在给定的时间内积累的化学能的量, 通常由碳生物量表示 The amount of chemical energy, typically expressed as carbon biomass, that ecosystem accumulate in a given length of time | Quétier et al., | |
调节服务 Regulating service | 土壤有机碳含量 Soil organic carbon content | 生态系统中的土壤有机碳储量 Soil organic carbon sequestration in the ecosystems | Adair et al., |
水文调节 Water regulation | 生态系统参与水文过程而形成的调洪补枯效应 Ecosystems mitigate flood and increase base flow in dry season through participating hydrological processes | Wen et al., | |
温度调节 Heat regulation | 生态系统通过影响热量交换而调节大气温度 Ecosystems regulate air temperature by affecting heat exchange | Lundholm et al., | |
土壤保持 Soil retention | 生态系统固持土壤、减少土壤侵蚀的效应 Ecosystems retain soils and reduce soil erosion | Burylo et al., | |
生物控制 Biocontrol | 生态系统控制有害生物(如害虫、有害杂草等)的效应 Ecosystems control pests (e.g., harmful insects and weeds) | Storkey et al., | |
支持服务 Supporting service | 土壤肥力 Soil fertility | 生态系统通过促进物质分解和矿化从而提高土壤肥力的效应 Soil fertility is increased by promoting organic material decomposition and mineralization | Handa et al., |
授粉 Pollination | 生态系统通过支持授粉昆虫活动而产生的效应 Ecosystems provide habitats for pollinator to increase productivity | Fornoff et al., |
类型 Type | 植物功能性状 Plant functional trait | 解释 Explanation | 参考文献 Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|
植株 Plant | 生活型 Life form | 植物的年度周期或外貌特征 The annual cycle or appearance characteristics of plants | Storkey et al., | |||||||
繁殖方式 Reproduction mode | 有性或无性繁殖 Sexual or asexual reproduction | Paquette & Messier, | ||||||||
冠层结构 Canopy architecture | 冠层大小和厚度 Canopy size and thickness | Lundholm et al., | ||||||||
生长速率 Relative growth rate | 一段时间内生物量增长量 Biomass growth over a period of time | Everwand et al., | ||||||||
最大高度 Max height | 成熟植株的最大高度 Maximum height of a mature plant | Zhang et al., | ||||||||
茎生长速率 Stem growth rate | 植物高度与生长年龄的比值 Ratio of plant height to growth age | Moonen et al., | ||||||||
茎质量百分比 Stem mass ratio | 茎生物量占植株生物量的比例 Ratio of stem biomass to plant biomass | Zhang et al., | ||||||||
叶质量百分比 Leaf mass ratio | 叶片生物量占植株生物量比例 Ratio of leaf biomass to plant biomass | Zhang et al., | ||||||||
根质量百分比 Root mass ratio | 根生物量占植株生物量的比例 Ratio of root biomass to plant biomass | Zhang et al., | ||||||||
花质量百分比 Flower mass ratio | 花生物量占植株生物量的比例 Ratio of flower biomass to plant biomass | Zhang et al., | ||||||||
叶茎质量比 Leaf:stem ratio | 叶片和茎的干质量的比 Ratio of the dry mass of the leaf to the stem | Storkey et al., | ||||||||
根茎比 Root:shoot ratio | 根与茎的干物质量比 Dry matter ratio of root to stem | Zhang et al., | ||||||||
耐阴性 Shade tolerance | 植物忍耐阴蔽的能力, 常用无量纲量表示 The ability of plants to tolerate shade, often expressed as a dimensionless | Paquette & Messier, | ||||||||
耐旱性 Drought tolerance | 植物忍耐干旱的能力, 常用无量纲量表示 The ability of plants to tolerate drought, usually dimensionless | Paquette & Messier, | ||||||||
耐涝性 Waterlogging tolerance | 植物忍耐洪涝的能力, 常用无量纲量表示 The ability of plants to withstand floods, often expressed in dimensionless terms | Paquette & Messier, | ||||||||
种子 Seed | 种子质量 Seed mass | 单颗种子的质量 The mass of a single seed | Paquette & Messier, | |||||||
种子数量 Seed number | 单位面积生产的种子数量 Number of seeds produced per unit area | Santala et al., | ||||||||
种子长度 Seed length | 单颗种子或多颗种子的平均长度 The average length of a single seed or multiple seeds | Rolo et al., | ||||||||
花 Flower | 开花时间 Time of flowering | 植物开始开花时间 The time plant starting to bloom | Pakeman, | |||||||
花期长度 Duration of flowering | 开花的持续时间 Duration of flowering | Fornoff et al., | ||||||||
花形状 Flower shape | 花冠的形状 Corolla shape | Sole-Senan et al., | ||||||||
花对称性 Flower symmetry | 花朵的对称性, 单边/双边 Symmetry of flowers, unilateral/bilateral | Fornoff et al., | ||||||||
授粉模式 Pollination mode | 植物的授粉媒介 Pollinator | Zirbel et al., | ||||||||
花大小和密度 Flower size and density | 花的直径和单位面积花朵数量 Flower diameter and number of flowers per unit area | Fornoff et al., | ||||||||
花序类型 Inflorescence type | 花在花轴上的排列顺序 The order of flowers on the flower axis | Fornoff et al., | ||||||||
紫外线反射率 UV reflectance | 植物对紫外线的反射率 Plant reflectance to ultraviolet | Fornoff et al., | ||||||||
花颜色 Flower color | 花朵的反射光谱范围 Reflectance spectrum range of flowers | Fornoff et al., | ||||||||
花蜜类型 Nectar type | 花蜜的可及性以及糖、氨基酸含量 Availability of nectar, sugar and amino acid content | Fornoff et al., | ||||||||
花的高度 Flower height | 花朵的高度 Flower height to ground | Fornoff et al., | ||||||||
叶 Leaf | 叶片数量 Leaf number | 单个枝条上叶片的数量 Number of leaves on a single branch | Li et al., | |||||||
长叶时间 Time of leafing | 植物叶片开始生长时间 Plant leaf start time | Pakeman, | ||||||||
叶面积 Leaf area | 单个叶片或多个叶片平均的单侧投影面积 The average single-sided projected area of a single blade or multiple blades | Cornelissen et al., | ||||||||
叶片厚度 Leaf thickness | 叶片的厚度 Blade thickness | La Pierre & Smith, | ||||||||
叶片韧性 Leaf toughness | 穿透叶片最宽部分(避免中脉)所需的力 The force required to penetrate the widest part of the leaf (avoid the midrib) | La Pierre & Smith, | ||||||||
叶片组织密度 Leaf tissue density | 单位面积的叶片鲜质量 Leaf fresh mass per unit area | Wen et al., | ||||||||
叶片形状 Leaf shape | 叶片的形状, 常用宽与长的比率表示 The shape of the blade, usually expressed by the ratio of width to length | Burylo et al., | ||||||||
叶片寿命 Leaf lifespan | 叶片从生长到凋落的时间 Time from growth to fall of leaves | Wright et al., | ||||||||
比叶质量 Leaf mass per area | 单位面积的叶片干质量 Dry mass of leaf per unit area | Wright et al., | ||||||||
类型 Type | 植物功能性状 Plant functional trait | 解释 Explanation | 参考文献 Reference | |||||||
比叶面积 Specific leaf area | 单位质量的叶面积 Leaf area per unit mass | Cornelissen et al., | ||||||||
叶片氮含量 Leaf nitrogen content | 叶片中氮的含量 Nitrogen content in leaves | Wright et al., | ||||||||
叶片磷含量 Leaf phosphorus content | 叶片中磷的含量 Phosphorus content in leaves | Lin et al., | ||||||||
叶碳氮比 Leaf carbon:nitrogen ratio | 叶片碳氮含量之比 Ratio of leaf carbon content to nitrogen content | Fu et al., | ||||||||
叶碳磷比 Leaf carbon:phosphorus ratio | 叶片碳磷含量之比 Ratio of leaf carbon content to phosphorus content | Schuldt et al., | ||||||||
叶氮磷比 Leaf nitrogen:phosphorus ratio | 叶片氮磷含量之比 Ratio of leaf nitrogen content to phosphorus content | Finegan et al., | ||||||||
叶其他营养元素含量 Leaf other elements content | 叶片除碳、氮、磷外其他元素的含量, 如钾、镁等 The content of other elements besides carbon, nitrogen, and phosphorus in leaves, such as potassium, magnesium, etc. | Kröber et al., | ||||||||
叶木质素含量 Leaf lignin content | 叶片中木质素的含量 Lignin content in leaves | Schindler & Gessner, | ||||||||
叶片酚类含量 Leaf polyphenolic content | 叶片中多酚类的含量 The content of polyphenols in leaves | Schuldt et al., | ||||||||
叶片单宁含量 Leaf tannin content | 叶片中单宁的含量 Tannin content in leaves | Patoine et al., | ||||||||
叶片碳含量 Leaf carbon content | 叶片中碳的含量 The content of carbon in leaves | Zhang et al., | ||||||||
叶片碳同位素比值 Leaf δ13C | 叶片碳同位素特征 Leaf carbon isotope signature | Orwin et al., | ||||||||
叶片干物质含量 Leaf dry mass content | 叶片干质量与鲜质量的比值 The ratio of leaf dry mass to fresh mass | Fu et al., | ||||||||
叶片总叶绿素含量 Leaf total chlorophyll content | 叶片中叶绿素的含量 Chlorophyll content in leaves | Bu et al., | ||||||||
叶脉密度 Leaf vein density | 单位面积叶片的叶脉长度 Vein length per unit area of leaf | Hanif et al., | ||||||||
光合同化速率 Photosynthetic assimilation rates | 在光饱和条件下测得健康叶片的光合速率 The photosynthetic rate of healthy leaves measured under light saturation conditions | Everwand et al., | ||||||||
气孔导度 Stomatal conductance | 健康叶片的气孔对水蒸气的传导率 Transmission rate of water vapor to stomata of healthy leaves | Everwand et al., | ||||||||
茎 Stem | 木材密度 Wood density | 单位体积木材的干物质量 Dry matter mass per unit volume of wood | Burylo et al., | |||||||
茎干物质含量 Stem dry matter content | 茎干质量占鲜质量的百分比 The percentage of stem dry mass to fresh mass | Fu et al., | ||||||||
分支数量 Number of branches | 从主茎分叉的开花分支或从次级枝干上的分支数 Flowering branches branching from the main stem or secondary branches | Adamidis et al., | ||||||||
茎投影面积 Projected stem area | 茎在水流动方向上接触面积 Stem contact area in the direction of water flow | Kervroedan et al., | ||||||||
茎比质量 Specific stem density | 茎的干质量与茎体积之比 The ratio of stem dry mass to stem volume | Kervroedan et al., | ||||||||
茎直径 Maximum stem diameter | 基茎(根部上方2-6 cm)的直径 Diameter of the base stem (2-6 cm above the root) | Fu et al., | ||||||||
茎导度 Stem conductance | 单位木质部面积和单位压力梯度下的水流量 Water flow per unit xylem area and unit pressure gradient | Kröber et al., | ||||||||
茎氮含量 Stem nitrogen ratio | 单位干质量茎的氮含量 Nitrogen content per dry mass of stem | Belshe et al., | ||||||||
木材抗腐性 Wood decay resistance | 木材腐烂的速度 Rate of wood decay | Zhang et al., | ||||||||
根 Root | 根长/生物量 Root length/biomass | 根的总长度或生物量 Total root length or biomass | Pommier et al., | |||||||
根的分布形态 Root distribution | 根系在土壤中分布的形态 The distribution of roots in the soil | Matheny et al., | ||||||||
根深 Rooting depth | 主根在土壤中分布的深度 Depth of taproot distribution in the soil | Fu et al., | ||||||||
根长密度 Root length density | 单位体积土壤中的总根长 Total root length per unit volume of soil | Burylo et al., | ||||||||
比根长 Specific root length | 单位干质量的根长度 Root length per dry mass | Cornelissen et al., | ||||||||
根干物质含量 Root dry mass content | 根干质量与鲜质量的比值 Root dry mass and fresh mass ratio | Pommier et al., | ||||||||
根氮含量 Root nitrogen content | 根中氮元素的含量 Nitrogen content in roots | Zhang et al., | ||||||||
根磷含量 Root phosphorus content | 根中磷元素的含量 Phosphorus content in roots | Hanif et al., | ||||||||
氮吸收 Nitrogen uptake | 单位时间内氮吸收量 Nitrogen absorption per unit time | Abalos et al., | ||||||||
根系外表面积 External area of root surface | 根系的外表面积 External surface area of root system | Burylo et al., | ||||||||
根系体积 Volume of roots | 根系的体积 Root volume | Zhu et al., | ||||||||
根系直径 Root diameter | 吸收根的平均直径 Average diameter of absorbing roots | Burylo et al., | ||||||||
根组织密度 Root tissue density | 单位体积根的生物量 Root biomass per unit volume | Burylo et al., | ||||||||
根碳含量 Root carbon content | 单位干质量根的碳含量 Carbon content per dry mass root | Zhang et al., | ||||||||
根碳氮比 Root carbon:nitrogen ratio | 根中碳氮含量之比 Ratio of carbon to nitrogen content in roots | Zhang et al., | ||||||||
类型 Type | 植物功能性状 Plant functional trait | 解释 Explanation | 参考文献 Reference | |||||||
极细根百分率 Very fine root fraction | <0.1 mm的根长占总根比例 Ratio of root length <0.1 mm to total root | Garcia et al., | ||||||||
根质量密度 Root mass density | 单位体积土壤中的根总生物量 Total root biomass per unit volume of soil | Burylo et al., | ||||||||
根抗张力强度 Root tensile strength | 细根(<0.1 mm)断裂所需的最大力与其截面面积的比值 Ratio of the maximum force required to break fine roots (<0.1 mm) to its cross-sectional area | Burylo et al., | ||||||||
菌根定植 Mycorrhizal colonization | 菌根定植根长占总根长的百分比 Mycorrhiza colonized root length as a percentage of total root length | Elumeeva et al., |
Table 2 Major plant functional traits influencing ecosystem services
类型 Type | 植物功能性状 Plant functional trait | 解释 Explanation | 参考文献 Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|
植株 Plant | 生活型 Life form | 植物的年度周期或外貌特征 The annual cycle or appearance characteristics of plants | Storkey et al., | |||||||
繁殖方式 Reproduction mode | 有性或无性繁殖 Sexual or asexual reproduction | Paquette & Messier, | ||||||||
冠层结构 Canopy architecture | 冠层大小和厚度 Canopy size and thickness | Lundholm et al., | ||||||||
生长速率 Relative growth rate | 一段时间内生物量增长量 Biomass growth over a period of time | Everwand et al., | ||||||||
最大高度 Max height | 成熟植株的最大高度 Maximum height of a mature plant | Zhang et al., | ||||||||
茎生长速率 Stem growth rate | 植物高度与生长年龄的比值 Ratio of plant height to growth age | Moonen et al., | ||||||||
茎质量百分比 Stem mass ratio | 茎生物量占植株生物量的比例 Ratio of stem biomass to plant biomass | Zhang et al., | ||||||||
叶质量百分比 Leaf mass ratio | 叶片生物量占植株生物量比例 Ratio of leaf biomass to plant biomass | Zhang et al., | ||||||||
根质量百分比 Root mass ratio | 根生物量占植株生物量的比例 Ratio of root biomass to plant biomass | Zhang et al., | ||||||||
花质量百分比 Flower mass ratio | 花生物量占植株生物量的比例 Ratio of flower biomass to plant biomass | Zhang et al., | ||||||||
叶茎质量比 Leaf:stem ratio | 叶片和茎的干质量的比 Ratio of the dry mass of the leaf to the stem | Storkey et al., | ||||||||
根茎比 Root:shoot ratio | 根与茎的干物质量比 Dry matter ratio of root to stem | Zhang et al., | ||||||||
耐阴性 Shade tolerance | 植物忍耐阴蔽的能力, 常用无量纲量表示 The ability of plants to tolerate shade, often expressed as a dimensionless | Paquette & Messier, | ||||||||
耐旱性 Drought tolerance | 植物忍耐干旱的能力, 常用无量纲量表示 The ability of plants to tolerate drought, usually dimensionless | Paquette & Messier, | ||||||||
耐涝性 Waterlogging tolerance | 植物忍耐洪涝的能力, 常用无量纲量表示 The ability of plants to withstand floods, often expressed in dimensionless terms | Paquette & Messier, | ||||||||
种子 Seed | 种子质量 Seed mass | 单颗种子的质量 The mass of a single seed | Paquette & Messier, | |||||||
种子数量 Seed number | 单位面积生产的种子数量 Number of seeds produced per unit area | Santala et al., | ||||||||
种子长度 Seed length | 单颗种子或多颗种子的平均长度 The average length of a single seed or multiple seeds | Rolo et al., | ||||||||
花 Flower | 开花时间 Time of flowering | 植物开始开花时间 The time plant starting to bloom | Pakeman, | |||||||
花期长度 Duration of flowering | 开花的持续时间 Duration of flowering | Fornoff et al., | ||||||||
花形状 Flower shape | 花冠的形状 Corolla shape | Sole-Senan et al., | ||||||||
花对称性 Flower symmetry | 花朵的对称性, 单边/双边 Symmetry of flowers, unilateral/bilateral | Fornoff et al., | ||||||||
授粉模式 Pollination mode | 植物的授粉媒介 Pollinator | Zirbel et al., | ||||||||
花大小和密度 Flower size and density | 花的直径和单位面积花朵数量 Flower diameter and number of flowers per unit area | Fornoff et al., | ||||||||
花序类型 Inflorescence type | 花在花轴上的排列顺序 The order of flowers on the flower axis | Fornoff et al., | ||||||||
紫外线反射率 UV reflectance | 植物对紫外线的反射率 Plant reflectance to ultraviolet | Fornoff et al., | ||||||||
花颜色 Flower color | 花朵的反射光谱范围 Reflectance spectrum range of flowers | Fornoff et al., | ||||||||
花蜜类型 Nectar type | 花蜜的可及性以及糖、氨基酸含量 Availability of nectar, sugar and amino acid content | Fornoff et al., | ||||||||
花的高度 Flower height | 花朵的高度 Flower height to ground | Fornoff et al., | ||||||||
叶 Leaf | 叶片数量 Leaf number | 单个枝条上叶片的数量 Number of leaves on a single branch | Li et al., | |||||||
长叶时间 Time of leafing | 植物叶片开始生长时间 Plant leaf start time | Pakeman, | ||||||||
叶面积 Leaf area | 单个叶片或多个叶片平均的单侧投影面积 The average single-sided projected area of a single blade or multiple blades | Cornelissen et al., | ||||||||
叶片厚度 Leaf thickness | 叶片的厚度 Blade thickness | La Pierre & Smith, | ||||||||
叶片韧性 Leaf toughness | 穿透叶片最宽部分(避免中脉)所需的力 The force required to penetrate the widest part of the leaf (avoid the midrib) | La Pierre & Smith, | ||||||||
叶片组织密度 Leaf tissue density | 单位面积的叶片鲜质量 Leaf fresh mass per unit area | Wen et al., | ||||||||
叶片形状 Leaf shape | 叶片的形状, 常用宽与长的比率表示 The shape of the blade, usually expressed by the ratio of width to length | Burylo et al., | ||||||||
叶片寿命 Leaf lifespan | 叶片从生长到凋落的时间 Time from growth to fall of leaves | Wright et al., | ||||||||
比叶质量 Leaf mass per area | 单位面积的叶片干质量 Dry mass of leaf per unit area | Wright et al., | ||||||||
类型 Type | 植物功能性状 Plant functional trait | 解释 Explanation | 参考文献 Reference | |||||||
比叶面积 Specific leaf area | 单位质量的叶面积 Leaf area per unit mass | Cornelissen et al., | ||||||||
叶片氮含量 Leaf nitrogen content | 叶片中氮的含量 Nitrogen content in leaves | Wright et al., | ||||||||
叶片磷含量 Leaf phosphorus content | 叶片中磷的含量 Phosphorus content in leaves | Lin et al., | ||||||||
叶碳氮比 Leaf carbon:nitrogen ratio | 叶片碳氮含量之比 Ratio of leaf carbon content to nitrogen content | Fu et al., | ||||||||
叶碳磷比 Leaf carbon:phosphorus ratio | 叶片碳磷含量之比 Ratio of leaf carbon content to phosphorus content | Schuldt et al., | ||||||||
叶氮磷比 Leaf nitrogen:phosphorus ratio | 叶片氮磷含量之比 Ratio of leaf nitrogen content to phosphorus content | Finegan et al., | ||||||||
叶其他营养元素含量 Leaf other elements content | 叶片除碳、氮、磷外其他元素的含量, 如钾、镁等 The content of other elements besides carbon, nitrogen, and phosphorus in leaves, such as potassium, magnesium, etc. | Kröber et al., | ||||||||
叶木质素含量 Leaf lignin content | 叶片中木质素的含量 Lignin content in leaves | Schindler & Gessner, | ||||||||
叶片酚类含量 Leaf polyphenolic content | 叶片中多酚类的含量 The content of polyphenols in leaves | Schuldt et al., | ||||||||
叶片单宁含量 Leaf tannin content | 叶片中单宁的含量 Tannin content in leaves | Patoine et al., | ||||||||
叶片碳含量 Leaf carbon content | 叶片中碳的含量 The content of carbon in leaves | Zhang et al., | ||||||||
叶片碳同位素比值 Leaf δ13C | 叶片碳同位素特征 Leaf carbon isotope signature | Orwin et al., | ||||||||
叶片干物质含量 Leaf dry mass content | 叶片干质量与鲜质量的比值 The ratio of leaf dry mass to fresh mass | Fu et al., | ||||||||
叶片总叶绿素含量 Leaf total chlorophyll content | 叶片中叶绿素的含量 Chlorophyll content in leaves | Bu et al., | ||||||||
叶脉密度 Leaf vein density | 单位面积叶片的叶脉长度 Vein length per unit area of leaf | Hanif et al., | ||||||||
光合同化速率 Photosynthetic assimilation rates | 在光饱和条件下测得健康叶片的光合速率 The photosynthetic rate of healthy leaves measured under light saturation conditions | Everwand et al., | ||||||||
气孔导度 Stomatal conductance | 健康叶片的气孔对水蒸气的传导率 Transmission rate of water vapor to stomata of healthy leaves | Everwand et al., | ||||||||
茎 Stem | 木材密度 Wood density | 单位体积木材的干物质量 Dry matter mass per unit volume of wood | Burylo et al., | |||||||
茎干物质含量 Stem dry matter content | 茎干质量占鲜质量的百分比 The percentage of stem dry mass to fresh mass | Fu et al., | ||||||||
分支数量 Number of branches | 从主茎分叉的开花分支或从次级枝干上的分支数 Flowering branches branching from the main stem or secondary branches | Adamidis et al., | ||||||||
茎投影面积 Projected stem area | 茎在水流动方向上接触面积 Stem contact area in the direction of water flow | Kervroedan et al., | ||||||||
茎比质量 Specific stem density | 茎的干质量与茎体积之比 The ratio of stem dry mass to stem volume | Kervroedan et al., | ||||||||
茎直径 Maximum stem diameter | 基茎(根部上方2-6 cm)的直径 Diameter of the base stem (2-6 cm above the root) | Fu et al., | ||||||||
茎导度 Stem conductance | 单位木质部面积和单位压力梯度下的水流量 Water flow per unit xylem area and unit pressure gradient | Kröber et al., | ||||||||
茎氮含量 Stem nitrogen ratio | 单位干质量茎的氮含量 Nitrogen content per dry mass of stem | Belshe et al., | ||||||||
木材抗腐性 Wood decay resistance | 木材腐烂的速度 Rate of wood decay | Zhang et al., | ||||||||
根 Root | 根长/生物量 Root length/biomass | 根的总长度或生物量 Total root length or biomass | Pommier et al., | |||||||
根的分布形态 Root distribution | 根系在土壤中分布的形态 The distribution of roots in the soil | Matheny et al., | ||||||||
根深 Rooting depth | 主根在土壤中分布的深度 Depth of taproot distribution in the soil | Fu et al., | ||||||||
根长密度 Root length density | 单位体积土壤中的总根长 Total root length per unit volume of soil | Burylo et al., | ||||||||
比根长 Specific root length | 单位干质量的根长度 Root length per dry mass | Cornelissen et al., | ||||||||
根干物质含量 Root dry mass content | 根干质量与鲜质量的比值 Root dry mass and fresh mass ratio | Pommier et al., | ||||||||
根氮含量 Root nitrogen content | 根中氮元素的含量 Nitrogen content in roots | Zhang et al., | ||||||||
根磷含量 Root phosphorus content | 根中磷元素的含量 Phosphorus content in roots | Hanif et al., | ||||||||
氮吸收 Nitrogen uptake | 单位时间内氮吸收量 Nitrogen absorption per unit time | Abalos et al., | ||||||||
根系外表面积 External area of root surface | 根系的外表面积 External surface area of root system | Burylo et al., | ||||||||
根系体积 Volume of roots | 根系的体积 Root volume | Zhu et al., | ||||||||
根系直径 Root diameter | 吸收根的平均直径 Average diameter of absorbing roots | Burylo et al., | ||||||||
根组织密度 Root tissue density | 单位体积根的生物量 Root biomass per unit volume | Burylo et al., | ||||||||
根碳含量 Root carbon content | 单位干质量根的碳含量 Carbon content per dry mass root | Zhang et al., | ||||||||
根碳氮比 Root carbon:nitrogen ratio | 根中碳氮含量之比 Ratio of carbon to nitrogen content in roots | Zhang et al., | ||||||||
类型 Type | 植物功能性状 Plant functional trait | 解释 Explanation | 参考文献 Reference | |||||||
极细根百分率 Very fine root fraction | <0.1 mm的根长占总根比例 Ratio of root length <0.1 mm to total root | Garcia et al., | ||||||||
根质量密度 Root mass density | 单位体积土壤中的根总生物量 Total root biomass per unit volume of soil | Burylo et al., | ||||||||
根抗张力强度 Root tensile strength | 细根(<0.1 mm)断裂所需的最大力与其截面面积的比值 Ratio of the maximum force required to break fine roots (<0.1 mm) to its cross-sectional area | Burylo et al., | ||||||||
菌根定植 Mycorrhizal colonization | 菌根定植根长占总根长的百分比 Mycorrhiza colonized root length as a percentage of total root length | Elumeeva et al., |
Fig. 2 Characteristics of the current research on the relationship between plant functional traits and ecosystem services. BC, biocontrol; BD, biodiversity; BM, biomass; HR, heat regulation; NPP, net primary production; PN, pollination; SF, soil fertility; SOC, soil organic carbon content; SR, soil retention; WR, water regulation.
Fig. 3 Frequencies of the research on the relationship between plant functional traits and ecosystem services. Colors of the word represent the location of trait. The thickness of the black lines represents the frequencies of different plant functional traits used to correlate with ecosystem services. BC, biocontrol; BM, biomass; HR, heat regulation; NPP, net primary production; PN, pollination; SF, soil fertility; SOC, soil organic carbon content; SR, soil retention; WR, water regulation.
[1] | Abalos D de Deyn GB, Kuyper TW, van Groenigen JW ( 2014). Plant species identity surpasses species richness as a key driver of N2O emissions from grassland. Global Change Biology, 20, 265-275. |
[2] |
Adair EC, Hooper DU, Paquette A, Hungate BA (2018). Ecosystem context illuminates conflicting roles of plant diversity in carbon storage. Ecology Letters, 21, 1604-1619.
DOI URL |
[3] |
Adamidis GC, Cartar RV, Melathopoulos AP, Pernal SF, Hoover SE (2019). Pollinators enhance crop yield and shorten the growing season by modulating plant functional characteristics: a comparison of 23 canola varieties. Scientific Reports, 9, 14208. DOI: 10.1038/s41598-019-50811-y.
DOI PMID |
[4] |
Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner SC, et al. (2015). Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 18, 834-843.
DOI PMID |
[5] | Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Wright SJ, Abu Salim K, Almeyda Zambrano AM, Alonso A, Baltzer JL, Basset Y, Bourg NA, Broadbent EN, Brockelman WY, Bunyavejchewin S, et al. (2015). CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Global Change Biology, 21, 528-549. |
[6] |
Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146-1156.
PMID |
[7] |
Bardgett RD, van der Putten WH (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
DOI URL |
[8] |
Bartual AM, Sutter L, Bocci G, Moonen AC, Cresswell JE, Entling MH, Giffard B, Jacot K, Jeanneret P, Holland JM, Pfister SC, Pintér O, Veromann E, Winkler K, Albrecht M (2019). The potential of different semi-natural habitats to sustain pollinators and natural enemies in European agricultural landscapes. Agriculture, Ecosystems & Environment, 279, 43-52.
DOI URL |
[9] |
Belshe EF, Hoeijmakers D, Herran N, Mtolera M, Teichberg M (2018). Seagrass community-level controls over organic carbon storage are constrained by geophysical attributes within meadows of Zanzibar, Tanzania. Biogeosciences, 15, 4609-4626.
DOI URL |
[10] |
Bin Y, Lin GJ, Russo SE, Huang ZL, Shen Y, Cao HL, Lian J, Ye WH (2019). Testing the competition-colonization trade-off and its correlations with functional trait variations among subtropical tree species. Scientific Reports, 9, 14942. DOI: 10.1038/s41598-019-50604-3.
DOI URL |
[11] |
Bu WS, Zhang CC, Huang JH, Zang RG, Ding Y, Xu H, Lin MX, Wang JS (2019). The influences of disturbance histories and soil properties on aboveground biomass through plant functional traits in a tropical rainforest. Forests, 10, 774. DOI: 10.3390/f10090774.
DOI URL |
[12] |
Burylo M, Rey F, Bochet E, Dutoit T (2012a). Plant functional traits and species ability for sediment retention during concentrated flow erosion. Plant and Soil, 353, 135-144.
DOI URL |
[13] |
Burylo M, Rey F, Mathys N, Dutoit T (2012b). Plant root traits affecting the resistance of soils to concentrated flow erosion. Earth Surface Processes and Landforms, 37, 1463-1470.
DOI URL |
[14] | Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59-67. |
[15] |
Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006). Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989-992.
DOI URL |
[16] |
Conti G, Díaz S (2013). Plant functional diversity and carbon storage: an empirical test in semi-arid forest ecosystems. Journal of Ecology, 101, 18-28.
DOI URL |
[17] |
Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[18] | Daily GC (1997). Nature’s Services: Societal Dependence on Natural Ecosystems. Island Press, Washington D.C. |
[19] |
de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, Martins da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA (2010). Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 19, 2873-2893.
DOI URL |
[20] | Díaz S, Lavorel S de Bello F, Quétier F, Grigulis K, Robson TM (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104, 20684-20689. |
[21] |
Elumeeva TG, Onipchenko VG, Cornelissen JHC, Semenova GV, Perevedentseva LG, Freschet GT, van Logtestijn RSP, Soudzilovskaia NA (2018). Is intensity of plant root mycorrhizal colonization a good proxy for plant growth rate, dominance and decomposition in nutrient poor conditions? Journal of Vegetation Science, 29, 715-725.
DOI URL |
[22] |
Everwand G, Fry EL, Eggers T, Manning P (2014). Seasonal variation in the capacity for plant trait measures to predict grassland carbon and water fluxes. Ecosystems, 17, 1095-1108.
DOI URL |
[23] |
Eviner VT, Chapin III FS (2003). Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology Evolution and Systematics, 34, 455-485.
DOI URL |
[24] |
Falster DS, Brannstrom A, Dieckmann U, Westoby M (2011). Influence of four major plant traits on average height, leaf-area cover, net primary productivity, and biomass density in single-species forests: a theoretical investigation. Journal of Ecology, 99, 148-164.
DOI URL |
[25] |
Finegan B, Peña-Claros M de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Eguiguren Velepucha P, Fernandez F, Licona JC, Lorenzo L, Salgado Negret B, Vaz M, Poorter L (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103, 191-201.
DOI URL |
[26] |
Fornoff F, Klein AM, Hartig F, Benadi G, Venjakob C, Schaefer HM, Ebeling A (2017). Functional flower traits and their diversity drive pollinator visitation. Oikos, 126, 1020-1030.
DOI URL |
[27] |
Fu H, Zhong JY, Yuan GX, Ni LY, Xie P, Cao T (2014). Functional traits composition predict macrophytes community productivity along a water depth gradient in a freshwater lake. Ecology and Evolution, 4, 1516-1523.
DOI URL |
[28] |
Garcia L, Damour G, Gary C, Follain S, Bissonnais Y, Metay A (2019). Trait-based approach for agroecology: contribution of service crop root traits to explain soil aggregate stability in vineyards. Plant and Soil, 435, 1-14.
DOI |
[29] |
García-Palacios P, Gattinger A, Bracht-Jørgensen H, Brussaard L, Carvalho F, Castro H, Clément JC de Deyn G, D'Hertefeldt T, Foulquier A, Hedlund K, Lavorel S, Legay N, Lori M, Mäder P, et al. (2018). Crop traits drive soil carbon sequestration under organic farming. Journal of Applied Ecology, 55, 2496-2505.
DOI URL |
[30] |
Golodets C, Sternberg M, Kigel J (2009). A community-level test of the leaf-height-seed ecology strategy scheme in relation to grazing conditions. Journal of Vegetation Science, 20, 392-402.
DOI URL |
[31] |
Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M, Kastl E, Arnoldi C, Bardgett RD, Poly F, Pommier T, Schloter M, Tappeiner U, Bahn M, Clement J (2013). Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology, 101, 47-57.
DOI URL |
[32] |
Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ET, Scheu S, Schmid B, et al. (2014). Consequences of biodiversity loss for litter decomposition across biomes. Nature, 509, 218-221.
DOI URL |
[33] |
Hanif MA, Yu Q, Rao X, Shen W (2019). Disentangling the contributions of plant taxonomic and functional diversities in shaping aboveground biomass of a restored forest landscape in Southern China. Plants, 8, 612. DOI: 10.3390/plants8120612.
DOI URL |
[34] |
Hatt S, Uyttenbroeck R, Lopes T, Chen JL, Piqueray J, Monty A, Francis F (2018). Effect of flower traits and hosts on the abundance of parasitoids in perennial multiple species wildflower strips sown within oilseed rape (Brassica napus) crops. Arthropod-Plant Interactions, 12, 787-797.
DOI URL |
[35] |
Hatt S, Uyttenbroeck R, Lopes TCM, Mouchon P, Chen J, Piqueray J, Monty A, Francis F (2017). Do flower mixtures with high functional diversity enhance aphid predators in wildflower strips? European Journal of Entomology, 114, 66-76.
DOI URL |
[36] |
He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Sack L, Yu GR (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918.
DOI URL |
[37] |
He NP, Liu CC, Piao SL, Sack L, Xu L, Luo Y, He JS, Han XG, Zhou GS, Zhou XH, Lin Y, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Zhang JH, Yu GR (2019). Ecosystem traits linking functional traits to macroecology. Trends in Ecology & Evolution, 34, 200-210.
DOI URL |
[38] |
Hector A, Bagchi R (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190.
DOI URL |
[39] |
Hillebrand H, Matthiessen B (2009). Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters, 12, 1405-1419.
DOI PMID |
[40] |
Hu YK, Pan X, Yang XJ, Liu GF, Liu XY, Song YB, Zhang MY, Cui LJ, Dong M (2019). Is there coordination of leaf and fine root traits at local scales? A test in temperate forest swamps. Ecology and Evolution, 9, 8714-8723.
DOI URL |
[41] | Kattge J, Diaz S, Lavorel S, Prentice C, Leadley P, Bonisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, et al. (2011). TRY-A global database of plant traits. Global Change Biology, 17, 2905-2935. |
[42] |
Kervroedan L, Armand R, Saunier M, Ouvry J, Faucon M (2018). Plant functional trait effects on runoff to design herbaceous hedges for soil erosion control. Ecological Engineering, 118, 143-151.
DOI URL |
[43] |
Klumpp K, Soussana J (2009). Using functional traits to predict grassland ecosystem change: a mathematical test of the response-and-effect trait approach. Global Change Biology, 15, 2921-2934.
DOI URL |
[44] |
Kröber W, Li Y, Härdtle W, Ma KP, Schmid B, Schmidt K, Scholten T, Seidler G, von Oheimb G, Welk E, Wirth C, Bruelheide H (2015). Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment. Ecology and Evolution, 5, 3541-3556.
DOI URL |
[45] |
La Pierre KJ, Smith MD (2015). Functional trait expression of grassland species shift with short- and long-term nutrient additions. Plant Ecology, 216, 307-318.
DOI URL |
[46] | Lamarque P, Lavorel S, Mouchet M, Quetier F (2014). Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services. Proceedings of the National Academy of Sciences of the United States of America, 111, 13751-13756. |
[47] |
Li XL, Liu ZY, Wang Z, Wu XH, Li XL, Hu J, Shi HX, Guo FH, Zhang Y, Hou XY (2015). Pathways of Leymus chinensis individual aboveground biomass decline in natural semiarid grassland induced by overgrazing: a study at the plant functional trait scale. PLOS ONE, 10, e0124443. DOI: 10.1371/journal.pone.0124443.
DOI URL |
[48] |
Lienin P, Kleyer M (2012). Plant trait responses to the environment and effects on ecosystem properties. Basic and Applied Ecology, 13, 301-311.
DOI URL |
[49] |
Lin DM, Anderson-Teixeira KJ, Lai JS, Mi XC, Ren HB, Ma KP (2016). Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant and Soil, 409, 435-446.
DOI URL |
[50] | Liu XJ, Ma KP (2015). Plant functional traits: concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[51] |
Lu N, Fu BJ, Jin TT, Chang RY (2014). Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes. Landscape Ecology, 29, 1697-1708.
DOI URL |
[52] |
Lundholm J, Heim A, Tran S, Smith T (2014). Leaf and life history traits predict plant growth in a green roof ecosystem. PLOS ONE, 9, e101395. DOI: 10.1371/journal. pone.0101395.
DOI URL |
[53] |
Lundholm J, Tran S, Gebert L (2015). Plant functional traits predict green roof ecosystem services. Environmental Science & Technology, 49, 2366-2374.
DOI URL |
[54] |
Lundin O, Ward KL, Williams NM (2019). Identifying native plants for coordinated habitat management of arthropod pollinators, herbivores and natural enemies. Journal of Applied Ecology, 56, 665-676.
DOI |
[55] |
Matheny AM, Mirfenderesgi G, Bohrer G (2017). Trait-based representation of hydrological functional properties of plants in weather and ecosystem models. Plant Diversity, 39, 1-12.
DOI |
[56] | Millennium Ecosystem Assessment Board (2005). Ecosystems and Human Well-Being: Synthesis Report. Island Press, Washington D.C. |
[57] |
Monteiroa MV, Blanusa T, Verhoef A, Richardson M, Hadley P, Cameron RWF (2017). Functional green roofs: importance of plant choice in maximising summertime environmental cooling and substrate insulation potential. Energy and Buildings, 141, 56-68.
DOI URL |
[58] |
Moonen PCJ, Verbist B, Bosela FB, Norgrove L, Dondeyne S, van Meerbeek K, Kearsley E, Verbeeck H, Vermeir P, Boeckx P, Muys B (2019). Disentangling how management affects biomass stock and productivity of tropical secondary forests fallows. Science of the Total Environment, 659, 101-114.
DOI URL |
[59] |
Navarro-Cano JA, Verdú M, Goberna M (2018). Trait-based selection of nurse plants to restore ecosystem functions in mine tailings. Journal of Applied Ecology, 55, 1195-1206.
DOI URL |
[60] |
Orwin KH, Mason NWH, Jordan OM, Lambie SM, Stevenson BA, Mudge PL (2018). Season and dominant species effects on plant trait-ecosystem function relationships in intensively grazed grassland. Journal of Applied Ecology, 55, 236-245.
DOI URL |
[61] | Ouyang ZY, Wang RS, Zhao JZ (1999). Ecosystem services and their economic valuation. Chinese Journal of Applied Ecology, 10, 3-5. |
[ 欧阳志云, 王如松, 赵景柱 (1999). 生态系统服务功能及其生态经济价值评价. 应用生态学报, 10, 3-5.] | |
[62] | Ouyang ZY, Zheng H (2009). Ecological mechanisms of ecosystem services. Acta Ecologica Sinica, 29, 6183-6188. |
[ 欧阳志云, 郑华 (2009). 生态系统服务的生态学机制研究进展. 生态学报, 29, 6183-6188.] | |
[63] |
Pakeman RJ (2014). Leaf dry matter content predicts herbivore productivity, but its functional diversity is positively related to resilience in grasslands. PLOS ONE, 9, e101876. DOI: 10.1371/journal.pone.0101876.
DOI URL |
[64] |
Pakeman RJ, Eastwood A, Scobie A (2011). Leaf dry matter content as a predictor of grassland litter decomposition: a test of the “mass ratio hypothesis”. Plant and Soil, 342, 49-57.
DOI URL |
[65] |
Paquette A, Messier C (2011). The effect of biodiversity on tree productivity: from temperate to boreal forests. Global Ecology and Biogeography, 20, 170-180.
DOI URL |
[66] |
Patoine G, Thakur MP, Friese J, Nock CA, Honig L, Haase J, Scherer-Lorenzen M, Eisenhauer N (2017). Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community. Pedobiologia, 65, 29-42.
DOI URL |
[67] |
Pommier T, Cantarel AAM, Grigulis K, Lavorel S, Legay N, Baxendale C, Bardgett RD, Bahn M, Poly F, Clément JC (2018). The added value of including key microbial traits to determine nitrogen-related ecosystem services in managed grasslands. Journal of Applied Ecology, 55, 49-58.
DOI URL |
[68] |
Quétier F, Thébault A, Lavorel S (2007). Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecological Monographs, 77, 33-52.
DOI URL |
[69] |
Robleño I, Storkey J, Solé-Senan XO, Recasens J (2018). Using the response-effect trait framework to quantify the value of fallow patches in agricultural landscapes to pollinators. Applied Vegetation Science, 21, 267-277.
DOI URL |
[70] |
Rolo V, Rivest D, Lorente M, Kattge J, Moreno G (2016). Taxonomic and functional diversity in Mediterranean pastures: insights on the biodiversity-productivity trade-off. Journal of Applied Ecology, 53, 1575-1584.
DOI URL |
[71] |
Santala K, Aubin I, Hoepting M, Bachand M, Pitt D (2019). Managing conservation values and tree performance: lessons learned from 10 year experiments in regenerating eastern white pine (Pinus strobus L.). Forest Ecology and Management, 432, 748-760.
DOI URL |
[72] |
Schindler MH, Gessner MO (2009). Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology, 90, 1641-1649.
PMID |
[73] |
Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, et al. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310, 1333-1337.
PMID |
[74] |
Schuldt A, Assmann T, Bruelheide H, Durka W, Eichenberg D, Härdtle W, Kröber W, Michalski SG, Purschke O (2014). Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest. New Phytologist, 202, 864-873.
DOI URL |
[75] |
Serna-Chavez HM, Swenson NG, Weiser MD, van Loon EE, Bouten W, Davidson MD,van Bodegom PM (2017). Strong biotic influences on regional patterns of climate regulation services. Global Biogeochemical Cycles, 31, 787-803.
DOI URL |
[76] |
Sole-Senan XO, Juarez-Escario A, Robleno I, Conesa JA, Recasens J (2017). Using the response-effect trait framework to disentangle the effects of agricultural intensification on the provision of ecosystem services by Mediterranean arable plants. Agriculture Ecosystems & Environment, 247, 255-264.
DOI URL |
[77] |
Staples TL, Dwyer JM, England JR, Mayfield MM (2019). Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Global Ecology and Biogeography, 28, 1417-1429.
DOI URL |
[78] |
Storkey J, Brooks D, Haughton A, Hawes C, Smith BM, Holland JM (2013). Using functional traits to quantify the value of plant communities to invertebrate ecosystem service providers in arable landscapes. Journal of Ecology, 101, 38-46.
DOI URL |
[79] |
Storkey J, Döring T, Baddeley J, Collins R, Roderick S, Jones H, Watson C (2015). Engineering a plant community to deliver multiple ecosystem services. Ecological Applications, 25, 1034-1043.
DOI URL |
[80] |
Tecco PA, Díaz S, Cabido M, Urcelay C (2010). Functional traits of alien plants across contrasting climatic and land-use regimes: Do aliens join the locals or try harder than them? Journal of Ecology, 98, 17-27.
DOI URL |
[81] |
Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, et al. (2012). Landscape moderation of biodiversity patterns and processes-Eight hypotheses. Biological Reviews, 87, 661-685.
DOI URL |
[82] | van der Plas F (2019). Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews, 94, 1220-1245. |
[83] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[84] | Wen Z, Zheng H, Ouyang ZY (2020). Research progress on the relationship between biodiversity and ecosystem services. Chinese Journal of Applied Ecology, 31, 1-10. |
[ 文志, 郑华, 欧阳志云 (2020). 生物多样性与生态系统服务关系研究进展. 应用生态学报, 31, 1-10.] | |
[85] |
Wen Z, Zheng H, Smith JR, Zhao H, Liu L, Ouyang ZY (2019). Functional diversity overrides community-weighted mean traits in linking land-use intensity to hydrological ecosystem services. Science of the Total Environment, 682, 583-590.
DOI URL |
[86] |
Westoby M (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213-227.
DOI URL |
[87] |
Willemen L (2020). It’s about time: advancing spatial analyses of ecosystem services and their application. Ecosystem Services, 44, 101125.
DOI URL |
[88] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[89] |
Yang Y, Dou YX, Cheng H, An SS (2019). Plant functional diversity drives carbon storage following vegetation restoration in Loess Plateau, China. Journal of Environmental Management, 246, 668-678.
DOI PMID |
[90] |
Zhang JH, Huang YM, Chen HY, Gong JR, Qi Y, Li EG, Wu XC (2018). Response of plant functional traits at species and community levels to grazing exclusion on Inner Mongolian steppe, China. Rangeland Journal, 40, 179-189.
DOI URL |
[91] | Zheng H, Wang LJ, Peng WJ, Zhang CP, Li C, Robinson BE, Wu XC, Kong LQ, Li RN, Xiao Y, Xu WH, Ouyang ZY, Daily GC (2019). Realizing the values of natural capital for inclusive, sustainable development: informing China’s new ecological development strategy. Proceedings of the National Academy of Sciences of the United States of America, 116, 8623-8628. |
[92] |
Zhu HX, Fu BJ, Wang S, Zhu LH, Zhang LW, Jiao L, Wang C (2015). Reducing soil erosion by improving community functional diversity in semi-arid grasslands. Journal of Applied Ecology, 52, 1063-1072.
DOI URL |
[93] |
Zirbel CR, Bassett T, Grman E, Brudvig LA (2017). Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. Journal of Applied Ecology, 54, 1070-1079.
DOI URL |
[94] |
Zuo XA, Zhou X, Lv P, Zhao XY, Zhang J, Wang SK, Yue XY (2016). Testing associations of plant functional diversity with carbon and nitrogen storage along a restoration gradient of sandy grassland. Frontiers in Plant Science, 7, 189. DOI: 10.3389/fpls.2016.00189.
DOI |
[1] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[2] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[3] | WANG Xiao-Yue, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation [J]. Chin J Plant Ecol, 2023, 47(4): 479-490. |
[4] | XI Nian-Xun, ZHANG Yuan-Ye, ZHOU Shu-Rong. Plant-soil feedbacks in community ecology [J]. Chin J Plant Ecol, 2023, 47(2): 170-182. |
[5] | TANG Lu-Yao, FANG Jing, QIAN Hai-Rong, ZHANG Bo-Na, SHANGGUAN Fang-Jing, YE Lin-Feng, LI Shu-Wen, TONG Jin-Lian, XIE Jiang-Bo. Variation and coordination in functional traits along the tree height of Taxodium distichum and Taxodium distichum var. imbricatum [J]. Chin J Plant Ecol, 2023, 47(11): 1561-1575. |
[6] | ZHANG Yi, CHENG Jie, SU Ji-Shuai, CHENG Ji-Min. Diversity-productivity relationship of plant communities in typical grassland during the long- term grazing exclusion succession [J]. Chin J Plant Ecol, 2022, 46(2): 176-187. |
[7] | QI Lu-Yu, CHEN Hao-Nan, Kulihong SAIREBIELI, JI Tian-Yu, MENG Gao-De, QIN Hui-Ying, WANG Ning, SONG Yi-Xin, LIU Chun-Yu, DU Ning, GUO Wei-Hua. Growth strategies of five shrub seedlings in warm temperate zone based on plant functional traits [J]. Chin J Plant Ecol, 2022, 46(11): 1388-1399. |
[8] | LUO Yuan-Lin, MA Wen-Hong, ZHANG Xin-Yu, SU Chuang, SHI Ya-Bo, ZHAO Li-Qing. Variation of functional traits of alternative distribution of Caragana species along environmental gradients in Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(11): 1364-1375. |
[9] | YAN Zheng-Bing, LIU Shu-Wen, WU Jin. Hyperspectral remote sensing of plant functional traits: monitoring techniques and future advances [J]. Chin J Plant Ecol, 2022, 46(10): 1151-1166. |
[10] | ZHANG Jing-Hui, WANG Zheng, HUANG Yong-Mei, CHEN Hui-Ying, LI Zhi-Yong, LIANG Cun-Zhu. Effects of grassland utilization on the functional traits of dominant plants in a temperate typical steppe [J]. Chin J Plant Ecol, 2021, 45(8): 818-833. |
[11] | ZHU Wei-Na, ZHANG Guo-Long, ZHANG Pu-Jin, ZHANG Qian-Qian, REN Jin-Tao, XU Bu-Yun, QING Hua. Decomposition characteristics of leaf litters and roots of six main plant species and their relationships with functional traits in Stipa grandis steppe [J]. Chin J Plant Ecol, 2021, 45(6): 606-616. |
[12] | WANG Yi, SUN Jian, YE Chong-Chong, ZENG Tao. Climatic factors drive the aboveground ecosystem functions of alpine grassland via soil microbial biomass nitrogen on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 434-443. |
[13] | WANG Zhao-Ying, CHEN Xiao-Ping, CHENG Ying, WANG Man-Tang, ZHONG Quan-Lin, LI Man, CHENG Dong-Liang. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 2021, 45(3): 242-252. |
[14] | SHI Jiao-Xing, XU Ming-Shan, FANG Xiao-Chen, ZHENG Li-Ting, ZHANG Yu, BAO Di-Feng, YANG An-Na, YAN En-Rong. Latitudinal variability and driving factors of functional diversity in Pinus thunbergiicommunities across sea-islands in Eastern China [J]. Chin J Plant Ecol, 2021, 45(2): 163-173. |
[15] | LI Hai-Dong, WU Xin-Wei, XIAO Zhi-Shu. Assembly, ecosystem functions, and stability in species interaction networks [J]. Chin J Plant Ecol, 2021, 45(10): 1049-1063. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn