Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (11): 1376-1387.DOI: 10.17521/cjpe.2022.0257
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
DAI Yuan-Meng1,2, LI Man-Le1,2, XU Ming-Ze1,2, TIAN Yun1,2,3,*(), ZHAO Hong-Xian1,2, GAO Sheng-Jie1,2, HAO Shao-Rong1,2, LIU Peng1,2,3, JIA Xin1,2,3, ZHA Tian-Shan1,2,3
Received:
2022-06-18
Accepted:
2022-09-23
Online:
2022-11-20
Published:
2022-09-28
Contact:
*TIAN Yun(tianyun@bjfu.edu.cn)
Supported by:
DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land[J]. Chin J Plant Ecol, 2022, 46(11): 1376-1387.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0257
Fig. 1 Characteristics of different dune fixation stages in Mau Us Sandy Land. A, Semi-fixed dune stage. B, Fixed dune stage. C, Fixed dune covered with biological soil crusts. D, Fixed dune with abundant herbaceous plants.
植被特征与土壤指标 Vegetation characteristic and soil indicator | 半固定沙丘 Semi-fixed dune stage | 固定沙丘 Fixed dune stage | 土壤结皮固定沙丘 Fixed dune covered with biological soil crusts | 草本植物固定沙丘 Fixed dune with abundant herbaceous plant |
---|---|---|---|---|
植被覆盖度 Vegetation coverage (%) | 23.29 ± 2.39a | 30.27 ± 2.32a | 46.43 ± 3.19b | 61.80 ± 2.80c |
黑沙蒿覆盖度 Coverage of Artemisia ordosica (%) | 11.54 ± 1.24a | 22.11 ± 1.72b | 35.24 ± 1.37c | 38.23 ± 2.84c |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 0.55 ± 0.02a | 2.40 ± 0.23b | 0.94 ± 0.02a | 1.43 ± 0.05a |
土壤全氮含量 Soil total nitrogen content (g·kg-1) | 0.22 ± 0.01a | 0.31 ± 0.04b | 0.24 ± 0.01ab | 0.30 ± 0.01ab |
土壤全磷含量 Soil total phosphorus content (g·kg-1) | 0.05 ± 0.00a | 0.19 ± 0.02b | 0.07 ± 0.00a | 0.12 ± 0.01a |
优势物种 Dominant species | 黑沙蒿、塔落岩黄耆、虫实、草木樨状黄耆、沙蓬 Artemisia ordosica, Corethrodendron lignosum var. leave, Corispermum sp., Astragalus melilotoides, Agriophyllum squarrosum | 黑沙蒿、柠条锦鸡儿、草木樨状黄耆、华北白前、达乌里胡枝子 Artemisia ordosica, Caragana korshinskii, Astragalus melilotoides, Vincetoxicum mongolicum, Lespedeza davurica | 黑沙蒿、塔落岩黄耆、草木樨状黄耆、华北白前、中华草沙蚕 Artemisia ordosica, Corethrodendron lignosum var. leave, Astragalus melilotoides, Vincetoxicum mongolicum, Tripogon chinensis | 黑沙蒿、塔落岩黄耆、赖草、糙隐子草、华北白前 Artemisia ordosica, Corethrodendron lignosum var. leave, Leymus secalinus, Cleistogenes squarrosa, Vincetoxicum mongolicum |
Table 1 Vegetation characteristics and soil physical-chemical properties at different dune fixation stages in Mau Us Sandy Land (mean ± SE)
植被特征与土壤指标 Vegetation characteristic and soil indicator | 半固定沙丘 Semi-fixed dune stage | 固定沙丘 Fixed dune stage | 土壤结皮固定沙丘 Fixed dune covered with biological soil crusts | 草本植物固定沙丘 Fixed dune with abundant herbaceous plant |
---|---|---|---|---|
植被覆盖度 Vegetation coverage (%) | 23.29 ± 2.39a | 30.27 ± 2.32a | 46.43 ± 3.19b | 61.80 ± 2.80c |
黑沙蒿覆盖度 Coverage of Artemisia ordosica (%) | 11.54 ± 1.24a | 22.11 ± 1.72b | 35.24 ± 1.37c | 38.23 ± 2.84c |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 0.55 ± 0.02a | 2.40 ± 0.23b | 0.94 ± 0.02a | 1.43 ± 0.05a |
土壤全氮含量 Soil total nitrogen content (g·kg-1) | 0.22 ± 0.01a | 0.31 ± 0.04b | 0.24 ± 0.01ab | 0.30 ± 0.01ab |
土壤全磷含量 Soil total phosphorus content (g·kg-1) | 0.05 ± 0.00a | 0.19 ± 0.02b | 0.07 ± 0.00a | 0.12 ± 0.01a |
优势物种 Dominant species | 黑沙蒿、塔落岩黄耆、虫实、草木樨状黄耆、沙蓬 Artemisia ordosica, Corethrodendron lignosum var. leave, Corispermum sp., Astragalus melilotoides, Agriophyllum squarrosum | 黑沙蒿、柠条锦鸡儿、草木樨状黄耆、华北白前、达乌里胡枝子 Artemisia ordosica, Caragana korshinskii, Astragalus melilotoides, Vincetoxicum mongolicum, Lespedeza davurica | 黑沙蒿、塔落岩黄耆、草木樨状黄耆、华北白前、中华草沙蚕 Artemisia ordosica, Corethrodendron lignosum var. leave, Astragalus melilotoides, Vincetoxicum mongolicum, Tripogon chinensis | 黑沙蒿、塔落岩黄耆、赖草、糙隐子草、华北白前 Artemisia ordosica, Corethrodendron lignosum var. leave, Leymus secalinus, Cleistogenes squarrosa, Vincetoxicum mongolicum |
Fig. 2 Effects of different dune fixation stages on leaf traits of Artemisia ordosica in Mau Us Sandy Land (mean ± SE). Amax, maximum net photosynthetic rate; C:N, leaf carbon content to nitrogen content ratio; LA, leaf area; LCC, leaf carbon content; LDMC, leaf dry matter content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; LT, leaf thickness; LTD, leaf tissue density; N:P, leaf nitrogen content to phosphorus content ratio; SLA, specific leaf area. CV, coefficient of variation. D1, semi-fixed dune stage; D2, fixed dune stage; D3, fixed dune covered with biological soil crusts; D4, fixed dune with abundant herbaceous plants.
Fig. 3 Relationships between leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land. Amax, maximum net photosynthetic rate; LA, leaf area; LDMC, leaf dry matter content; LT, leaf thickness; LTD, leaf tissue density; SLA, specific leaf area. D1, semi-fixed dune stage; D2, fixed dune stage; D3, fixed dune covered with biological soil crusts; D4, fixed dune with abundant herbaceous plants.
LA | SLA | LT | LTD | LDMC | Amax | LCC | LNC | LPC | C:N | N:P | |
---|---|---|---|---|---|---|---|---|---|---|---|
LA | 1.00 | ||||||||||
SLA | 0.22 | 1.00 | |||||||||
LT | -0.10 | -0.15 | 1.00 | ||||||||
LTD | -0.22 | -0.72*** | -0.54*** | 1.00 | |||||||
LDMC | -0.66*** | -0.41* | 0.24 | 0.29 | 1.00 | ||||||
Amax | 0.63*** | -0.16 | -0.02 | 0.08 | -0.35* | 1.00 | |||||
LCC | -0.36* | 0.13 | 0.07 | -0.17 | 0.16 | -0.49** | 1.00 | ||||
LNC | -0.11 | 0.13 | -0.16 | 0.01 | -0.15 | -0.07 | 0.19 | 1.00 | |||
LPC | 0.50*** | 0.22 | -0.10 | -0.19 | -0.41* | 0.17 | 0.01 | 0.28 | 1.00 | ||
C:N | -0.03 | -0.05 | 0.17 | -0.11 | 0.19 | -0.17 | 0.43** | -0.79*** | -0.17 | 1.00 | |
N:P | -0.51** | -0.15 | -0.02 | 0.23 | 0.37* | -0.11 | -0.12 | 0.07 | -0.91*** | -0.21 | 1.00 |
Table 2 Pearson correlation coefficients among leaf traits of Artemisia ordosica at the dune fixation stages in Mau Us Sandy Land
LA | SLA | LT | LTD | LDMC | Amax | LCC | LNC | LPC | C:N | N:P | |
---|---|---|---|---|---|---|---|---|---|---|---|
LA | 1.00 | ||||||||||
SLA | 0.22 | 1.00 | |||||||||
LT | -0.10 | -0.15 | 1.00 | ||||||||
LTD | -0.22 | -0.72*** | -0.54*** | 1.00 | |||||||
LDMC | -0.66*** | -0.41* | 0.24 | 0.29 | 1.00 | ||||||
Amax | 0.63*** | -0.16 | -0.02 | 0.08 | -0.35* | 1.00 | |||||
LCC | -0.36* | 0.13 | 0.07 | -0.17 | 0.16 | -0.49** | 1.00 | ||||
LNC | -0.11 | 0.13 | -0.16 | 0.01 | -0.15 | -0.07 | 0.19 | 1.00 | |||
LPC | 0.50*** | 0.22 | -0.10 | -0.19 | -0.41* | 0.17 | 0.01 | 0.28 | 1.00 | ||
C:N | -0.03 | -0.05 | 0.17 | -0.11 | 0.19 | -0.17 | 0.43** | -0.79*** | -0.17 | 1.00 | |
N:P | -0.51** | -0.15 | -0.02 | 0.23 | 0.37* | -0.11 | -0.12 | 0.07 | -0.91*** | -0.21 | 1.00 |
Fig. 4 Results of principle component (PC) analysis of Artemisia ordosica leaf traits in different dune fixation stages in Mau Us Sandy Land. A, Main leaf trait load of Artemisia ordosica. B, Response of Artemisia ordosica to different stages of dune fixation. Amax, maximum net photosynthetic rate; C:N, leaf carbon content to nitrogen content ratio; LA, leaf area; LCC, leaf carbon content; LDMC, leaf dry matter content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; LT, leaf thickness; LTD, leaf tissue density; N:P, leaf nitrogen content to phosphorus content ratio; SLA, specific leaf area. D1, semi-fixed dune stage; D2, fixed dune stage; D3, fixed dune covered with biological soil crusts; D4, fixed dune with abundant herbaceous plants.
叶性状 Leaf trait | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 |
---|---|---|---|
LA | 0.47 | 0.07 | 0.27 |
SLA | 0.26 | -0.28 | -0.32 |
LT | -0.07 | -0.31 | 0.14 |
LTD | -0.23 | 0.46 | 0.14 |
LDMC | -0.44 | -0.05 | 0.04 |
Amax | 0.26 | 0.32 | 0.36 |
LCC | -0.13 | -0.42 | -0.27 |
LNC | 0.09 | 0.23 | -0.62 |
LPC | 0.44 | -0.06 | -0.10 |
C:N | -0.12 | -0.46 | 0.43 |
N:P | -0.40 | 0.23 | -0.10 |
方差比例 Variance ratio | 29.20% | 20.03% | 17.11% |
累计方差比例 Cumulative variance ratio | 29.20% | 49.23% | 66.34% |
Table 3 Loadings and interpreted variance of leaf traits in principal component analysis in Mau Us Sandy Land
叶性状 Leaf trait | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 |
---|---|---|---|
LA | 0.47 | 0.07 | 0.27 |
SLA | 0.26 | -0.28 | -0.32 |
LT | -0.07 | -0.31 | 0.14 |
LTD | -0.23 | 0.46 | 0.14 |
LDMC | -0.44 | -0.05 | 0.04 |
Amax | 0.26 | 0.32 | 0.36 |
LCC | -0.13 | -0.42 | -0.27 |
LNC | 0.09 | 0.23 | -0.62 |
LPC | 0.44 | -0.06 | -0.10 |
C:N | -0.12 | -0.46 | 0.43 |
N:P | -0.40 | 0.23 | -0.10 |
方差比例 Variance ratio | 29.20% | 20.03% | 17.11% |
累计方差比例 Cumulative variance ratio | 29.20% | 49.23% | 66.34% |
Fig. 5 Analysis of leaf traits similarities of Artemisia ordosica in different dune fixation stages in Mau Us Sandy Land. D1, semi-fixed dune stage; D2, fixed dune stage; D3, fixed dune covered with biological soil crusts; D4, fixed dune with abundant herbaceous plants.
[1] |
Ackerly D, Knight C, Weiss S, Barton K, Starmer K (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
DOI PMID |
[2] |
Anderegg LDL, Berner LT, Badgley G, Sethi ML, Law BE, HilleRisLambers J (2018). Within-species patterns challenge our understanding of the leaf economics spectrum. Ecology Letters, 21, 734-744.
DOI PMID |
[3] |
Bai YX, She WW, Michalet R, Zheng J, Qin SG, Zhang YQ (2018). Benefactor facilitation and beneficiary feedback effects drive shrub-dominated community succession in a semi-arid dune ecosystem. Applied Vegetation Science, 21, 595-606.
DOI URL |
[4] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. 14-188. |
[ 鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京. 14-188.] | |
[5] |
Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153.
DOI URL |
[ 陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[6] |
Cornelissen JHC, Cerabolini B, Castro-Díez P, Villar-Salvador P, Montserrat-Martí G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003a). Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science, 14, 311-322.
DOI URL |
[7] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003b). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[8] |
Craven D, Hall JS, Berlyn GP, Ashton MS,van Breugel M (2015). Changing gears during succession: shifting functional strategies in young tropical secondary forests. Oecologia, 179, 293-305.
DOI PMID |
[9] |
Dai JZ, Bai YT, Wei ZJ, Zhang C, Yan RR (2021). Effects of root-cutting in the vegetative phase on plant functional traits of Leymus chinensis. Chinese Journal of Plant Ecology, 45, 1292-1302.
DOI URL |
[ 代景忠, 白玉婷, 卫智军, 张楚, 闫瑞瑞 (2021). 切根对羊草营养生长期内植物功能性状的影响. 植物生态学报, 45, 1292-1302.]
DOI |
|
[10] |
Derroire G, Powers JS, Hulshof CM, Cárdenas Varela LE, Healey JR (2018). Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica. Scientific Reports, 8, 285. DOI: 10.1038/s41598-017-18525-1.
DOI |
[11] |
Dong N, Prentice IC, Wright IJ, Evans BJ, Togashi HF, Caddy-Retalic S, Mcinerney FA, Sparrow B, Leitch E, Lowe AJ (2020). Components of leaf-trait variation along environmental gradients. New Phytologist, 228, 82-94.
DOI URL |
[12] |
Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996). Organism size, life history, and N:P stoichiometry: toward a unified view of cellular and ecosystem processes. BioScience, 46, 674-684.
DOI URL |
[13] |
Fajardo A, Piper FI, Hoch G (2013). Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients. Annals of Botany, 112, 623-631.
DOI PMID |
[14] | Feng QH, Shi ZM, Dong LL (2008). Response of plant functional traits to environment and its application. Scientia Silvae Sinicae, 44(4), 125-131. |
[ 冯秋红, 史作民, 董莉莉 (2008). 植物功能性状对环境的响应及其应用. 林业科学, 44(4), 125-131.] | |
[15] |
Funk JL (2013). The physiology of invasive plants in low- resource environments. Conservation Physiology, 1, cot026. DOI: 10.1093/conphys/cot026.
DOI |
[16] |
He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170, 835-848
DOI URL |
[17] |
He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Sack L, Yu GR (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918.
DOI URL |
[18] | He NP, Liu CC, Zhang JH, Xu L, Yu GR (2018). Perspectives and challenges in plant traits: from organs to communities. Acta Ecologica Sinica, 38, 6787-6796. |
[ 何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞 (2018). 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 38, 6787-6796.] | |
[19] |
He YY, Guo SL, Wang Z (2019). Research progress of trade- off relationships of plant functional traits. Chinese Journal of Plant Ecology, 43, 1021-1035.
DOI URL |
[ 何芸雨, 郭水良, 王喆 (2019). 植物功能性状权衡关系的研究进展. 植物生态学报, 43, 1021-1035.]
DOI |
|
[20] |
Heberling JM, Fridley JD (2012). Biogeographic constraints on the world-wide leaf economics spectrum. Global Ecology and Biogeography, 21, 1137-1146.
DOI URL |
[21] |
Huang JP, Yu HP, Dai AG, Wei Y, Kang LT (2017). Drylands face potential threat under 2 °C global warming target. Nature Climate Change, 7, 417-422.
DOI URL |
[22] | Jia X, Zha TS, Gong JN, Wang B, Zhang YQ, Wu B, Qin SG, Peltola H (2016). Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agricultural and Forest Meteorology, 228- 229, 120-129. |
[23] |
Jiang XY, Jia X, Gao SJ, Jiang Y, Wei NN, Han C, Zha TS, Liu P, Tian Y, Qin SG (2021). Plant nutrient contents rather than physical traits are coordinated between leaves and roots in a desert shrubland. Frontiers in Plant Science, 12, 734775. DOI: 10.3389/fpls.2021.734775.
DOI |
[24] | Jiang Y, Jin C, Jiang XY, Li XH, Wei NN, Gao SJ, Liu P, Jia X, Zha TS (2022). Relative changes and biophysical controls of leaf resource use efficiencies in Artemisia ordosica. Acta Ecologica Sinica, 42, 6196-6208. |
[ 蒋燕, 靳川, 姜晓燕, 李鑫豪, 魏宁宁, 高圣杰, 刘鹏, 贾昕, 查天山 (2022). 油蒿叶片资源利用效率相对变化及其生物与非生物影响因素. 生态学报, 42, 6196-6208.] | |
[25] |
Jin C, Li XH, Jiang Y, Xu MZ, Tian Y, Liu P, Jia X, Zha TS (2021). Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season. Chinese Journal of Plant Ecology, 45, 870-879.
DOI URL |
[ 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山 (2021). 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制. 植物生态学报, 45, 870-879.]
DOI |
|
[26] | Jin C, Zha TS, Jia X, Tian Y, Zhou WJ, Wei TZ (2020). Light energy partitioning, photoprotection and influencing factors of photosystem II in an exotic species (Salix psammophila) in Mu Us Sandy Land. Scientia Silvae Sinicae, 56(10), 34-44. |
[ 靳川, 查天山, 贾昕, 田赟, 周文君, 卫腾宙 (2020). 毛乌素沙地沙柳光系统II光保护机制和能量分配动态及其影响因子. 林业科学, 56(10), 34-44.] | |
[27] |
John MK (1970). Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Science, 109, 214-220.
DOI URL |
[28] | Kattge J, Díaz S, Lavorel S, Prentice C, Leadley P, Böenisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, et al. (2011). TRY—A global database of plant traits. Global Change Biology, 17, 2905-2935. |
[29] | Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168, E103-E122. |
[30] |
Koricheva J (2002). Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology, 83, 176-190.
DOI URL |
[31] |
Kumar M, Garkoti SC (2021). Functional traits, growth patterns, and litter dynamics of invasive alien and co-occurring native shrub species of chir pine forest in the central Himalaya, India. Plant Ecology, 222, 723-735.
DOI URL |
[32] | Li SL, Yu FH, Werger MJA, Dong M, Zuidema PA (2011). Habitat-specific demography across dune fixation stages in a semi-arid sandland: understanding the expansion, stabilization and decline of a dominant shrub. Journal of Ecology, 99, 610-620. |
[33] | Li Y (2020). Variation of Leaf Trait Network Among Different Vegetation Types and Its Influencing Factors. PhD dissertation, Beijing Forestry University, Beijing. |
[ 李颖 (2020). 叶片性状网络在不同植被类型间的变异规律及其影响因素. 博士学位论文, 北京林业大学, 北京.] | |
[34] |
Li Y, Liu CC, Sack L, Xu L, Li MX, Zhang JH, He NP (2022). Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecology Letters, 25, 1442-1457.
DOI URL |
[35] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-33. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[36] |
Luo YK, Hu HF, Zhao MY, Li H, Liu SS, Fang JY (2019). Latitudinal pattern and the driving factors of leaf functional traits in 185 shrub species across Eastern China. Journal of Plant Ecology, 12, 67-77.
DOI URL |
[37] | Qin J, Kong HY, Liu H (2016). Stoichiometric characteristics of soil C, N, P and K in different Pinus massoniana forests. Journal of Northwest A&F University (Natural Science Edition), 44, 68-76. |
[ 秦娟, 孔海燕, 刘华 (2016). 马尾松不同林型土壤C、N、P、K的化学计量特征. 西北农林科技大学学报(自然科学版), 44, 68-76.] | |
[38] | Qu P, Xing YJ, Wang QG (2018). Research progress of plant economic spectrum. Chinese Agricultural Science Bulletin, 34(10), 88-94. |
[ 曲鹏, 邢亚娟, 王庆贵 (2018). 植物经济谱研究进展. 中国农学通报, 34(10), 88-94.] | |
[39] |
Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301.
DOI URL |
[40] | Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164. |
[41] |
Rose L, Rubarth MC, Hertel D, Leuschner C (2013). Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows. Journal of Vegetation Science, 24, 239-250.
DOI URL |
[42] |
Ryser P (1996). The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Functional Ecology, 10, 717-723.
DOI URL |
[43] |
She WW, Bai YX, Zhang YQ, Qin SG, Liu Z, Wu B (2017). Plasticity in meristem allocation as an adaptive strategy of a desert shrub under contrasting environments. Frontiers in Plant Science, 8, 1933. DOI: 10.3389/fpls.2017.01933.
DOI |
[44] | Si JH, Feng Q, Chang ZQ, Wang YB, Tian YZ, Xie ZC, Gao LP (2011). Community structure and species diversity of desert plants in the wind-sand area of Yabulai. Acta Botanica Boreali-Occidentalia Sinica, 31, 602-608. |
[ 司建华, 冯起, 常宗强, 王耀斌, 田永祯, 谢宗才, 高立平 (2011). 阿拉善雅布赖风沙区荒漠植物群落结构和物种多样性研究. 西北植物学报, 31, 602-608.] | |
[45] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[46] |
Thompson K, Parkinson JA, Band SR, Spencer RE (1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 136, 679-689.
DOI PMID |
[47] |
Tian D, Yan ZB, Fang JY (2021). Review on characteristics and main hypotheses of plant ecological stoichiometry. Chinese Journal of Plant Ecology, 45, 682-713.
DOI |
[ 田地, 严正兵, 方精云 (2021). 植物生态化学计量特征及其主要假说. 植物生态学报, 45, 682-713.]
DOI |
|
[48] |
Tian D, Yan ZB, Ma SH, Ding YH, Luo YK, Chen YH, Du EZ, Han WX, Kovacs ED, Shen HH, Hu HF, Kattge J, Schmid B, Fang JY (2019). Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants. Science China Life Sciences, 62, 1047-1057.
DOI PMID |
[49] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[50] |
Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162.
DOI URL |
[51] |
Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats. Functional Ecology, 15, 423-434.
DOI URL |
[52] |
Wu YJ, Ren C, Tian Y, Zha TS, Liu P, Bai YJ, Ma JY, Lai ZR, Bourquea CPA (2018). Photosynthetic gas-exchange and PSII photochemical acclimation to drought in a native and non-native xerophytic species (Artemisia ordosica and Salix psammophila). Ecological Indicators, 94, 130-138.
DOI URL |
[53] |
Xiao D, Wang XJ, Zhang K, He NP, Hou JH (2016). Effects of nitrogen addition on leaf traits of common species in natural Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China. Chinese Journal of Plant Ecology, 40, 686-701.
DOI URL |
[ 肖迪, 王晓洁, 张凯, 何念鹏, 侯继华 (2016). 氮添加对山西太岳山天然油松林主要植物叶片性状的影响. 植物生态学报, 40, 686-701.]
DOI |
|
[54] | Yan F, Cong RC (2015). Study on classification progress and cataloging system of sandy land in China. Geographical Research, 34, 455-465. |
[ 闫峰, 丛日春 (2015). 中国沙地分类进展及编目体系. 地理研究, 34, 455-465.] | |
[55] |
Zhang JH, He NP, Liu CC, Xu L, Yu Q, Yu GR (2018). Allocation strategies for nitrogen and phosphorus in forest plants. Oikos, 127, 1506-1514.
DOI URL |
[56] | Zhang JH, Wu B (2014). Influences of biological soil crust in Artemisia ordosica community on the precipitation infiltration process. Journal of University of Chinese Academy of Sciences, 31, 214-220. |
[ 张军红, 吴波 (2014). 黑沙蒿群落生物结皮对降水入渗过程的影响. 中国科学院大学学报, 31, 214-220.]
DOI |
|
[57] |
Zhang JL, Zhu JJ, Cao KF (2007). Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China. Trees, 21, 631-643.
DOI URL |
[1] | Guang-Ze JIN Zhi-Li LIU. Variations and relationships analysis of leaf traits of three Acer species for different tree sizes and canopy conditions in Xiao Hinggan Mountains of Northeast China [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[3] | ZHANG Zeng-Ke, LI Zeng-Yan, YANG Bai-Yu, SAI Bi-Le, YANG An-Na, ZHANG Li, MOU Ling, ZHENG Jun-Yong, JIN Le-Wei, ZHAO Zhao, WANG Wan-Sheng, DU Yun-Cai, YAN En-Rong. Functional traits influence the growth and mortality of common woody plants in Dajinshan Island, Shanghai, China [J]. Chin J Plant Ecol, 2023, 47(10): 1398-1406. |
[4] | LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland [J]. Chin J Plant Ecol, 2023, 47(1): 41-50. |
[5] | HAN Cong, LIU Peng, MU Yan-Mei, YUAN Yuan, HAO Shao-Rong, TIAN Yun, ZHA Tian-Shan, JIA Xin. Response of ecosystem carbon balance to asymmetric daytime vs nighttime warming in Artemisia ordosica shrublands [J]. Chin J Plant Ecol, 2022, 46(12): 1473-1485. |
[6] | QI Lu-Yu, CHEN Hao-Nan, Kulihong SAIREBIELI, JI Tian-Yu, MENG Gao-De, QIN Hui-Ying, WANG Ning, SONG Yi-Xin, LIU Chun-Yu, DU Ning, GUO Wei-Hua. Growth strategies of five shrub seedlings in warm temperate zone based on plant functional traits [J]. Chin J Plant Ecol, 2022, 46(11): 1388-1399. |
[7] | GUI Zi-Yang, QIN Shu-Gao, HU Zhao, BAI Feng, SHI Hui-Shu, ZHANG Yu-Qing. Foliar condensate absorption and its pathways of two typical shrub species in the Mu Us Desert [J]. Chin J Plant Ecol, 2021, 45(6): 583-593. |
[8] | TAN Yi-Bo, TIAN Hong-Deng, ZENG Chun-Yang, SHEN Hao, SHEN Wen-Hui, YE Jian-Ping, GAN Guo-Juan. Canopy mechanical abrasion between adjacent plants influences twig and leaf traits of Tsuga chinensis assemblage in the Mao’er Mountain [J]. Chin J Plant Ecol, 2021, 45(12): 1281-1291. |
[9] | LI Qun, ZHAO Cheng-Zhang, WANG Ji-Wei, WEN Jun, LI Zi-Qin, MA Jun-Yi. Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China [J]. Chin J Plant Ecol, 2019, 43(8): 685-696. |
[10] | ZHANG Zhen-Zhen, ZHAO Ping, ZHANG Jin-Xiu, SI Yao. Conduits anatomical structure and leaf traits of diffuse- and ring-porous stems in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2019, 43(2): 131-138. |
[11] | ZHANG Zhi-Guo, WEI Hai-Xia. Variations of leaf construction cost and leaf traits within the species of Artemisia ordosica along a precipitation gradient in the Mau Us sandy land [J]. Chin J Plant Ecol, 2019, 43(11): 979-987. |
[12] | LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898. |
[13] | Zhi-Min LI, Chuan-Kuan WANG, Dan-Dan LUO. Variations and interrelationships of foliar hydraulic and photosynthetic traits for Larix gmelinii [J]. Chin J Plant Ecol, 2017, 41(11): 1140-1148. |
[14] | XU Ming-Shan, ZHAO Yan-Tao, YANG Xiao-Dong, SHI Qing-Ru, ZHOU Liu-Li, ZHANG Qing-Qing, Ali ARSHAD, YAN En-Rong. Geostatistical analysis of spatial variations in leaf traits of woody plants in Tiantong, Zhejiang Province [J]. Chin J Plant Ecol, 2016, 40(1): 48-59. |
[15] | LI Yin-Gang, LIU Xin-Hong, MA Jun-Wei, SHI Cong-Guang, ZHU Guang-Quan. Phenotypic variations in populations of Phoebe chekiangensis [J]. Chin J Plant Ecol, 2014, 38(12): 1315-1324. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1258
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 500
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn