Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (4): 471-479.doi: 10.17521/cjpe.2016.0292

• Orginal Article • Previous Articles     Next Articles

Effects of enhanced UV-B radiation and nitrogen deposition on the growth of invasive plant Triadica sebifera

Bang-Liang DENG, Qian LIU, Xi-Shuai LIU, Li-Ya ZHENG, Liang-Bo JIANG, Xiao-Min GUO, Yuan-Qiu LIU, Ling ZHANG*()   

  1. Jiangxi Key Laboratory of Silviculture/Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
  • Received:2016-09-20 Accepted:2017-01-03 Online:2017-05-19 Published:2017-04-10
  • Contact: Ling ZHANG E-mail:lingzhang09@126.com

Abstract:

Aims Exotic plant invasions are important components of global change, threatening both the stability and function of invaded ecosystems. Shifts in competitive ability of invasive plants versus their native congeners have been documented. Enhanced UV-B radiation and nitrogen (N) deposition might interact with soil biota communities impacting the invasion process of exotic plant species. To understand the potential effects by UV-B and N with soil biota on plant growth would enhance our understanding of the mechanisms in plant invasions in the context of global change.
Methods We conducted a full-factorial pot experiment in the native range (China) of Triadica sebifera invading US to investigate how UV-B radiation, N and soil biota together determined their seedling growth.
Important findings The results showed that UV-B radiation, N and soil sterilization together impacted the growth of T. sebifera seedlings. UV-B radiation induced changes in biomass allocation with larger leaf biomass observed in response to UV-B radiation. In addition, N increased aboveground biomass and decreased root biomass simultaneously. Soil biota imposed positive effects on growth of T. sebifera, and the addition of N amplified these positive effects. The negative effects by UV-B radiation on growth of T. sebifera showed no response to N addition. Plant height, leaf biomass and total biomass of the invasive T. sebifera populations out- performed those of the native ones. In addition, invasive T. sebifera populations weakened the dependence of root/shoot ratio and root biomass on local soil microorganisms than native populations, but enhanced that of leaf area ratio.

Key words: abiotic stress, soil microorganism, resource availability, plant invasion

Table 1

Locations of native and invasive Triadica sebifera populations used in the study"

种群 Population 经度 Longitude 纬度 Latitude
中国 China 福建 Fujian 119.28° E 26.07° N
广东 Guangdong 112.38° E 24.78° N
贵州 Guizhou 106.88° E 27.08° N
湖北 Hubei 110.73° E 32.05° N
江苏 Jiangsu 118.37° E 31.23° N
江西 Jiangxi 117.12° E 28.45° N
美国 USA Alabama 88.15° W 30.58° N
Georgia 81.01° W 32.01° N
Louisiana 1 93.15° W 30.23° N
Louisiana 2 92.02° W 30.25° N
Texas 1 95.03° W 29.78° N
Texas 2 95.45° W 28.97° N

Fig. 1

Effect of different treatments on plant height of Triadica sebifera (mean ± SE). Con, control; N, nitrogen deposition; S, soil sterilization. Same lowercase letters indicate no significant differences (p > 0.05, LSD test)."

Table 2

The dependence of morphological traits on Triadica sebifera origin (O), UV-B radiation (UV), soil sterilization (S) and nitrogen deposition (N) treatment, and their interactions in ANOVAs"

处理 Treatment df F value
株高 Plant height 叶片数 Leaf number 叶面积 Leaf areas 比叶面积 Specific leaf area 叶面积比 Leaf area ratio
UV 1 0.01 4.96* 0.07 5.19* 0.00
S 1 144.85** 343.02** 820.08** 14.66** 78.98**
N 1 37.90** 3.60 40.55** 2.03 59.97**
O 1 58.13** 0.76 1.20 0.16 1.82
UV × S 1 0.52 0.26 0.02 0.05 0.58
UV × N 1 2.46 2.58 2.27 0.00 1.21
UV × O 1 0.05 0.22 0.20 1.01 0.05
S × N 1 19.70** 18.90** 73.34** 0.11 44.87**
S × O 1 0.22 1.86 2.09 2.59 8.57**
N × O 1 0.01 0.28 0.52 0.01 1.12
UV × S × N 1 0.01 2.49 0.06 0.23 0.10
UV × S × O 1 0.75 1.12 0.22 0.46 0.16
UV × N × O 1 0.07 0.08 0.24 0.12 0.40
S × N × O 1 1.17 2.18 2.76 1.52 2.81
UV × S × N × O 1 0.37 0.01 1.05 0.12 0.46

Fig. 2

Effect of different treatments on leaf morphological traits of Triadica sebifera (mean ± SE). Con, control; N, nitrogen deposition; S, soil sterilization; UV, UV-B radiation; SLA, specific leaf area; LAR, leaf area ratio. Same lowercase letters indicate no significant differences (p > 0.05, LSD test)."

Table 3

The dependence of biomass on Triadica sebifera origin (O), UV-B radiation (UV), soil sterilization (S) and nitrogen deposition (N) treatment, and their interactions in ANOVAs"

处理 Treatment df F value
叶生物量
Leaf biomass
茎生物量
Stem biomass
根生物量
Root biomass
地上生物量
Aboveground biomass
总生物量
Total biomass
根冠比
Root/shoot ratio
UV 1 4.12* 0.73 1.32 0.10 0.94 0.37
S 1 966.67** 794.51** 690.14** 1 007.44** 1 059.72** 4.17*
N 1 33.38** 0.26 53.60** 12.80** 10.08** 109.60**
O 1 0.00 6.76** 3.73 3.80 4.33* 2.64
UV × S 1 0.01 0.00 0.98 0.01 0.35 2.51
UV × N 1 2.49 2.37 0.12 3.35 1.21 1.79
UV × O 1 1.16 0.06 0.04 0.44 0.06 0.91
S × N 1 62.76** 18.38** 2.37 47.51** 5.96* 46.14**
S × O 1 0.20 0.00 7.46** 0.42 2.24 14.58**
N × O 1 0.02 1.57 1.54 0.25 1.30 0.06
UV × S × N 1 0.07 0.04 0.00 0.19 0.00 0.07
UV × S × O 1 0.02 0.04 0.00 0.01 0.00 0.85
UV × N × O 1 0.20 0.23 0.32 0.67 0.37 0.00
S × N × O 1 3.50 0.27 0.08 1.31 0.75 0.99
UV × S × N × O 1 1.49 1.12 0.01 1.52 0.37 1.55

Fig. 3

Effect of different treatments on biomass of Triadica sebifera (mean ± SE). Con, control; N, nitrogen deposition; S, soil sterilization; UV, UV-B radiation. Same lowercase letters indicate no significant differences (p > 0.05, LSD test)."

Fig. 4

Effect of different treatments on root/shoot ratio of Triadica sebifera (mean ± SE). Con, control; N, nitrogen deposition; S, soil sterilization. Same lowercase letters indicate no significant differences (p > 0.05, LSD test)."

[1] Ballaré CL (2014). Light regulation of plant defense.Annual Review of Plant Biology, 65, 335-363.
[2] Blossey B, Notzold R (1995). Evolution of increased competitive ability in invasive nonindigenous plants: A hypothesis.Journal of Ecology, 83, 887-889.
[3] Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH (2010). Predicting plant invasions in an era of global change.Trends in Ecology & Evolution, 25, 310-318.
[4] Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J (2011). Effects of soil biota from different ranges on Robinia invasion: Acquiring mutualists and escaping pathogens. Ecology, 92, 1027-1035.
[5] Chen BM, Peng SL, Wu XP, Wang PL, Ma JX (2016). A bibliometric analysis of researches on topics related to the ecological damage caused by and risk assessments of exotic invasive species from 1995 to 2014.Acta Ecologica Sinica, 36, 1-9. (in Chinese with English abstract)[陈宝明, 彭少麟, 吴秀平, 王鹏龙, 马建霞 (2016). 近20年外来生物入侵危害与风险评估研究的文献计量分析. 生态学报, 36, 1-9.]
[6] Chen HZ, Han R (2015). Plants respond to UV-B radiation: A review.Chinese Bulletin of Botany, 50, 790-801. (in Chinese with English abstract)[陈慧泽, 韩榕 (2015). 植物响应UV-B辐射的研究进展. 植物学报, 50, 790-801.]
[7] Chen T, Liu WL, Zhang CB, Wang J (2012). Effects of Solidago canadensis invasion on dynamics of native plant communities and their mechanisms. Chinese Journal of Plant Ecology, 36, 253-261. (in Chinese with English abstract)[陈彤, 刘文莉, 张崇邦, 王江 (2012). 加拿大一枝黄花入侵对本土植物群落动态的影响及其机制. 植物生态学报, 36, 253-261.]
[8] Davis MA, Grime JP, Thompson K (2000). Fluctuating resources in plant communities: A general theory of invasibility.Journal of Ecology, 88, 528-534.
[9] Feng YL, Fu GL, Zheng YL (2008). Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners.Planta, 228, 383-390.
[10] Henery ML, Bowman G, Mráz P, Treier UA, Gex-Fabry E, Schaffner U, Müller-Schärer H (2010). Evidence for a combination of pre-adapted traits and rapid adaptive change in the invasive plantCentaurea stoebe. Journal of Ecology, 98, 800-813.
[11] Hock M, Beckmann M, Hofmann RR, Bruelheide H, Erfmeier A (2015). Effects of UV-B radiation on germination characteristics in invasive plants in New Zealand.NeoBiota, 26, 21-37.
[12] Huang JX, Xu X, Wang M, Nie M, Qiu SY, Wang Q, Quan ZX, Xiao M, Li B (2016). Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh. Scientific Reports, 6, 20384. doi: 10.1038/srep20384.
[13] Huang W, Carrillo JL, Ding JQ, Siemann E (2012). Interactive effects of herbivory and competition intensity determine invasive plant performance.Oecologia, 170, 373-382.
[14] Huang W, Wang Y, Ding JQ (2013). A review of adaptive evolution of defense strategies in an invasive plant species, Chinese tallow (Triadica sebifera). Chinese Journal of Plant Ecology, 37, 889-900. (in Chinese with English abstract)[黄伟, 王毅, 丁建清 (2013). 入侵植物乌桕防御策略的适应性进化研究. 植物生态学报, 37, 889-900.]
[15] Ju RT, Li H, Shi ZR, Li B (2012). Progress of biological invasions research in China over the last decade.Biodiversity Science, 20, 581-611. (in Chinese with English abstract)[鞠瑞亭, 李慧, 石正人, 李博 (2012). 近十年中国生物入侵研究进展. 生物多样性, 20, 581-611.]
[16] Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A, Baker AR, Tsigaridis K, Mihalopoulos N (2016). Past, present, and future atmospheric nitrogen deposition.Journal of the Atmospheric Sciences, 73, 2039-2047.
[17] Keane RM, Crawley MJ (2002). Exotic plant invasions and the enemy release hypothesis.Trends in Ecology & Evolution, 17, 164-170.
[18] Lei YB, Xiao HF, Feng YL (2010). Impacts of alien plant invasions on biodiversity and evolutionary responses of native species.Biodiversity Science, 18, 622-630. (in Chinese with English abstract)[类延宝, 肖海峰, 冯玉龙 (2010). 外来植物入侵对生物多样性的影响及本地生物的进化响应. 生物多样性, 18, 622-630.]
[19] Li LB, Tang TX, Hai MR, Chen JW, Zhou P (2015). Response and molecular mechanisms of plants to enhanced UV-B radiation.Chinese Agricultural Science Bulletin, 31(13), 159-163. (in Chinese with English abstract)[李良博, 唐天向, 海梅荣, 陈军文, 周平 (2015). 植物对UV-B辐射增强的响应及其分子机制. 中国农学通报, 31(13), 159-163.]
[20] Li LB, Zhang LG, Tang TX, Hai MR, Zhou P (2016). Influence of enhanced UV-B on physiological characteristics of Eupatorium adenophorum L. and Artemisia argyi Levl. Acta Botanica Boreali-Occidentalia Sinica, 36, 343-352. (in Chinese with English abstract)[李良博, 张连根, 唐天向, 海梅荣, 周平 (2016). UV-B辐射增强对紫茎泽兰和艾草抗性生理特性的影响. 西北植物学报, 36, 343-352.]
[21] Li Y, Li X, He YM, Xia Y, Zu YQ (2015). Effect and evaluation of enhanced UV-B radiation on interactions between plant and pathogen.Plant Physiology Journal, 51, 1557-1566. (in Chinese with English abstract)[李元, 李想, 何永美, 夏杨, 祖艳群 (2015). UV-B辐射增强对植物-病原菌互作体系的影响及评价. 植物生理学报, 51, 1557-1566.]
[22] Liu J, Li JM, Yu H, He WM, Yu FH, Sang WG, Liu GF, Dong M (2010). The relationship between functional traits and invasiveness of alien plants.Biodiversity Science, 18, 569-576. (in Chinese with English abstract)[刘建, 李钧敏, 余华, 何维明, 于飞海, 桑卫国, 刘国方, 董鸣 (2010). 植物功能性状与外来植物入侵. 生物多样性, 18, 569-576.]
[23] Lu RK (2000). Methods of Soil Agricultural Chemical Analysis. China Agriculture Scientech Press, Beijing. (in Chinese)[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.]
[24] Ni Y, Song C, Li JN (2015). Effect of enhanced ultraviolet-B radiation on epicuticular wax inArabidopsis thaliana. Acta Ecologica Sinica, 35, 1505-1512. (in Chinese with English abstract)[倪郁, 宋超, 李加纳 (2015). UV-B辐射增强对拟南芥表皮蜡质的影响. 生态学报, 35, 1505-1512.]
[25] Nijjer S, Rogers WE, Siemann E (2007). Negative plant-soil feedbacks may limit persistence of an invasive tree due to rapid accumulation of soil pathogens.Proceedings of the Royal Society B: Biological Sciences, 274, 2621-2627.
[26] Suchar VA, Robberecht R (2016). Integration and scaling of UV-B radiation effects on plants: From molecular interactions to whole plant responses. Ecology and Evolution, 1-19.
[27] van der Putten WH, Klironomos JN, Wardle DA (2007). Microbial ecology of biological invasions.The ISME Journal, 1, 28-37.
[28] Wan FH, Liu WX, Guo JY, Qiang S, Li BP, Wang JJ, Yang GQ, Niu HB, Gui FR, Huang WK, Jiang ZL, Wang WQ (2011). Invasive mechanism and control strategy of Ageratina adenophora (Sprengel). Scientia Sinica Vitae, 41, 13-21. (in Chinese)[万方浩, 刘万学, 郭建英, 强胜, 李保平, 王进军, 杨国庆, 牛红榜, 桂富荣, 黄文坤, 蒋智林, 王文琪 (2011). 外来植物紫茎泽兰的入侵机理与控制策略研究进展. 中国科学: 生命科学, 41, 13-21.]
[29] Wang H, Ma XC, Zhang L, Zou JW, Siemann E (2016). UV-B has larger negative impacts on invasive populations of Triadica sebifera but ozone impacts do not vary. Journal of Plant Ecology, 9, 61-68.
[30] Wang HX, Liu WZ (2011). Effects of enhanced UV-B radiation on leaf morphology and structure and pigment contents of Camptotheca acuminata. Chinese Agricultural Science Bulletin, 27(5), 209-213. (in Chinese with English abstract)[王海霞, 刘文哲 (2011). UV-B辐射增强对喜树叶片色素含量和形态结构的影响. 中国农学通报, 27(5), 209-213.]
[31] Williamson CE, Zepp RG, Lucas RM, Madronich S, Austin AT, Ballaré CL, Norval M, Sulzberger B, Bais AF, McKenzie RL, Robinson SA, Häder DP, Paul ND, Bornman JF (2014). Solar ultraviolet radiation in a changing climate.Nature Climate Change, 4, 434-441.
[32] Wu H, Ding JQ (2014). Recent progress in invasion ecology.Chinese Science Bulletin, 59, 438-448. (in Chinese)[吴昊, 丁建清 (2014). 入侵生态学最新研究动态. 科学通报, 59, 438-448.]
[33] Yang Q, Li B, Siemann E (2015). The effects of fertilization on plant-soil interactions and salinity tolerance of invasive Triadica sebifera. Plant and Soil, 394, 99-107.
[34] Zhang L, Zhang Y, Wang H, Zou JW, Siemann E (2013). Chinese tallow trees (Triadica sebifera) from the invasive range outperform those from the native range with an active soil community or phosphorus fertilization. PLOS ONE, 8, e74233. doi: 10.1371/journal.pone.0074233.
[35] Zou J, Roger WE, Siemann E (2007). Differences in morphological and physiological traits between native and invasive populations of Sapium sebiferum. Functional Ecology, 21, 721-730.
[36] Zou JW, Roger WE, DeWalt SJ, Siemann E (2006). The effect of Chinese tallow tree (Sapium sebiferum) ecotype on soil-plant system carbon and nitrogen processes. Oecologia, 150, 272-281.
[1] Zhang Xun, Yu Juanjuan, Wang Sizhu, Li Ying, Dai Shaojun. Research Advances in DREPP Gene Family in Plants [J]. Chin Bull Bot, 2019, 54(5): 582-595.
[2] Wang Xiaolong, Liu Fengzhi, Shi Xiangbin, Wang Xiaodi, Ji Xiaohao, Wang Zhiqiang, Wang Baoliang, Zheng Xiaocui, Wang Haibo. Evolution and Expression of NCED Family Genes in Vitis vinifera [J]. Chin Bull Bot, 2019, 54(4): 474-485.
[3] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[4] Du Kangxi, Shen Wenhui, Dong Aiwu. Advances in Epigenetic Regulation of Abiotic Stress Response in Plants [J]. Chin Bull Bot, 2018, 53(5): 581-593.
[5] Lingling Zhang, Dan Wu, Zijie Zhao, Liqun Zhao. Research Progress in Nitric Oxide Signaling Molecule in Plants [J]. Chin Bull Bot, 2017, 52(3): 337-345.
[6] Jinfei Zhang, Xia Li, Yinfeng Xie. The Function of Sucrose Nonfermenting-1 Related Protein Kinases in Stress Signaling [J]. Chin Bull Bot, 2017, 52(3): 346-357.
[7] Xue-Mei WANG, Bang-Guo YAN, Guang ZHAO, Liang-Tao SHI, Gang-Cai LIU, Hai-Dong FANG. Effects of microorganism on carbon, nitrogen and phosphorus of Dodonaea viscosa and the soils from different elevations in Yuanmou, Yunnan, China [J]. Chin J Plan Ecolo, 2017, 41(3): 311-324.
[8] Fang Zhou, Zhijie Zhang, Mu Liu, Xiaoyun Pan. Effects of nutrient levels on defense against specialist insects in an invasive alligator weed [J]. Biodiv Sci, 2017, 25(12): 1276-1284.
[9] Wang Ling, Guo Changkui, Ren Ding, Ma Hong. Molecular Evolution and Expression Analysis of the OsMIP1 Response to Abiotic Stress [J]. Chin Bull Bot, 2017, 52(1): 43-53.
[10] Li Jiao, Shufang Fu, Yali Zhang, Jiang Lu. U-box E3 Ubiquitin Ligases Regulate Stress Tolerance and Growth of Plants [J]. Chin Bull Bot, 2016, 51(5): 724-735.
[11] Jing Yan,Xiaoya Zhang,Xue Chen,Yue Wang,Fengjuan Zhang,Fanghao Wan. Effects of rhizosphere soil microorganisms and soil nutrients on competitiveness of Bidens pilosa with different native plants [J]. Biodiv Sci, 2016, 24(12): 1381-1389.
[12] Chao-Chen HU, Xue-Yan LIU, Yan-Bao LEI, Yun-Hong TAN, Peng ZHANG, Yu-Ping DONG, Cong-Qiang LIU. Foliar nitrogen and phosphorus stoichiometry of alien invasive plants and co-occurring natives in Xishuangbanna [J]. Chin J Plan Ecolo, 2016, 40(11): 1145-1153.
[13] Xunzhi Zhu,Qiang Li,Yangping Li,Hongbo Han,Keping Ma. Eupatorium adenophorum invasion alters soil bacterial community and diversity [J]. Biodiv Sci, 2015, 23(5): 665-672.
[14] Ding Ma, Ruiting Ju, Bo Li. Preference of Laelia coenosa for native and introduced populations of invasive Spartina alterniflora [J]. Biodiv Sci, 2015, 23(1): 101-108.
[15] LI Xiao-Rong, WEI Jin-Yu, CHEN Yun, CAO Ting-Ting, FENG Li, GU Mei-Zi, LI Lei. Functional diversity of soil microorganisms in Casuarina equisetifolia woodlands of different stand ages in Hainan Island [J]. Chin J Plan Ecolo, 2014, 38(6): 608-618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yuliang Chen;Feixiong Zhang;Guiyou Zhang*. Key Caspase-like Enzymes in Programmed Cell Death in Plants[J]. Chin Bull Bot, 2008, 25(05): 616 -623 .
[2] Zhu Ru-xing;Xiao Wen-qiao;Wang Man-si;Cao Ri-qiang and Pan Da-qian. Antibiotic Effect of the Main Constituents in the Onosma paniculatum Callus[J]. Chin Bull Bot, 1992, 9(03): 40 -43 .
[3] Zhu Zheng-ge;Pan Yan-yun;Zhang Zhao-duo and Liu Zhi-yi. The Extraction and Analysis of Mitochondriat DNA from Common Wheat[J]. Chin Bull Bot, 1995, 12(增刊): 42 -45 .
[4] Guan Jun-feng. Effect of Water Loss and Wilting of Harvested Spinach Leaves on Membrane Permeability and Lipid Perexidation[J]. Chin Bull Bot, 1992, 9(04): 38 -40 .
[5] Li Rong-hui;Zhang Shu-ying and Zhang Zhi-min. Embryo Culture of Viburnum lantana in Vitro[J]. Chin Bull Bot, 1989, 6(02): 104 -107 .
[6] Jian Ling-cheng. Germplasm Long-term Conservation Associated with Cryobiology in Plant[J]. Chin Bull Bot, 1988, 5(02): 65 -68 .
[7] Qing Wang;Zhulong Chan;Guozheng Qin;Shiping Tian*. Comparison of 2-DE Techniques for Improved Proteomic Analysis of Fruit Tissues[J]. Chin Bull Bot, 2009, 44(01): 107 -116 .
[8] Yongmei Wu, Xue Mao, Shujian Wang, Jinai Xue, Xiaoyun Jia, Jiping Wang, Zhirong Yang, Runzhi Li. Systematic Metabolic Engineering of ω-7 Fatty Acids in Plants[J]. Chin Bull Bot, 2011, 46(5): 575 -585 .
[9] Niu Zi-mian Fang Yao-ren. Study on the ABSCISIC Acid in Leaf of Spur-type Variety of Apple[J]. Chin Bull Bot, 1994, 11(02): 49 -50 .
[10] Hongmei Xi, Wenzhong Xu, Mi Ma. Advances in Biological Function of Arabidopsis Bifunctional Enzyme SAL1[J]. Chin Bull Bot, 2016, 51(3): 377 -386 .