Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (11): 1194-1204.DOI: 10.3724/SP.J.1258.2014.00115
Previous Articles Next Articles
WANG Xie1,XIANG Cheng-Hua1,2,LI Xian-Wei1,*(),WEN Dong-Ju1
Received:
2014-04-08
Accepted:
2014-09-07
Online:
2014-04-08
Published:
2014-11-17
Contact:
LI Xian-Wei
WANG Xie,XIANG Cheng-Hua,LI Xian-Wei,WEN Dong-Ju. How a winter wildfire affect plant community in subalpine grassland of western Sichuan, China?[J]. Chin J Plant Ecol, 2014, 38(11): 1194-1204.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00115
指标 Index | 数据类型 Data type | 单位 Unit | |
---|---|---|---|
样地的编号 Plot ID | 数值 Value | ||
冬季火处理 Treatment by a winter fire | 分类 Group | ||
样地的空间位置 Spatial location of plots | |||
经度 Longitude1) | 数值 Value | ||
纬度 Latitude1) | 数值 Value | ||
海拔 Elevation | 数值 Value | m | |
坡向 Slope aspect | 分类 Group | ||
坡位 Slope position2) | 分类 Group | ||
土壤理化性质 Soil physiochemical properties3) | |||
含水量 Water content | 数值 Value | g·kg-1 | |
容重 Bulk density | 数值 Value | g·cm-3 | |
最大持水量 Maximum water holding capacity | 数值 Value | g·kg-1 | |
毛管持水量 Capillary water holding capacity | 数值 Value | g·kg-1 | |
最小持水量 Minimum water holding capacity | 数值 Value | g·kg-1 | |
毛管孔隙度 Capillary porosity | 数值 Value | % | |
非毛管孔隙度 Non-capillary porosity | 数值 Value | % | |
总孔隙度 Total porosity | 数值 Value | % | |
酸碱度 pH | 数值 Value | ||
有机质含量 Organic matter content | 数值 Value | g·kg-1 | |
全氮含量 Total nitrogen content | 数值 Value | g·kg-1 | |
有效磷含量 Available phosphorus content | 数值 Value | mg·kg-1 | |
速效钾含量 Rapidly available potassium content | 数值 Value | mg·kg-1 | |
可溶性有机碳含量 Dissolved organic carbon content | 数值 Value | mg·kg-1 | |
可溶性有机氮含量Dissolved organic nitrogen content | 数值 Value | mg·kg-1 | |
土壤微生物学特性 Soil microbial properties3) | |||
微生物生物量碳 Microbial biomass carbon | 数值 Value | mg·kg-1 | |
微生物生物量氮 Microbial biomass nitrogen | 数值 Value | mg·kg-1 | |
β葡糖苷酶活性 β-glucoside enzyme activity | 数值 Value | μg·g-1·h-1 | |
酸性磷酸酶活性 Acid phosphatase activity | 数值 Value | μg·g-1·h-1 | |
碱性磷酸酶活性 Alkaline phosphatase activity | 数值 Value | μg·g-1·h-1 | |
脲酶活性 Urease activity | 数值 Value | mg·g-1·h-1 | |
蔗糖酶活性 Invertase activity | 数值 Value | mg·g-1·h-1 | |
蛋白酶活性 Proteinase activity | 数值 Value | mg·g-1·h-1 | |
过氧化氢酶活性 Catalase activity | 数值 Value | ml·g-1·h-1 | |
荧光素二乙酰酯酶活性 Fluorescein diacetate hydrolase activity | 数值 Value | μmol·g-1·h-1 | |
植物群落组成 Plant community composition4) | |||
植物群落结构 Plant community structure | |||
物种丰富度 Species richness | 数值 Value | ||
物种均匀度 Species evenness5) | 数值 Value | ||
物种多样性 Species diversity6) | 数值 Value | ||
可食豆科类生物量比例 Percentage of leguminous species group biomass | 数值 Value | % | |
毒草类生物量比例 Percentage of noxious species group biomass | 数值 Value | % | |
可食禾草类生物量比例 Percentage of germinal species group biomass | 数值 Value | % | |
可食莎草类生物量比例 Percentage of sedge species group biomass | 数值 Value | % | |
可食杂草类生物量比例 Percentage of forbs species group biomass | 数值 Value | % | |
样地生物量 Biomass of plot | 数值 Value | g·m-2 |
Table 1 Constructions of index systems of soil physiochemical properties, soil microbial properties, and plant community structure
指标 Index | 数据类型 Data type | 单位 Unit | |
---|---|---|---|
样地的编号 Plot ID | 数值 Value | ||
冬季火处理 Treatment by a winter fire | 分类 Group | ||
样地的空间位置 Spatial location of plots | |||
经度 Longitude1) | 数值 Value | ||
纬度 Latitude1) | 数值 Value | ||
海拔 Elevation | 数值 Value | m | |
坡向 Slope aspect | 分类 Group | ||
坡位 Slope position2) | 分类 Group | ||
土壤理化性质 Soil physiochemical properties3) | |||
含水量 Water content | 数值 Value | g·kg-1 | |
容重 Bulk density | 数值 Value | g·cm-3 | |
最大持水量 Maximum water holding capacity | 数值 Value | g·kg-1 | |
毛管持水量 Capillary water holding capacity | 数值 Value | g·kg-1 | |
最小持水量 Minimum water holding capacity | 数值 Value | g·kg-1 | |
毛管孔隙度 Capillary porosity | 数值 Value | % | |
非毛管孔隙度 Non-capillary porosity | 数值 Value | % | |
总孔隙度 Total porosity | 数值 Value | % | |
酸碱度 pH | 数值 Value | ||
有机质含量 Organic matter content | 数值 Value | g·kg-1 | |
全氮含量 Total nitrogen content | 数值 Value | g·kg-1 | |
有效磷含量 Available phosphorus content | 数值 Value | mg·kg-1 | |
速效钾含量 Rapidly available potassium content | 数值 Value | mg·kg-1 | |
可溶性有机碳含量 Dissolved organic carbon content | 数值 Value | mg·kg-1 | |
可溶性有机氮含量Dissolved organic nitrogen content | 数值 Value | mg·kg-1 | |
土壤微生物学特性 Soil microbial properties3) | |||
微生物生物量碳 Microbial biomass carbon | 数值 Value | mg·kg-1 | |
微生物生物量氮 Microbial biomass nitrogen | 数值 Value | mg·kg-1 | |
β葡糖苷酶活性 β-glucoside enzyme activity | 数值 Value | μg·g-1·h-1 | |
酸性磷酸酶活性 Acid phosphatase activity | 数值 Value | μg·g-1·h-1 | |
碱性磷酸酶活性 Alkaline phosphatase activity | 数值 Value | μg·g-1·h-1 | |
脲酶活性 Urease activity | 数值 Value | mg·g-1·h-1 | |
蔗糖酶活性 Invertase activity | 数值 Value | mg·g-1·h-1 | |
蛋白酶活性 Proteinase activity | 数值 Value | mg·g-1·h-1 | |
过氧化氢酶活性 Catalase activity | 数值 Value | ml·g-1·h-1 | |
荧光素二乙酰酯酶活性 Fluorescein diacetate hydrolase activity | 数值 Value | μmol·g-1·h-1 | |
植物群落组成 Plant community composition4) | |||
植物群落结构 Plant community structure | |||
物种丰富度 Species richness | 数值 Value | ||
物种均匀度 Species evenness5) | 数值 Value | ||
物种多样性 Species diversity6) | 数值 Value | ||
可食豆科类生物量比例 Percentage of leguminous species group biomass | 数值 Value | % | |
毒草类生物量比例 Percentage of noxious species group biomass | 数值 Value | % | |
可食禾草类生物量比例 Percentage of germinal species group biomass | 数值 Value | % | |
可食莎草类生物量比例 Percentage of sedge species group biomass | 数值 Value | % | |
可食杂草类生物量比例 Percentage of forbs species group biomass | 数值 Value | % | |
样地生物量 Biomass of plot | 数值 Value | g·m-2 |
指标1) Variable1) | 火烧区域2) Burned area2) | 未火烧区域 Unburned area | F1, 343) F1, 343) | p p |
---|---|---|---|---|
含水量 Water content | 196.15 ± 45.73 | 211.34 ± 76.72 | 0.22 | 0.64 |
容重 Bulk density | 1.02 ± 0.04 | 1.00 ± 0.07 | 0.84 | 0.37 |
最大持水量 Maximum water holding capacity | 623.81 ± 64.42 | 648.85 ± 68.47 | 1.28 | 0.27 |
毛管持水量 Capillary water holding capacity | 400.97 ± 47.17 | 476.85 ± 66.24 | 15.68 | <0.01 |
最小持水量 Minimum water holding capacity | 241.99 ± 67.56 | 264.36 ± 86.25 | 0.75 | 0.39 |
毛管孔隙度 Capillary porosity | 22.64 ± 5.27 | 17.33 ± 4.85 | 9.89 | <0.01 |
非毛管孔隙度 Non-capillary porosity | 40.81 ± 4.19 | 47.46 ± 4.52 | 20.93 | <0.01 |
总孔隙度 Total porosity | 63.45 ± 4.87 | 64.79 ± 6.12 | 0.53 | 0.47 |
酸碱度 pH | 7.06 ± 0.49 | 6.73 ± 0.39 | 4.95 | 0.03 |
有机质含量 Organic matter content | 135.86 ± 31.89 | 96.74 ± 22.70 | 18.11 | <0.01 |
全氮含量 Total nitrogen content | 4.46 ± 0.69 | 3.78 ± 0.45 | 1.18 | 0.29 |
有效磷含量 Available phosphorus content | 499.76 ± 406.52 | 141.26 ± 75.81 | 0.20 | 0.66 |
速效钾含量 Rapidly available potassium content | 514.92 ± 93.05 | 436.56 ± 104.26 | 5.53 | 0.02 |
可溶性有机碳含量 Dissolved organic carbon content | 413.50 ± 327.21 | 324.7 ± 109.73 | < 0.01 | 0.97 |
可溶性有机氮含量 Dissolved organic nitrogen content | 31.54 ± 24.05 | 37.61 ± 20.38 | 2.13 | 0.15 |
微生物生物量碳 Microbial biomass carbon | 1 301.67 ± 145.01 | 592.92 ± 333.55 | 45.89 | <0.01 |
微生物生物量氮 Microbial biomass nitrogen | 52.19 ± 20.22 | 61.96 ± 29.62 | 1.39 | 0.25 |
β葡糖苷酶活性 β-glucoside enzyme activity | 9.12 ± 1.94 | 7.24 ± 2.46 | 6.49 | 0.02 |
酸性磷酸酶活性 Acid phosphatase activity | 16.58 ± 7.85 | 13.26 ± 3.81 | 0.73 | 0.40 |
碱性磷酸酶活性 Alkaline phosphatase activity | 11.20 ± 3.45 | 7.55 ± 3.53 | 12.74 | <0.01 |
荧光素二乙酰酯酶活性 Fluorescein diacetate hydrolase activity | 1.26 ± 0.60 | 1.21 ± 0.39 | < 0.01 | 0.96 |
脲酶活性 Urease activity | 0.30 ± 0.15 | 0.14 ± 0.09 | 12.90 | <0.01 |
蔗糖酶活性 Invertase activity | 60.39 ± 16.07 | 50.66 ± 7.53 | 3.60 | 0.07 |
蛋白酶活性 Proteinase activity | 1.08 ± 0.28 | 0.96 ± 0.24 | 2.02 | 0.16 |
过氧化氢酶活性 Catalase activity | 1.39 ± 0.11 | 1.28 ± 0.10 | 10.45 | <0.01 |
物种丰富度 Richness of species | 13.50 ± 3.68 | 13.33 ± 1.88 | 0.05 | 0.83 |
物种均匀度 Evenness of species | 0.74 ± 0.13 | 0.73 ± 0.08 | 0.07 | 0.79 |
物种多样性 Diversity of species | 1.92 ± 0.46 | 1.89 ± 0.24 | 0.05 | 0.82 |
可食豆科类生物量比例 Percentage of leguminous species group biomass | 4.74 ± 7.78 | 3.04 ± 2.86 | 0.07 | 0.80 |
毒草类生物量比例 Percentage of noxious species group biomass | 2.57 ± 3.86 | 0.79 ± 0.87 | 2.19 | 0.15 |
可食禾草类生物量比例 Percentage of germinal species group biomass | 34.38 ± 16.79 | 43.45 ± 24.73 | 1.66 | 0.21 |
可食莎草类生物量比例 Percentage of sedge species group biomass | 6.41 ± 5.86 | 4.46 ± 5.91 | 0.95 | 0.34 |
可食杂草类生物量比例 Percentage of forbs species group biomass | 51.91 ± 20.39 | 48.27 ± 24.79 | 0.23 | 0.63 |
样地生物量 Biomass of plot | 155.79 ± 70.84 | 262.87 ± 130.57 | 9.11 | <0.01 |
Table 2 Summary of the effects of winter fire treatment on soil physiochemical properties, soil microbial properties, and plant community structure (mean ± SD)
指标1) Variable1) | 火烧区域2) Burned area2) | 未火烧区域 Unburned area | F1, 343) F1, 343) | p p |
---|---|---|---|---|
含水量 Water content | 196.15 ± 45.73 | 211.34 ± 76.72 | 0.22 | 0.64 |
容重 Bulk density | 1.02 ± 0.04 | 1.00 ± 0.07 | 0.84 | 0.37 |
最大持水量 Maximum water holding capacity | 623.81 ± 64.42 | 648.85 ± 68.47 | 1.28 | 0.27 |
毛管持水量 Capillary water holding capacity | 400.97 ± 47.17 | 476.85 ± 66.24 | 15.68 | <0.01 |
最小持水量 Minimum water holding capacity | 241.99 ± 67.56 | 264.36 ± 86.25 | 0.75 | 0.39 |
毛管孔隙度 Capillary porosity | 22.64 ± 5.27 | 17.33 ± 4.85 | 9.89 | <0.01 |
非毛管孔隙度 Non-capillary porosity | 40.81 ± 4.19 | 47.46 ± 4.52 | 20.93 | <0.01 |
总孔隙度 Total porosity | 63.45 ± 4.87 | 64.79 ± 6.12 | 0.53 | 0.47 |
酸碱度 pH | 7.06 ± 0.49 | 6.73 ± 0.39 | 4.95 | 0.03 |
有机质含量 Organic matter content | 135.86 ± 31.89 | 96.74 ± 22.70 | 18.11 | <0.01 |
全氮含量 Total nitrogen content | 4.46 ± 0.69 | 3.78 ± 0.45 | 1.18 | 0.29 |
有效磷含量 Available phosphorus content | 499.76 ± 406.52 | 141.26 ± 75.81 | 0.20 | 0.66 |
速效钾含量 Rapidly available potassium content | 514.92 ± 93.05 | 436.56 ± 104.26 | 5.53 | 0.02 |
可溶性有机碳含量 Dissolved organic carbon content | 413.50 ± 327.21 | 324.7 ± 109.73 | < 0.01 | 0.97 |
可溶性有机氮含量 Dissolved organic nitrogen content | 31.54 ± 24.05 | 37.61 ± 20.38 | 2.13 | 0.15 |
微生物生物量碳 Microbial biomass carbon | 1 301.67 ± 145.01 | 592.92 ± 333.55 | 45.89 | <0.01 |
微生物生物量氮 Microbial biomass nitrogen | 52.19 ± 20.22 | 61.96 ± 29.62 | 1.39 | 0.25 |
β葡糖苷酶活性 β-glucoside enzyme activity | 9.12 ± 1.94 | 7.24 ± 2.46 | 6.49 | 0.02 |
酸性磷酸酶活性 Acid phosphatase activity | 16.58 ± 7.85 | 13.26 ± 3.81 | 0.73 | 0.40 |
碱性磷酸酶活性 Alkaline phosphatase activity | 11.20 ± 3.45 | 7.55 ± 3.53 | 12.74 | <0.01 |
荧光素二乙酰酯酶活性 Fluorescein diacetate hydrolase activity | 1.26 ± 0.60 | 1.21 ± 0.39 | < 0.01 | 0.96 |
脲酶活性 Urease activity | 0.30 ± 0.15 | 0.14 ± 0.09 | 12.90 | <0.01 |
蔗糖酶活性 Invertase activity | 60.39 ± 16.07 | 50.66 ± 7.53 | 3.60 | 0.07 |
蛋白酶活性 Proteinase activity | 1.08 ± 0.28 | 0.96 ± 0.24 | 2.02 | 0.16 |
过氧化氢酶活性 Catalase activity | 1.39 ± 0.11 | 1.28 ± 0.10 | 10.45 | <0.01 |
物种丰富度 Richness of species | 13.50 ± 3.68 | 13.33 ± 1.88 | 0.05 | 0.83 |
物种均匀度 Evenness of species | 0.74 ± 0.13 | 0.73 ± 0.08 | 0.07 | 0.79 |
物种多样性 Diversity of species | 1.92 ± 0.46 | 1.89 ± 0.24 | 0.05 | 0.82 |
可食豆科类生物量比例 Percentage of leguminous species group biomass | 4.74 ± 7.78 | 3.04 ± 2.86 | 0.07 | 0.80 |
毒草类生物量比例 Percentage of noxious species group biomass | 2.57 ± 3.86 | 0.79 ± 0.87 | 2.19 | 0.15 |
可食禾草类生物量比例 Percentage of germinal species group biomass | 34.38 ± 16.79 | 43.45 ± 24.73 | 1.66 | 0.21 |
可食莎草类生物量比例 Percentage of sedge species group biomass | 6.41 ± 5.86 | 4.46 ± 5.91 | 0.95 | 0.34 |
可食杂草类生物量比例 Percentage of forbs species group biomass | 51.91 ± 20.39 | 48.27 ± 24.79 | 0.23 | 0.63 |
样地生物量 Biomass of plot | 155.79 ± 70.84 | 262.87 ± 130.57 | 9.11 | <0.01 |
Fig. 1 Venn diagram representing the partition of the variation in a response matrix of plant community composition among four sets of explanatory variables (winter fire treatment, spatial location, soil physiochemical properties, and soil microbial properties). PP, spatial location; SM, soil microbial properties; SP, soil physiochemical properties; TT, winter fire treatment; VT, plant community composition. The rectangle represents the total inertia of the Canonical Correspondence Analysis (CCA) ordination (5.58), or 100% of the variation in plant community composition. The sum of the canonical eigenvalues is 5.04, which means that traffic intensity accounts for 90.33% of the variation in plant community composition by these four explanatory variables, of which 5.84% is constrained by winter fire, 44.07% is constrained by soil microbial properties, 49.98% is constrained by soil physiochemical properties, and 27.59% is constrained by spatial location.
Fig. 2 The left panel shows the conceptual model of pathways via which winter fire may affect plant community composition and diversity. The right panel shows the models for the five alternative hypotheses outlying how winter fire may affect plant community structure. PP, spatial location; SM, soil microbial properties; SP, soil physiochemical properties; TT, winter fire treatment; VT, plant community composition. The five hypotheses are (1) winter fire affects plant community structure directly; (2) winter fire alters soil physiochemical properties, which directly affects plant community structure; (3) winter fire alters soil microbial properties, which directly affects plant community structure; (4) winter fire changes soil physiochemical properties, which affects plant community structure indirectly by modifying soil microbial properties; (5) winter fire changes soil microbial properties, which affects plant community structure indirectly by modifying soil physiochemical properties.
Fig. 3 Final model results of structural equation modeling analysis. A (χ2 = 4.6, df = 5, p = 0.469) and B (χ2 = 2.7, df = 5, p = 0.745) have the best goodness of fit, and model B is better than model A. Square boxes display variables included in the model. PD, plant community structure; PP, spatial location; SM, soil microbial property; SP, soil physiochemical property; TT, winter fire treatment (burned or unburned). Before the structural equation model is applied, non-metric multidimensional scaling is used to reduce the dimensionality of PD, PP, SM and SP. Arrows indicate significant effects (p < 0.05). Values associated with arrows represent standardized path coefficients. Dashed arrows represent that effects are not significant. R2 values associated with response variables indicate the proportion of variation explainable by relationships with other variables.
[27] |
3) [王谢, 向成华, 操国兴, 李贤伟, 文冬菊 ( 2014a). 冬季火烧对川西亚高山草甸土壤理化性质的影响. 草业科学, 31, 811-817.]
DOI URL |
[28] |
Wang X, Xiang CH, Li XW, Wen DJ ( 2014 b). Short-term effects of a winter wildfire on diversity and intensity of soil microbial function in the subalpine grassland of western Sichuan, China. Chinese Journal of Plant Ecology, 38, 468-476. (in Chinese with English abstract)
DOI URL |
4) [王谢, 向成华, 李贤伟, 文冬菊 ( 2014b). 冬季火对川西亚高山草地土壤微生物功能多样性及其强度的短期影响. 植物生态学报, 38, 468-476.]
DOI URL |
|
[29] | Wang Z ( 2012). Influences of Warming and N Addition on Plant Community, Soil and Ecosystem C Exchange in Inner Mongolia Desert Steppe. PhD dissertation, Inner Mongolia Agricultural University, Hohhot. 10-44. (in Chinese) |
[ 王珍 ( 2012). 增温和氮素添加对内蒙古短花针茅荒漠草原植物群落、土壤及生态系统碳交换的影响. 博士学位论文, 内蒙古农业大学, 呼和浩特. 10-44.] | |
[30] |
Xia J, Wan S ( 2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439.
DOI URL |
[1] | Annals Compiling Committee of Daofu County in Sichuan Province ( 1997). Daofu County Annals. Sichuan People Press, Chengdu. (in Chinese) |
[四川省道孚县志编纂委员会 ( 1997). 道孚县志. 四川人民出版社, 成都.] | |
[2] |
Augustine DJ, Brewer P, Blumenthal DM, Derner JD, von Fischer JC ( 2014). Prescribed fire, soil inorganic nitrogen dynamics, and plant responses in a semiarid grassland. Journal of Arid Environments, 104, 59-66.
DOI URL |
[3] |
Baer SG, Blair JM, Collins SL, Knapp AK ( 2003). Soil resources regulate productivity and diversity in newly established tallgrass prairie. Ecology, 84, 724-735.
DOI URL |
[4] | Bentler PM, Chou CP ( 1987). Practical issues in structural modeling. Sociological Methods & Research, 16, 78-117. |
[5] |
Blair JM ( 1997). Fire, N availability, and plant response in grasslands: a test of the transient maxima hypothesis. Ecology, 78, 2359-2368.
DOI URL |
[6] |
Certini G ( 2005). Effects of fire on properties of forest soils: a review. Oecologia, 143, 1-10.
DOI URL |
[7] |
Choromanska U, DeLuca TH ( 2002). Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biology & Biochemistry, 34, 263-271.
DOI URL |
[8] |
da Silva DM, Batalha MA ( 2008). Soil-vegetation relationships in cerrados under different fire frequencies. Plant and Soil, 311, 87-96.
DOI URL |
[9] |
DeBano LF, Conrad CE ( 1978). The effect of fire on nutrients in a chaparral ecosystem. Ecology, 59, 489-497.
DOI URL |
[10] |
Esque TC, Kaye JP, Eckert SE, DeFalco LA, Tracy CR ( 2010). Short-term soil inorganic N pulse after experimental fire alters invasive and native annual plant production in a Mojave Desert shrubland. Oecologia, 164, 253-263.
DOI URL |
[11] |
Hartnett DC, Potgieter AF, Wilson GWT ( 2004). Fire effects on mycorrhizal symbiosis and root system architecture in southern African savanna grasses. African Journal of Ecology, 42, 328-337.
DOI URL |
[12] |
LeBauer DS, Treseder KK ( 2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI URL |
[13] |
Lowe PN, Lauenroth WK, Burke IC ( 2003). Effects of nitrogen availability on competition between Bromus tectorum and Bouteloua gracilis. Plant Ecology, 167, 247-254.
DOI URL |
[14] |
Medvedeff CA, Inglett KS, Kobziar LN, Inglett PW ( 2013). Impacts of fire on microbial carbon cycling in subtropical wetlands. Fire Ecology, 9, 21-37.
DOI URL |
[15] |
Milberg P, Lamont BB, Pérez-Fernández MA ( 1999). Survival and growth of native and exotic composites in response to a nutrient gradient. Plant Ecology, 145, 125-132.
DOI URL |
[16] |
Milchunas DT, Lauenroth WK ( 1995). Inertia in plant community structure: state changes after cessation of nutrient- enrichment stress. Ecological Applications, 5, 452-458.
DOI URL |
[17] |
Nardoto GB, Bustamante MMDC ( 2003). Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesquisa Agropecuária Brasileira, 38, 955-962.
DOI URL |
[18] |
Neary DG, Klopatek CC, DeBano LF, Ffolliott PF ( 1999). Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122, 51-71.
DOI URL |
[19] |
Paschke MW, McLendon T, Redente EF ( 2000). Original articles: nitrogen availability and old-field succession in a shortgrass steppe. Ecosystems, 3, 144-158.
DOI URL |
[20] |
Prieto-Fernandez A, Villar MC, Carballas M, Carballas T ( 1993). Short-term effects of a wildfire on the nitrogen status and its mineralization kinetics in an Atlantic forest soil. Soil Biology & Biochemistry, 25, 1657-1664.
DOI URL |
[21] |
Raison RJ ( 1979). Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant and Soil, 51, 73-108.
DOI URL |
[22] | Reich PB, Peterson DW, Wedin DA, Wrage K ( 2001). Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology, 82, 1703-1719. |
[23] |
Safford HD, Harrison S ( 2004). Fire effects on plant diversity in serpentine vs. sandstone chaparral. Ecology, 85, 539-548.
DOI URL |
[24] |
Vázquez FJ, Acea MJ, Carballas T ( 1993). Soil microbial populations after wildfire. FEMS Microbiology Ecology, 13, 93-103.
DOI URL |
[25] |
Veen GF, Olff H, Duyts H, van der Putten WH ( 2010). Vertebrate herbivores influence soil nematodes by modifying plant communities. Ecology, 91, 828-835.
DOI URL |
[26] |
Wang X, Xiang CH, Li XW, Wen DJ ( 2013). Effects of a winter wildfire on plant community structure and forage quality in subalpine grassland of western Sichuan, China. Chinese Journal of Plant Ecology, 37, 922-932. (in Chinese with English abstract)
DOI URL |
2) [王谢, 向成华, 李贤伟, 文冬菊 ( 2013). 冬季火对川西亚高山草地植物群落结构和牧草质量的影响. 植物生态学报, 37, 922-932.]
DOI URL |
|
[31] |
Zhang YM, Wu N, Zhou GY, Bao WK ( 2005). Changes in enzyme activities of spruce ( Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Applied Soil Ecology, 30, 215-225.
DOI URL |
[27] |
Wang X, Xiang CH, Cao GX, Li XW, Wen DJ ( 2014a). Effects of winter wildfire on soil physical and chemical properties of western Sichuan subalpine grassland. Pratacultural Science, 31, 811-817. (in Chinese with English abstract)
DOI URL |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Yang ZHAO, Jun-Wei LUAN, Yi WANG, Huai YANG, Shi-Rong LIU. Effects of simulated drought and phosphorus addition on nitrogen mineralization in tropical lowland rain forests [J]. Chin J Plant Ecol, 2022, 46(1): 102-113. |
[3] | HU Zong-Da, LIU Shi-Rong, LUO Ming-Xia, HU Jing, LIU Xing-Liang, LI Ya-Fei, YU Hao, OU Ding-Hua. Characteristics of soil carbon and nitrogen contents and enzyme activities in sub-alpine secondary forests with different successional stages in Western Sichuan, China [J]. Chin J Plant Ecol, 2020, 44(9): 973-985. |
[4] | XIA Jian-Yang, LU Rui-Ling, ZHU Chen, CUI Er-Qian, DU Ying, HUANG Kun, SUN Bao-Yu. Response and adaptation of terrestrial ecosystem processes to climate warming [J]. Chin J Plant Ecol, 2020, 44(5): 494-514. |
[5] | ZHANG Yang-Jian, ZHU Jun-Tao, SHEN Ruo-Nan, WANG Li. Research progress on the effects of grazing on grassland ecosystem [J]. Chin J Plant Ecol, 2020, 44(5): 553-564. |
[6] | Yong BAO, Ying GAO, Xiao-Min ZENG, Ping YUAN, You-Tao SI, Yue-Min CHEN, Ying-Yi CHEN. Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China [J]. Chin J Plant Ecol, 2018, 42(4): 508-516. |
[7] | Chun-Yan PI, Xin LIU, Zhe WANG, Wei-Kai BAO. Bryophyte-cyanobacteria symbioses and their nitrogen fixation capacity—A review [J]. Chin J Plan Ecolo, 2018, 42(4): 407-418. |
[8] | XU Hao, HU Chao-Chen, XU Shi-Qi, SUN Xin-Chao, LIU Xue-Yan. Effects of exotic plant invasion on soil nitrogen availability [J]. Chin J Plant Ecol, 2018, 42(11): 1120-1130. |
[9] | WANG Xie,XIANG Cheng-Hua,LI Xian-Wei,WEN Dong-Ju. Short-term effects of a winter wildfire on diversity and intensity of soil microbial function in the subalpine grassland of western Sichuan, China [J]. Chin J Plant Ecol, 2014, 38(5): 468-476. |
[10] | WANG Xie,XIANG Cheng-Hua,LI Xian-Wei,WEN Dong-Ju. Effects of a winter wildfire on plant community structure and forage quality in subalpine grassland of western Sichuan, China [J]. Chin J Plant Ecol, 2013, 37(10): 922-932. |
[11] | Liao Lan-yu, Ding Ming-mao, Zhang Zhu-ping, Yi Wei-min, Guo Gui-zhong, Huang Zhong-liang. Root Biomass and its Nitrogen Dynamic of Some Communities in Dinghushan [J]. Chin J Plan Ecolo, 1993, 17(1): 56-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn