Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (11): 1095-1112.DOI: 10.17521/cjpe.2020.0166
• Review • Next Articles
TANG Jin-Qi1, GUO Xiao-Cheng1, LU Xin-Yu1, LIU Ming-Chao1, ZHANG Hai-Yan1, FENG Yu-Long1,*(), KONG De-Liang2,*(
)
Received:
2020-05-25
Accepted:
2020-07-14
Online:
2020-11-20
Published:
2021-01-05
Contact:
FENG Yu-Long,KONG De-Liang
Supported by:
TANG Jin-Qi, GUO Xiao-Cheng, LU Xin-Yu, LIU Ming-Chao, ZHANG Hai-Yan, FENG Yu-Long, KONG De-Liang. A review on the effects of invasive plants on mycorrhizal fungi of native plants and their underlying mechanisms[J]. Chin J Plant Ecol, 2020, 44(11): 1095-1112.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0166
Fig. 1 A conceptual diagram of the internal structures of arbuscular mycorrhizae in root tissues (adapted from Johnson et al., 2003). A, arbuscules; C, coils; IH, intraradical hyphae; V, vesicles.
Fig. 2 A conceptual diagram of the mycorrhizal fungal network structure (adapted from de Vries & Wallenstein, 2017). Circles with different colors indicate different modules (i.e., different mycorrhizal fungal communities). Module connections are indicated by red circles. Thicker lines indicate stronger mycorrhizal fungi connections. The black lines indicate positive correlations, and the blue lines indicate negative correlations.
Fig. 3 Conceptual illustration showing how invasive plants affect the symbiotic mycorrhizal fungi in native plant roots (adapted from Grove et al., 2017a). Solid arrows indicate change; dotted arrows indicate possible relationships.
生态机制 Mechanism of ecology | 举例 Example | 参考文献 Reference |
---|---|---|
物种竞争 Species competition | 与农作物(如高粱(Sorghum bicolor)、玉米(Zea mays))相比, 入侵植物Parthenium hysterophorus具有快速早期生长的能力。 Compared with crops (such as Sorghum bicolor and Zea mays), the invasive plant Parthenium hysterophorus can grow much more rapidly in their early stage. | |
比较夏威夷19对入侵植物和本地植物的资源利用效率, 发现入侵植物具有较高的碳同化率、光利用效率、瞬时氮利用效率和瞬时能量利用效率。 Comparing the resource utilization efficiency for 19 paired invasive-native plants in Hawaii, invasive plants are observed to have higher carbon assimilation rate, light use efficiency, instantaneous nitrogen and energy use efficiency. | ||
比较47对入侵植物和非入侵植物对草食性动物的抵抗能力及养分含量发现, 入侵植物拥有更高的叶氮含量, 受到食草动物的损伤较小。 Comparisons among 47 paired invasive and non-invasive plants for leaf herbivore-resistance and nutrient content show that invasive plants have higher leaf nitrogen content and less damage by herbivores. | ||
比对125种入侵植物和196种非入侵植物的生理性状发现, 入侵植物在生长率、养分分配及抗逆性更有优势。 Comparing physiological traits of 125 invasive with plants 196 non-invasive plants show that invasive plants have more advantages in growth rate, nutrient allocation and stress resistance. | ||
外来植物Solanum carolinense具有较强的抗寒能力和无性繁殖能力。 Exotic plant, Solanum carolinense, has strong ability for cold resistance and asexual reproduction. | ||
气候变暖及氮沉降的增加可以增强入侵植物Solidago canadensis叶片的资源获取能力。 Climate warming and increased nitrogen deposition can enhance leaf resource acquisition of an invasive plant, Solidago canadensis. | ||
化感物质 Allelochemical | 入侵植物白羊草(Bothriochloa ischaemum)的渗滤液抑制本地植物Andropogon gerardii和Schizachyrium scoparium发芽及生长。 The leachate of an invasive plant, Bothriochloa ischaemum, inhibits germination and growth of the native plants, Andropogon gerardii and Schizachyrium scoparium. | |
入侵植物水烛(Typha angustifolia)根系分泌的酚类物质抑制了本地植物Bolboschoenus fluviatilis的生长发育。 Phenolic compounds secreted by roots of an invasive plant, Typha angustifolia, inhibit growth and development of a native plant, Bolboschoenus fluviatilis. | ||
Solidago canadensis入侵分泌的化感物质抑制了本地植物莴苣(Lactuca sativa)种子萌发和幼苗生长。 Allelochemicals secreted by the invasion of Solidago canadensis inhibit seed germination and seedling growth of a native plant, Lactuca sativa. | ||
外来植物Solanum carolinense含有龙葵碱及草酸盐结晶。 The exotic plant Solanum carolinense contains solanine and oxalate crystals. | ||
Parthenium hysterophorus可以分泌帕台单宁、咖啡酸、香草酸等化感物质帮助自身入侵。 Parthenium hysterophorus can secrete parthenin, caffeic acid, vanillic acid and other allelochemicals to facilitate its invasion. | ||
土壤养分变化 Soil nutrient variation | 氮沉降会增强S. canadensis入侵初期分泌的化感物质对本地植物莴苣种子萌发和幼苗生长的抑制程度。 Nitrogen deposition can enhance the inhibition of the allelochemicals secreted by S. canadensis at its initial invasive stage on seed germination and seedling growth of a native plant, Lactuca sativa. | |
分析94篇文章发现, 入侵植物增大了植物、土壤和土壤微生物中的碳和氮库大小。 Analysis of 94 published papers show that invasive plants increase the size of carbon and nitrogen pools in plants, soils and soil microorganisms. | ||
与本地植物Artemisia californica、Salvia mellifera、Salvia apiana、锦鸡儿(Calochortus splendens)和Dichelostemma capitatum相比, 外来植物Centaurea stoebe、Hirschfeldia incana和Bromus madritensis可以通过加快凋落物分解改善土壤养分。 Compared with native plants such as Artemisia californica, Salvia mellifera, Salvia apiana, Calochortus splendens and Dichelostemma capitatum, exotic plants, like Centaurea stoebe, Hirschfeldia incana and Bromus madritensis, can increase soil nutrient level by increasing litter decomposition. | ||
入侵植物Mikania micrantha分泌的化感物质绿原酸和β-石竹烯加快了土壤有机氮的矿化过程。 Allelochemicals secreted by the invasive plant, Mikania micrantha, such as chlorogenic acid and β-caryophyllene accelerate mineralization of soil organic nitrogen. | ||
入侵植物通过凋落物改变了根际微生物土壤群落和养分循环, 形成植物-土壤正反馈调节。 Invasive plants can form a positive plant-soil feedback via its litter decomposition which could change rhizosphere soil microbial communities and nutrient cycling. | ||
杂草Conyza canadensis入侵的土壤中有效氮和有机质含量增加。 The content of available nitrogen and organic matter increases in the soil invaded by Conyza canadensis. | ||
与非入侵地土壤相比, Eupatorium catarium入侵后土壤氮含量提高4.32 mg·kg-1。 Compared with non-invasive soils, soil nitrogen content increases by 4.32 mg·kg-1 after invasion by Eupatorium catarium. | ||
Ambrosia trifida在入侵地的土壤-植物反馈高于原产地。 Ambrosia trifida has a greater plant-soil feedback in invaded ranges than that in its native ranges. |
Table 2 Ecological mechanisms of alien plant invasion
生态机制 Mechanism of ecology | 举例 Example | 参考文献 Reference |
---|---|---|
物种竞争 Species competition | 与农作物(如高粱(Sorghum bicolor)、玉米(Zea mays))相比, 入侵植物Parthenium hysterophorus具有快速早期生长的能力。 Compared with crops (such as Sorghum bicolor and Zea mays), the invasive plant Parthenium hysterophorus can grow much more rapidly in their early stage. | |
比较夏威夷19对入侵植物和本地植物的资源利用效率, 发现入侵植物具有较高的碳同化率、光利用效率、瞬时氮利用效率和瞬时能量利用效率。 Comparing the resource utilization efficiency for 19 paired invasive-native plants in Hawaii, invasive plants are observed to have higher carbon assimilation rate, light use efficiency, instantaneous nitrogen and energy use efficiency. | ||
比较47对入侵植物和非入侵植物对草食性动物的抵抗能力及养分含量发现, 入侵植物拥有更高的叶氮含量, 受到食草动物的损伤较小。 Comparisons among 47 paired invasive and non-invasive plants for leaf herbivore-resistance and nutrient content show that invasive plants have higher leaf nitrogen content and less damage by herbivores. | ||
比对125种入侵植物和196种非入侵植物的生理性状发现, 入侵植物在生长率、养分分配及抗逆性更有优势。 Comparing physiological traits of 125 invasive with plants 196 non-invasive plants show that invasive plants have more advantages in growth rate, nutrient allocation and stress resistance. | ||
外来植物Solanum carolinense具有较强的抗寒能力和无性繁殖能力。 Exotic plant, Solanum carolinense, has strong ability for cold resistance and asexual reproduction. | ||
气候变暖及氮沉降的增加可以增强入侵植物Solidago canadensis叶片的资源获取能力。 Climate warming and increased nitrogen deposition can enhance leaf resource acquisition of an invasive plant, Solidago canadensis. | ||
化感物质 Allelochemical | 入侵植物白羊草(Bothriochloa ischaemum)的渗滤液抑制本地植物Andropogon gerardii和Schizachyrium scoparium发芽及生长。 The leachate of an invasive plant, Bothriochloa ischaemum, inhibits germination and growth of the native plants, Andropogon gerardii and Schizachyrium scoparium. | |
入侵植物水烛(Typha angustifolia)根系分泌的酚类物质抑制了本地植物Bolboschoenus fluviatilis的生长发育。 Phenolic compounds secreted by roots of an invasive plant, Typha angustifolia, inhibit growth and development of a native plant, Bolboschoenus fluviatilis. | ||
Solidago canadensis入侵分泌的化感物质抑制了本地植物莴苣(Lactuca sativa)种子萌发和幼苗生长。 Allelochemicals secreted by the invasion of Solidago canadensis inhibit seed germination and seedling growth of a native plant, Lactuca sativa. | ||
外来植物Solanum carolinense含有龙葵碱及草酸盐结晶。 The exotic plant Solanum carolinense contains solanine and oxalate crystals. | ||
Parthenium hysterophorus可以分泌帕台单宁、咖啡酸、香草酸等化感物质帮助自身入侵。 Parthenium hysterophorus can secrete parthenin, caffeic acid, vanillic acid and other allelochemicals to facilitate its invasion. | ||
土壤养分变化 Soil nutrient variation | 氮沉降会增强S. canadensis入侵初期分泌的化感物质对本地植物莴苣种子萌发和幼苗生长的抑制程度。 Nitrogen deposition can enhance the inhibition of the allelochemicals secreted by S. canadensis at its initial invasive stage on seed germination and seedling growth of a native plant, Lactuca sativa. | |
分析94篇文章发现, 入侵植物增大了植物、土壤和土壤微生物中的碳和氮库大小。 Analysis of 94 published papers show that invasive plants increase the size of carbon and nitrogen pools in plants, soils and soil microorganisms. | ||
与本地植物Artemisia californica、Salvia mellifera、Salvia apiana、锦鸡儿(Calochortus splendens)和Dichelostemma capitatum相比, 外来植物Centaurea stoebe、Hirschfeldia incana和Bromus madritensis可以通过加快凋落物分解改善土壤养分。 Compared with native plants such as Artemisia californica, Salvia mellifera, Salvia apiana, Calochortus splendens and Dichelostemma capitatum, exotic plants, like Centaurea stoebe, Hirschfeldia incana and Bromus madritensis, can increase soil nutrient level by increasing litter decomposition. | ||
入侵植物Mikania micrantha分泌的化感物质绿原酸和β-石竹烯加快了土壤有机氮的矿化过程。 Allelochemicals secreted by the invasive plant, Mikania micrantha, such as chlorogenic acid and β-caryophyllene accelerate mineralization of soil organic nitrogen. | ||
入侵植物通过凋落物改变了根际微生物土壤群落和养分循环, 形成植物-土壤正反馈调节。 Invasive plants can form a positive plant-soil feedback via its litter decomposition which could change rhizosphere soil microbial communities and nutrient cycling. | ||
杂草Conyza canadensis入侵的土壤中有效氮和有机质含量增加。 The content of available nitrogen and organic matter increases in the soil invaded by Conyza canadensis. | ||
与非入侵地土壤相比, Eupatorium catarium入侵后土壤氮含量提高4.32 mg·kg-1。 Compared with non-invasive soils, soil nitrogen content increases by 4.32 mg·kg-1 after invasion by Eupatorium catarium. | ||
Ambrosia trifida在入侵地的土壤-植物反馈高于原产地。 Ambrosia trifida has a greater plant-soil feedback in invaded ranges than that in its native ranges. |
Fig. 4 Conceptual model for the symbiotic relationship between plants and mycorrhizal fungi (adapted from Martin et al., 2017). Roots secrete signaling molecules (①) promote germination of AMF spores (②) and mycelium branching in the soil; mycorrhizal factors secreted by AMF (③) are recognized by receptor proteins in root cells (④), and then activate the calcium signaling pathway (⑤) to initiate formation of invasion lines of the mycorrhizal fungi (⑥). After that, the carbon and nutrient exchange between mycorrhizae and root cells also requires a series of enzymes and transport proteins in the root-mycorrhiza interface (⑦).
[1] |
Akiyama K, Matsuzaki KI, Hayashi H (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824-827.
DOI URL PMID |
[2] |
Allison SD, Nielsen C, Hughes RF (2006). Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana. Soil Biology & Biochemistry, 38, 1537-1544.
DOI URL |
[3] |
Allsopp N, Holmes PM (2001). The impact of alien plant invasion on mycorrhizas in mountain fynbos vegetation. South African Journal of Botany, 67(2), 150-156.
DOI URL |
[4] | Bai YF, Li M, Liu RJ, Wan FH, Guo SX (2012). Interactions effects of invasive plants Coreopsis grandiflora and associated plant Dianthus barbatus and their influences on AM fungi. Journal of Qingdao Agricultural University (Natural Science), 29(1), 1-5, 14. |
[ 柏艳芳, 李敏, 刘润进, 万方浩, 郭绍霞 (2012). 入侵植物大花金鸡菊与伴生植物须苞石竹的互作效应及其对AM真菌的影响. 青岛农业大学学报(自然科学版), 29(1), 1-5, 14.] | |
[5] |
Bajwa AA, Chauhan BS, Farooq M, Shabbir A, Adkins SW (2016). What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world’s worst weeds. Planta, 244, 39-57.
DOI URL PMID |
[6] |
Baohanta R, Thioulouse J, Ramanankierana H, Prin Y, Rasolomampianina R, Baudoin E, Rakotoarimanga N, Galiana A, Randriambanona H, Lebrun M, Duponnois R (2012). Restoring native forest ecosystems after exotic tree plantation in Madagascar: combination of the local ectotrophic species Leptolena bojeriana and Uapaca bojeri mitigates the negative influence of the exotic species Eucalyptus camaldulensis and Pinus patula. Biological Invasions, 14, 2407-2421.
DOI URL |
[7] |
Barnes CJ, van der Gast CJ, McNamara NP, Rowe R, Bending GD (2018). Extreme rainfall affects assembly of the root-associated fungal community. New Phytologist, 220, 1172-1184.
DOI URL |
[8] |
Barto EK, Antunes PM, Stinson K, Koch AM, Klironomos JN, Cipollini D (2011). Differences in arbuscular mycorrhizal fungal communities associated with sugar maple seedlings in and outside of invaded garlic mustard forest patches. Biological Invasions, 13, 2755-2762.
DOI URL |
[9] |
Bennett AE, Daniell TJ, Öpik M, Davison J, Moora M, Zobel M, Selosse MA, Evans D (2013). Arbuscular mycorrhizal fungal networks vary throughout the growing season and between successional stages. PLOS ONE, 8, e83241. DOI: 10.1371/journal.pone.0083241.
DOI URL PMID |
[10] |
Bennett AE, Thomsen M, Strauss SY (2011). Multiple mechanisms enable invasive species to suppress native species. American Journal of Botany, 98, 1086-1094.
DOI URL |
[11] | Bergmann J, Weigelt A, van der Plas, Laughlin DC, Kuyper TW, Guerrero-Ramírez N, Valverde-Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM, Kattge J, Luke McCormack M, Meier IC, Rillig MC, Roumet C, Semchenko M, Sweeney CJ, van Ruijven J, York LM, Mommer L (2020). The fungal collaboration gradient dominates the root economics space in plants. BioRxiv, 6, 3756. DOI: 10.1101/2020.01.17.908905. |
[12] |
Blossey B, Notzold R (1995). Evolution of increased competitive ability in invasive nonindigenous plants, a hypothesis. Journal of Ecology, 83, 887-889.
DOI URL |
[13] |
Bonfante P, Genre A (2010). Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nature Communications, 1, 48. DOI: 10.1038/ncomms1046.
DOI URL PMID |
[14] |
Bravo A, Brands M, Wewer V, Dörmann P, Harrison MJ (2017). Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytologist, 214, 1631-1645.
DOI URL |
[15] |
Brundrett MC, Tedersoo L (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220, 1108-1115.
DOI URL |
[16] |
Bufford JL, Hulme PE, Sikes BA, Cooper JA, Johnston PR, Duncan RP (2019). Novel interactions between alien pathogens and native plants increase plant-pathogen network connectance and decrease specialization. Journal of Ecology, 108, 750-760.
DOI URL |
[17] |
Burke DJ (2008). Effects of Alliaria petiolata (garlic mustard; Brassicaceae) on mycorrhizal colonization and community structure in three herbaceous plants in a mixed deciduous forest. American Journal of Botany, 95, 1416-1425.
DOI URL PMID |
[18] |
Callaway RM, Aschehoug ET (2000). Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science, 290, 521-523.
DOI URL PMID |
[19] |
Callaway RM, Cipollini D, Barto K, Thelen GC, Hallett SG, Prati D, Stinson K, Klironomos J (2008). Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology, 89, 1043-1055.
DOI URL PMID |
[20] |
Callaway RM, Ridenour WM (2004). Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2, 436-443.
DOI URL |
[21] |
Cantor A, Hale A, Aaron J, Traw MB, Kalisz S (2011). Low allelochemical concentrations detected in Garlic mustard- invaded forest soils inhibit fungal growth and AMF spore germination. Biological Invasions, 13, 3015-3025.
DOI URL |
[22] | Carlson LA, McConnaughay KD, Morris SJ (2014). Effect of garlic mustard invasion on ectomycorrhizae in mature pine trees and pine seedlings//Groninger JW, Holzmueller EJ, Nielsen CK, Dey DC. Proceedings of the 19th Central Hardwood Forest Conference. Department of Agriculture, Forest Service, Northern Reaserch Station, Newtown Square, USA. 214-219. |
[23] |
Catford JA, Jansson R, Nilsson C (2009). Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions, 15, 22-40.
DOI URL |
[24] |
Catford JA, Smith AL, Wragg PD, Clark AT, Kosmala M, Cavender-Bares J, Reich PB, Tilman D (2019). Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long-term grassland experiment. Ecology Letters, 22, 593-604.
DOI URL PMID |
[25] |
Chen E, Liao H, Chen B, Peng S (2020). Arbuscular mycorrhizal fungi are a double-edged sword in plant invasion controlled by phosphorus concentration. New phytologist, 226, 295-300.
DOI URL |
[26] |
Chen L, Swenson NG, Ji NN, Mi XC, Ren HB, Guo LD, Ma KP (2019). Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science, 366, 124-128.
DOI URL PMID |
[27] |
Chu YN, Zhang HB, Qin ZF, Gai JP (2018). Relationship of AM fungi with non-mycorrhizal plants. Chinese Journal of Applied Ecology, 29, 321-326.
DOI URL PMID |
[ 初亚男, 张海波, 秦泽峰, 盖京苹 (2018). AM真菌与非菌根植物的相互作用关系. 应用生态学报, 29, 321-326.]
PMID |
|
[28] |
de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, Lemanceau P, Lumini E, Mason KE, Oliver A, Ostle N, Prosser JI, Thion C, Thomson B, Bardgett RD (2018). Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 9, 3033. DOI: 10.1038/s41467-018-05516-7.
DOI URL PMID |
[29] |
de Vries FT, Wallenstein MD (2017). Below-ground connections underlying above-ground food production: a framework for optimising ecological connections in the rhizosphere. Journal of Ecology, 105, 913-920.
DOI URL |
[30] |
Delavaux CS, Smith-Ramesh LM, Kuebbing SE (2017). Beyond nutrients, a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology, 98, 2111-2119.
DOI URL PMID |
[31] |
Dickie IA, Bufford JL, Cobb RC, Desprez-Loustau ML, Grelet G, Hulme PE, Klironomos J, Makiola A, Nuñez MA, Pringle A, Thrall PH, Tourtellot SG, Waller L, Williams NM (2017). The emerging science of linked plant-fungal invasions. New phytologist, 215, 1314-1332.
DOI URL |
[32] |
Dombrowski N, Schlaeppi K, Agler MT, Hacquard S, Kemen E, Garrido-Oter R, Wunder J, Coupland G, Schulze-Lefert P (2017). Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. The ISME Journal, 11, 43-55.
DOI URL PMID |
[33] |
Dostál P, Müllerová J, Pyšek P, Pergl J, Klinerová T (2013). The impact of an invasive plant changes over time. Ecology Letters, 16, 1277-1284.
DOI URL |
[34] |
Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT (2015). Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist, 208, 114-124.
DOI URL |
[35] |
Endresz G, Somodi I, Kalapos T (2013). Arbuscular mycorrhizal colonisation of roots of grass species differing in invasiveness. Community Ecology, 14, 67-76.
DOI URL |
[36] |
Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 109, 2666-2671.
DOI URL |
[37] |
Feng YL, Lei YB, Wang RF, Callaway RM, Valiente-Banuet A, Inderjit, Li YP, Zheng YL (2009). Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences of the United States of America, 106, 1853-1856.
URL PMID |
[38] |
Flory SL, D’Antonio CM (2015). Taking the long view on the ecological effects of plant invasions. American Journal of Botany, 102, 817-818.
URL PMID |
[39] |
Funk JL, Vitousek PM (2007). Resource-use efficiency and plant invasion in low-resource systems. Nature, 446, 1079-1081.
DOI URL PMID |
[40] |
Gaggini L, Rusterholz HP, Baur B (2018). The invasive plant Impatiens glandulifera affects soil fungal diversity and the bacterial community in forests. Applied Soil Ecology, 124, 335-343.
DOI URL |
[41] |
Gaggini L, Rusterholz HP, Baur B (2019). The annual invasive plant Impatiens glandulifera reduces hyphal biomass of soil fungi in deciduous forests. Fungal Ecology, 39, 242-249.
DOI URL |
[42] |
Gaya Shivega W, Aldrich-Wolfe L (2017). Native plants fare better against an introduced competitor with native microbes and lower nitrogen availability. AoB PLANTS, 9, plx004. DOI: 10.1093/aobpla/plx004.
DOI URL PMID |
[43] | Gornish ES, Franklin K, Rowe J, Barberán A (2020). Buffelgrass invasion and glyphosate effects on desert soil microbiome communities. Biological Invasions, 22, 2587-2597. |
[44] | Greer MJ, Wilson GWT, Hickman KR, Wilson SM (2014). Experimental evidence that invasive grasses use allelopathic biochemicals as a potential mechanism for invasion: chemical warfare in nature. Plant and Soil, 385, 165-179. |
[45] | Grove S, Haubensak KA, Gehring C, Parker IM (2017a) Mycorrhizae, invasions, and the temporal dynamics of mutualism disruption. Journal of Ecology, 105, 1496-1508. |
[46] | Grove S, Haubensak KA, Parker IM (2012). Direct and indirect effects of allelopathy in the soil legacy of an exotic plant invasion. Plant Ecology, 213, 1869-1882. |
[47] | Grove S, Parker IM, Haubensak KA (2017b). Do impacts of an invasive nitrogen-fixing shrub on Douglas-fir and its ectomycorrhizal mutualism change over time following invasion? Journal of Ecology, 105, 1687-1697. |
[48] | Guo XC (2020). Effect of Invasive Plant Xanthium strumarium on Mycorrhizal Fungi and Rhizobium of Glycine max under Different Light Environments. Master degree dissertation, Shenyang Agricultural University, Shenyang. |
[ 郭小城 (2020). 不同光环境下入侵植物瘤突苍耳对大豆菌根真菌和根瘤菌的影响. 硕士学位论文, 沈阳农业大学, 沈阳.] | |
[49] |
Gutjahr C, Parniske M (2013). Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annual Review of Cell and Developmental Biology, 29, 593-617.
URL PMID |
[50] | Han X, Su JQ, Yao NN, Chen BM (2020). Advances in root foraging behavior of exotic invasive plants. Biodiversity Science, 28, 727-733. |
[ 韩雪, 苏锦权, 姚娜娜, 陈宝明 (2020). 外来入侵植物的根系觅养行为研究进展. 生物多样性, 28, 727-733.] | |
[51] |
Hawkes CV (2007). Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. The American Naturalist, 170, 832-843.
DOI URL PMID |
[52] | Hawkes CV, Belnap J, D’Antonio C, Firestone MK (2006). Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant and Soil, 281, 369-380. |
[53] |
He JM, Zhang C, Dai HL, Liu H, Zhang XW, Yang J, Chen X, Zhu YY, Wang DP, Qi XF, Li WC, Wang ZH, An GY, Yu N, He ZH, Wang YF, Xiao YL, Zhang P, Wang ET (2019). A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Molecular Plant, 12, 1561-1576.
DOI URL PMID |
[54] |
Hill PW, Broughton R, Bougoure J, Havelange W, Newsham KK, Grant H, Murphy DV, Clode P, Ramayah S, Marsden KA, Quilliam RS, Roberts P, Brown C, Read DJ, Deluca TH, Bardgett RD, Hopkins DW, Jones DL (2019). Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic. Ecology Letters, 22, 2111-2119.
URL PMID |
[55] | Hu WJ, Liang QJ, He YH, Sun JF (2020). Allelopathy of Solidago canadensis with different invasion degrees under nitrogen deposition. Guihaia, 40, 1531-1539. |
[ 胡文杰, 梁秋菊, 和昱含, 孙见凡 (2020). 氮沉降对不同入侵程度加拿大一枝黄花化感作用的影响. 广西植物, 40, 1531-1539.] | |
[56] | Huang K, Kong DL, Lu XR, Feng WW, Liu MC, Feng YL (2020). Lesser leaf herbivore damage and structural defense and greater nutrient concentrations for invasive alien plants: evidence from 47 pairs of invasive and non-invasive plants. Science of the Total Environment, 723, 137829. DOI: 10.1016/j.scitotenv.2020.137829. |
[57] | Jarchow ME, Cook BJ (2009). Allelopathy as a mechanism for the invasion of Typha angustifolia. Plant Ecology, 204, 113-124. |
[58] |
Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 356, 1172-1175.
URL PMID |
[59] | Jiang YL, Chen XH, Miao Q, Qü B (2019). Difference in fungal communities between in roots and in root- associated soil of nine orchids in Liaoning, China. Chinese Journal of Plant Ecology, 43, 1079-1090. |
[ 蒋玉玲, 陈旭辉, 苗青, 曲波 (2019). 辽宁省9种兰科植物根内与根际土壤中真菌群落结构的差异. 植物生态学报, 43, 1079-1090.] | |
[60] | Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003). Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology, 84, 1895-1908. |
[61] |
Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM (2010). Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences of the United States of America, 107, 2093-2098.
DOI URL PMID |
[62] | Jordan NR, Larson DL, Huerd SC (2011). Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species. Invasive Plant Science and Management, 4, 11-21. |
[63] | Ju RT, Li H, Shi ZR, Li B (2012). Progress of biological invasions research in China over the last decade. Biodiversity Science, 20, 581-611. |
[ 鞠瑞亭, 李慧, 石正人, 李博 (2012). 近十年中国生物入侵研究进展. 生物多样性, 20, 581-611.] | |
[64] |
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333, 880-882.
DOI URL PMID |
[65] | Koch AM, Antunes PM, Kathryn Barto E, Cipollini D, Mummey DL, Klironomos JN (2011). The effects of arbuscular mycorrhizal (AM) fungal and garlic mustard introductions on native AM fungal diversity. Biological Invasions, 13, 1627-1639. |
[66] |
Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, et al. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 47, 410-415.
URL PMID |
[67] | Lankau RA, Nuzzo V, Spyreas G, Davis AS (2009). Evolutionary limits ameliorate the negative impact of an invasive plant. Proceedings of the National Academy of Sciences of the United Sates of America, 106, 15362-15367. |
[68] | Lau JA, Schultheis EH (2015). When two invasion hypotheses are better than one. New Phytologist, 205, 958-960. |
[69] | Lei YB, Xiao HF, Feng YL (2010). Impacts of alien plant invasions on biodiversity and evolutionary responses of native species. Biodiversity Science, 18, 622-630. |
[ 类延宝, 肖海峰, 冯玉龙 (2010). 外来植物入侵对生物多样性的影响及本地生物的进化响应. 生物多样性, 18, 622-630.] | |
[70] |
Lekberg Y, Gibbons SM, Rosendahl S, Ramsey PW (2013). Severe plant invasions can increase mycorrhizal fungal abundance and diversity. The ISME Journal, 7, 1424-1433.
URL PMID |
[71] |
Li M, Wei Z, Wang J, Jousset A, Friman VP, Xu Y, Shen Q, Pommier T (2019). Facilitation promotes invasions in plant-associated microbial communities. Ecology Letters, 22, 149-158.
DOI URL PMID |
[72] |
Li YP, Feng YL, Kang ZL, Zheng YL, Zhang JL, Chen YJ (2017). Changes in soil microbial communities due to biological invasions can reduce allelopathic effects. Journal of Applied Ecology, 54, 1281-1290.
DOI URL |
[73] |
Liang M, Liu X, Etienne RS, Huang F, Wang Y, Yu S (2015). Arbuscular mycorrhizal fungi counteract the Janzen- Connell effect of soil pathogens. Ecology, 96, 562-574.
DOI URL PMID |
[74] | Liang X, He C, Zhu X, Chen X, Lei Y, Zhang H, Qin Z, Qi X (2016). Effect of exotic Spartina alterniflora on fungal symbiosis with native plants Phragmites australis and Scirpus mariqueter, and model plants Lolium perenne L. and Trifolium repens. Aquatic Botany, 130, 50-58. |
[75] | Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008). Altered ecosystem carbon and nitrogen cycles by plant invasion, a meta-analysis. New Phytologist, 177, 706-714. |
[76] | Lu JZ, Qiu W, Chen JK, Li B (2005). Impact of invasive species on soil properties: Canadian goldenrod (Solidago canadensis) as a case study. Biodiversity Science, 13, 347-356. |
[ 陆建忠, 裘伟, 陈家宽, 李博 (2005). 入侵种加拿大一枝黄花对土壤特性的影响. 生物多样性, 13, 347-356.] | |
[77] |
Lugli LF, Andersen KM, Aragão LEOC, Cordeiro AL, Cunha HFV, Fuchslueger L, Meir P, Mercado LM, Oblitas E, Quesada CA, Rosa JS, Schaap KJ, Valverde-Barrantes O, Hartley IP (2019). Multiple phosphorus acquisition strategies adopted by fine roots in low-fertility soils in Central Amazonia. Plant and Soil, 450, 49-63.
DOI URL |
[78] |
Luo J, Meiners SJ, Carlsward BS (2019). Mycorrhizal colonization in a successional plant community. The American Midland Naturalist, 182, 12-26.
DOI URL |
[79] | Lutgen ER, Rillig MC (2004). Influence of spotted knapweed (Centaurea maculosa) management treatments on arbuscular mycorrhizae and soil aggregation. Weed Science, 52, 172-177. |
[80] |
Maherali H, Klironomos JN (2007). Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 316, 1746-1748.
DOI URL PMID |
[81] |
Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011). Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 469, 58-63.
DOI URL PMID |
[82] | Maltz MR, Bell CE, Mitrovich MJ, Iyer AR, Treseder KK (2016). Invasive plant management techniques alter arbuscular mycorrhizal fungi. Ecological Restoration, 34, 209-215. |
[83] |
Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, et al. (2008). The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 452, 88-92.
DOI URL PMID |
[84] |
Martin FM, Uroz S, Barker DG (2017). Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science, 356, eaad4501. DOI: 10.1126/science.aad4501.
DOI URL PMID |
[85] |
Meinhardt KA, Gehring CA (2012). Disrupting mycorrhizal mutualisms, a potential mechanism by which exotic tamarisk outcompetes native cottonwoods. Ecological Applications, 22, 532-549.
DOI URL PMID |
[86] |
Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vázquez DP (2006). Biotic interactions and plant invasions. Ecology Letters, 9, 726-740.
DOI URL |
[87] |
Mummey DL, Rillig MC (2006). The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant and Soil, 288, 81-90.
DOI URL |
[88] |
Pakpour S, Klironomos J (2015). The invasive plant, Brassica nigra, degrades local mycorrhizas across a wide geographical landscape. Royal Society Open Science, 2, 150300. DOI: 10.1098/rsos.150300.
DOI URL PMID |
[89] |
Parniske M (2008). Arbuscular mycorrhiza, the mother of plant root endosymbioses. Nature Reviews Microbiology, 6, 763-775.
DOI URL PMID |
[90] | Pathak R, Negi VS, Rawal RS, Bhatt ID (2019). Alien plant invasion in the Indian Himalayan Region: state of knowledge and research priorities. Biodiversity and Conservation, 28, 3073-3102. |
[91] | Pattison Z, Rumble H, Tanner RA, Jin L, Gange AC (2016). Positive plant-soil feedbacks of the invasive Impatiens glandulifera and their effects on above-ground microbial communities. Weed Research, 56, 198-207. |
[92] |
Pérez Castro S, Cleland EE, Wagner R, Sawad RA, Lipson DA (2019). Soil microbial responses to drought and exotic plants shift carbon metabolism. The ISME Journal, 13, 1776-1787.
DOI URL PMID |
[93] |
Plett JM, Plett KL, Wong-Bajracharya J, de Freitas Pereira M, Costa MD, Kohler A, Martin F, Anderson IC (2020). Mycorrhizal effector PaMiSSP10b alters polyamine biosynthesis in Eucalyptus root cells and promotes root colonization. New Phytologist, 228, 712-727.
DOI URL |
[94] |
Prati D, Bossdorf O (2004). Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). American Journal of Botany, 91, 285-288.
DOI URL PMID |
[95] | Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009). Mycorrhizal symbioses and plant invasions. Annual Review of Ecology, Evolution, and Systematics, 40, 699-715. |
[96] |
Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981-993.
DOI URL PMID |
[97] | Ruckli R, Rusterholz HH, Baur B (2014). Invasion of an annual exotic plant into deciduous forests suppresses arbuscular mycorrhiza symbiosis and reduces performance of sycamore maple saplings. Forest Ecology and Management, 318, 285-293. |
[98] | Ruckli R, Rusterholz HP, Baur B (2016). Disrupting ectomycorrhizal symbiosis: indirect effects of an annual invasive plant on growth and survival of beech (Fagus sylvatica) saplings. Perspectives in Plant Ecology Evolution and Systematics, 19, 12-20. |
[99] |
Sanon A, Béguiristain T, Cébron A, Berthelin J, Ndoye I, Leyval C, Sylla S, Duponnois R (2009). Changes in soil diversity and global activities following invasions of the exotic invasive plant, Amaranthus viridis L., decrease the growth of native sahelian Acacia species. FEMS Microbiology Ecology, 70, 118-131.
DOI URL PMID |
[100] |
Sanon A, Béguiristain T, Cébron A, Berthelin J, Sylla SN, Duponnois R (2012). Differences in nutrient availability and mycorrhizal infectivity in soils invaded by an exotic plant negatively influence the development of indigenous Acacia species. Journal of Environmental Management, 95, S275-S279.
DOI URL PMID |
[101] | Sarkar D, Rovenich H, Jeena G, Nizam S, Tissier A, Balcke GU, Mahdi LK, Bonkowski M, Langen G, Zuccaro A (2019). The inconspicuous gatekeeper: endophytic Serendipita vermifera acts as extended plant protection barrier in the rhizosphere. New Phytologist, 224, 886-901. |
[102] |
Sepp SK, Davison J, Jairus T, Vasar M, Moora M, Zobel M, Öpik M (2019). Non-random association patterns in a plant-mycorrhizal fungal network reveal host-symbiont specificity. Molecular Ecology, 28, 365-378.
DOI URL PMID |
[103] | Shannon SM, Bauer JT, Anderson WE, Reynolds HL (2014). Plant-soil feedbacks between invasive shrubs and native forest understory species lead to shifts in the abundance of mycorrhizal fungi. Plant and Soil, 382, 317-328. |
[104] | Shi B, Adkins S (2018). Relative phytotoxicity of parthenium weed (Parthenium hysterophorus L.) residues on the seedling growth of a range of Australian native and introduced species. Crop and Pasture Science, 69, 837-845. |
[105] | Smith SE, Read D (2008). Mycorrhizal Symbiosis. 3nd. Academic Press, New York, USA. |
[106] | Soudzilovskaia NA, Douma JC, Akhmetzhanova AA, van Bodegom PM, Cornwell WK, Moens EJ, Treseder KK, Tibbett M, Wang YP, Cornelissen JHC (2015). Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Global Ecology and Biogeography, 24, 371-382. |
[107] | Stefanowicz AM, Zubek S, Stanek M, Grześ IM, Rożej-Pabijan E, Błaszkowski J, Woch MW (2019). Invasion of Rosa rugosa induced changes in soil nutrients and microbial communities of coastal sand dunes. Science of the Total Environment, 677, 340-349. |
[108] |
Steidinger BS, Crowther TW, Liang J, van Nuland ME, Werner GDA, Reich PB, Nabuurs GJ, de-Miguel S, Zhou M, Picard N, Herault B, Zhao X, Zhang C, Routh D, Consortium GFBI, Peay KG (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569, 404-408.
DOI URL PMID |
[109] |
Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006). Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLOS Biology, 4, e140. DOI: 10.1371/journal.pbio.0040140.
DOI URL PMID |
[110] | Sun JR, Chen X, Sang XL, Meng YL, Jia YY, Zhang FJ (2019). Effects of the competition between invasive Ambrosia artemisiifolia and the native plants on species diversity of arbuscular mycorrhizal fungi. Mycosystema, 38, 1918-1929. |
[ 孙建茹, 陈雪, 桑晓玲, 蒙彦良, 贾月月, 张风娟 (2019). 入侵豚草与本地植物竞争对丛枝菌根真菌多样性的影响. 菌物学报, 38, 1918-1929.] | |
[111] | Tanner RA, Gange AC (2013). The impact of two non-native plant species on native flora performance: potential implications for habitat restoration. Plant Ecology, 214, 423-432. |
[112] |
Tedersoo L, Bahram M, Zobel M (2020). How mycorrhizal associations drive plant population and community biology. Science, 367, eaba1223. DOI: 10.1126/science. aba1223.
DOI URL PMID |
[113] |
Thorpe AS, Thelen GC, Diaconu A, Callaway RM (2009). Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. Journal of Ecology, 97, 641-645.
DOI URL |
[114] |
Tian H, Wang R, Li M, Dang H, Solaiman ZM (2019). Molecular signal communication during arbuscular mycorrhizal formation induces significant transcriptional reprogramming of wheat (Triticum aestivum L.) roots. Annals of Botany, 124, 1109-1119.
DOI URL PMID |
[115] |
Tian L, Li YJ, Tian CJ (2016). Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza. Acta Microbiologica Sinica, 56, 26-34.
URL PMID |
[ 田磊, 李元敬, 田春杰 (2016). 丛枝菌根真菌脂类代谢对共生信号调控的响应和反馈. 微生物学报, 56, 26-34.]
PMID |
|
[116] |
Toju H, Sato H, Yamamoto S, Tanabe AS (2018). Structural diversity across arbuscular mycorrhizal, ectomycorrhizal, and endophytic plant-fungus networks. BMC Plant Biology, 18, 292.
DOI URL PMID |
[117] | Trautwig AN, Eckhardt LG, Loewenstein NJ, Hoeksema JD, Carter EA, Nadel RL (2017). Cogongrass (Imperata cylindrica) affects above- and belowground processes in commercial loblolly pine (Pinus taeda) stands. Forest Science, 63, 10-16. |
[118] |
van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cárdenas D, Cárdenas-Toro J, et al. (2015). Global exchange and accumulation of non-native plants. Nature, 525, 100-103.
DOI URL PMID |
[119] |
van Kleunen M, Weber E, Fischer M (2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235-245.
DOI URL PMID |
[120] |
Vogelsang KM, Bever JD (2009). Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology, 90, 399-407.
DOI URL PMID |
[121] | Wan FH, Xie BY, Yang GQ (2011). Invasion Biology. Science Press, Beijing. |
[ 万方浩, 谢丙炎, 杨国庆 (2011). 入侵生物学. 科学出版社, 北京.] | |
[122] | Wan J, Zhang Z, Wang C (2019). Effects of ecoregional vulnerability on habitat suitability of invasive alien plants, an assessment using 13 species on a global scale. Environmental Earth Sciences, 78, 180. DOI: 10.1007/ s12665-019-8186-3. |
[123] | Wei XP, Yu J, Gao TG, Zhang BG, Zhang Z (2020). First report and eradication of an invasive weed, Solanum carolinense L., in Beijing. Plant Quarantine, 34(3), 61-63. |
[ 魏雪苹, 于晶, 高天刚, 张本刚, 张昭 (2020). 入侵性杂草北美刺龙葵在北京市的首次发现及防除. 植物检疫, 34(3), 61-63.] | |
[124] |
Wilson GWT, Hickman KR, Williamson MM (2012). Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses. Mycorrhiza, 22, 327-336.
DOI URL PMID |
[125] | Wolfe BE, Rodgers VL, Stinson KA, Pringle A (2008). The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. Journal of Ecology, 96, 777-783. |
[126] | Xi H (2019). Soil Carbon Sequestration Mediated by Arbuscular Mycorrhiza Under Stimulated Nitrogen Deposition. Master degree dissertation, Lanzhou University, Lanzhou. |
[ 席浩 (2019). 模拟氮沉降情境下丛枝菌根介导的土壤碳固持研究. 硕士学士论文, 兰州大学, 兰州.] | |
[127] | Xiao LM (2018). Diversity of Microbial Community in Rhizosphere Soils of Lycium barbarum L. and Influence of Arbuscular Mycorrhizal Fungi Salt Tolerance. Master degree dissertation, Northwest A&F University, Yangling, Shaanxi. |
[ 肖龙敏 (2018). 宁夏枸杞根际微生物群落多样性及丛枝菌根真菌对其耐盐性的影响. 硕士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[128] | Yang K, Sun JR, Wang Y, Du EW, Meng YL, Sang XL, Zhang FJ (2019). Effects of invasive plants interacting with native plants on colonization of arbuscular mycorrhizal fungi. Mycosystema, 38, 1938-1947. |
[ 杨康, 孙建茹, 王妍, 杜鄂巍, 蒙彦良, 桑晓玲, 张风娟 (2019). 入侵植物与本地植物互作对丛枝菌根真菌AMF侵染率的影响. 菌物学报, 38, 1938-1947.] | |
[129] | Yang SQ, Zhang Q, Song XQ, Wang J, Li YD, Xu H, Guo SY, Ding Q (2019). Structural features of root-associated fungus-plant interaction networks in the tropical montane rain forest of Jianfengling, China. Biodiversity Science, 27, 314-326. |
[ 杨思琪, 张琪, 宋希强, 王健, 李意德, 许涵, 郭守玉, 丁琼 (2019). 尖峰岭热带山地雨林根部真菌-植物互作网络结构特征. 生物多样性, 27, 314-326.] | |
[130] |
Yelenik SG, DʼAntonio CM (2013). Self-reinforcing impacts of plant invasions change over time. Nature, 503, 517-520.
DOI URL PMID |
[131] | Yu HX, Pang JF, Zhang XY, Gao L, Peng CL, Li WH (2020). Effects of two allelochemicals in alien invasive plant Mikania micrantha on soil nitrogen cycling. Journal of Tropical and Subtropical Botany, 28, 292-300. |
[ 余涵霞, 庞锦峰, 张昕宇, 高雷, 彭长连, 李伟华 (2020). 外来入侵植物薇甘菊的2种化感物质对土壤氮循环的影响. 热带亚热带植物学报, 28, 292-300.] | |
[132] | Zhang F, Li QC, Chen F, Xu H, Inderjit, Wan F (2017). Arbuscular mycorrhizal fungi facilitate growth and competitive ability of an exotic species Flaveria bidentis. Soil Biology & Biochemistry, 115, 275-284. |
[133] |
Zhang FJ, Li Q, Yerger EH, Chen X, Shi Q, Wan FH (2018a). AM fungi facilitate the competitive growth of two invasive plant species, Ambrosia artemisiifolia and Bidens pilosa. Mycorrhiza, 28, 703-715.
DOI URL PMID |
[134] | Zhang GH, Peng SL, Li GY, Li QF (2009). Recent advances in the interaction between invasive plants and belowground ecosystem. Chinese Agricultural Science Bulletin, 25(14), 246-251. |
[ 张桂花, 彭少麟, 李光义, 李勤奋 (2009). 外来入侵植物与地下生态系统相互影响的研究进展. 中国农学通报, 25(14), 246-251.] | |
[135] | Zhang HY (2019). Effects of Invasive Plants on Mycorrhizal fungi Colonization and Its Mechanisms in Native Plants. Master degree dissertation, Shenyang Agricultural University, Shenyang. |
[ 张海艳 (2019). 入侵植物对本地植物菌根真菌侵染及机制的影响. 硕士学位论文, 沈阳农业大学, 沈阳.] | |
[136] | Zhang HY, Goncalves P, Copeland E, Qi SS, Dai ZC, Li GL, Wang CY, Du DL, Thomas T (2020). Invasion by the weed Conyza canadensis alters soil nutrient supply and shifts microbiota structure. Soil Biology & Biochemistry, 143, 107739. DOI: 10.1016/j.soilbio.2020.107739. |
[137] |
Zhang L, Feng G, Declerck S (2018b). Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. The ISME Journal, 12, 2339-2351.
DOI URL PMID |
[138] | Zhang P, Li B, Wu JH, Hu SJ (2018c). Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecology Letters, 22, 200-210. |
[139] |
Zhang X, Dong W, Sun J, Feng F, Deng Y, He Z, Oldroyd GE, Wang E (2015). The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. The Plant Journal, 81, 258-267.
DOI URL PMID |
[140] | Zhang ZL, Yuan YS, Liu Q, Yin HJ (2019). Plant nitrogen acquisition from inorganic and organic sources via root and mycelia pathways in ectomycorrhizal alpine forests. Soil Biology & Biochemistry, 136, 107517. DOI: 10.1016/j.soilbio.2019.06.013. |
[141] |
Zhao MX, Lu XF, Zhao HX, Yang YF, Hale L, Gao Q, Liu WX, Guo JY, Li Q, Zhou JZ, Wan FH (2019). Ageratina adenophora invasions are associated with microbially mediated differences in biogeochemical cycles. Science of the Total Environment, 677, 47-56.
DOI URL |
[142] | Zhao YZ, Liu MC, Feng YL, Wang D, Feng WW, Clay K, Durden LA, Lu XR, Wang S, Wei XL, Kong DL (2020). Release from below- and aboveground natural enemies contributes to invasion success of a temperate invader. Plant and Soil, 452, 19-28. |
[143] | Zheng YL, Feng YL, Zhang LK, Callaway RM, Valiente-Banuet A, Luo DQ, Liao ZY, Lei YB, Barclay GF, Silva-Pereyra C (2015). Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytologist, 205, 1350-1359. |
[144] | Zhou XH, Peng PH, Li JJ (2019). Simulated climate warming and nitrogen deposition influence leaf traits and leaf trait spectrum in Solidago canadensis from China and North America. Acta Ecologica Sinica, 39, 1605-1615. |
[ 周晓慧, 彭培好, 李景吉 (2019). 模拟气候变暖和氮沉降对两种来源加拿大一枝黄花叶性状和性状谱的影响. 生态学报, 39, 1605-1615.] |
[1] | Ke-Yu CHEN Sen Xing Yu Tang Sun JiaHui Shijie Ren Bao-Ming JI. Arbuscular mycorrhizal fungal community characteristics and driving factors in different grassland types [J]. Chin J Plant Ecol, 2024, 48(5): 660-674. |
[2] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[3] | Die Hu Xinqi Jiang DAI Zhicong Daiyi Chen Yu Zhang Shan-Shan Qi. Arbuscular mycorrhizal fungi enhance the herbicide tolerance of an invasive weed Sphagneticola trilobata [J]. Chin J Plant Ecol, 2024, 48(5): 651-659. |
[4] | DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review [J]. Chin J Plant Ecol, 2024, 48(2): 135-146. |
[5] | CHEN Bao-Dong, FU Wei, WU Song-Lin, ZHU Yong-Guan. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling [J]. Chin J Plant Ecol, 2024, 48(1): 1-20. |
[6] | REN Yue, GAO Guang-Lei, DING Guo-Dong, ZHANG Ying, ZHAO Pei-Shan, LIU Ye. Species composition and driving factors of the ectomycorrhizal fungal community associated with Pinus sylvestris var. mongolica at different growth periods [J]. Chin J Plant Ecol, 2023, 47(9): 1298-1309. |
[7] | HE Fei, LI Chuan, Faisal SHAH, LU Xie-Min, WANG Ying, WANG Meng, RUAN Jia, WEI Meng-Lin, MA Xing-Guang, WANG Zhuo, JIANG Hao. Carbon transport and phosphorus uptake in an intercropping system of Robinia pseudoacacia and Amorphophallus konjac mediated by arbuscular mycorrhizal hyphal networks [J]. Chin J Plant Ecol, 2023, 47(6): 782-791. |
[8] | YANG Jia-Rong, DAI Dong, CHEN Jun-Fang, WU Xian, LIU Xiao-Lin, LIU Yu. Insight into recent studies on the diversity of arbuscular mycorrhizal fungi in shaping plant community assembly and maintaining rare species [J]. Chin J Plant Ecol, 2023, 47(6): 745-755. |
[9] | HU Tong-Xin, LI Bei, LI Guang-Xin, REN Yue-Xiao, DING Hai-Lei, SUN Long. Effects of fire originated black carbon on species composition of ectomycorrhizal fungi in a Larix gmelinii forest in growing season [J]. Chin J Plant Ecol, 2023, 47(6): 792-803. |
[10] | WANG Jing-Jing, WANG Jia-Hao, HUANG Zhi-Yun, Vanessa Chiamaka OKECHUKW, HU Die, QI Shan-Shan, DAI Zhi-Cong, DU Dao-Lin. Effects of endophytic nitrogen-fixing bacteria on the growth strategy of an invasive plant Sphagneticola trilobata under different nitrogen levels [J]. Chin J Plant Ecol, 2023, 47(2): 195-205. |
[11] | XI Nian-Xun, ZHANG Yuan-Ye, ZHOU Shu-Rong. Plant-soil feedbacks in community ecology [J]. Chin J Plant Ecol, 2023, 47(2): 170-182. |
[12] | ZHAO Rong-Jiang, CHEN Tao, DONG Li-Jia, GUO Hui, MA Hai-Kun, SONG Xu, WANG Ming-Gang, XUE Wei, YANG Qiang. Progress of plant-soil feedback in ecology studies [J]. Chin J Plant Ecol, 2023, 47(10): 1333-1355. |
[13] | ZHANG Hui, ZENG Wen-Jing, GONG Xin-Tao, MA Ze-Qing. Relationships between root hairs and mycorrhizal fungi across typical subtropical tree species [J]. Chin J Plant Ecol, 2023, 47(1): 88-100. |
[14] | QIN Jiang-Huan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Testing Janzen-Connell hypothesis based on plant-soil feedbacks in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 624-631. |
[15] | XIE Wei, HAO Zhi-Peng, ZHANG Xin, CHEN Bao-Dong. Research progress and prospect of signal transfer among plants mediated by arbuscular mycorrhizal networks [J]. Chin J Plant Ecol, 2022, 46(5): 493-515. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn