Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (8): 862-871.DOI: 10.17521/cjpe.2016.0363
Special Issue: 生态遥感及应用
• Research Articles • Previous Articles Next Articles
Hao ZHANG, Mao-Kui Lyu, Jin-Sheng XIE*()
Online:
2017-08-10
Published:
2017-09-29
Contact:
Jin-Sheng XIE
About author:
KANG Jing-yao(1991-), E-mail: Hao ZHANG, Mao-Kui Lyu, Jin-Sheng XIE. Effect of Dicranopteris dichotoma on spectroscopic characteristic of dissolved organic matter in red soil erosion area[J]. Chin J Plant Ecol, 2017, 41(8): 862-871.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0363
因子 Factor | 林分类型 Stand type | ||||||||
---|---|---|---|---|---|---|---|---|---|
Y0 | Y13 | Y31 | |||||||
NRd | Rd | CK | NRd | Rd | CK | NRd | Rd | CK | |
治理历史 Management process | 土壤侵蚀严重 Suffer from serious soil erosion | 从2002年开始治理 Ecological restoration since from 2002 | 从1984年开始治理 Ecological restoration since from 1984 | ||||||
优势种 Dominant species | 马尾松, 芒萁 Pinus massoniana, Dicranopteris dichotoma | 马尾松, 芒萁 Pinus massoniana, Dicranopteris dichotoma | 马尾松, 芒萁 Pinus massoniana, Dicranopteris dichotoma | ||||||
平均树高 Average height of trees (m) | 2 | 7 | 13.7 | ||||||
平均胸径 Average diameter at breast height (cm) | 3.1 | 7.4 | 14 | ||||||
植株密度 Plant density (stems·hm-2) | 1 741 | 3 341 | 1 433 | ||||||
芒萁覆盖度 Coverage of Dicranopteris dichotoma (%) | 15 | 90 | 85 | ||||||
坡度 Slope (°) | 19 | 8 | 11 | ||||||
土壤有机碳 Soil organic carbon (g·kg-1) | 6.37 ± 0.12 | 3.42 ± 0.01 | 1.60 ± 0.14 | 10.16 ± 1.47 | 11.30 ± 1.28 | 8.09 ± 0.52 | 14.33 ± 4.78 | 14.23 ± 1.94 | 5.32 ± 0.54 |
总氮Total nitrogen (g·kg-1) | 0.61 ± 0.02 | 0.52 ± 0.19 | 0.26 ± 0.07 | 0.74 ± 0.04 | 0.66 ± 0.01 | 0.48 ± 0.09 | 0.91 ± 0.25 | 0.81 ± 0.02 | 0.36 ± 0.16 |
pH | 4.37 ± 0.07 | 4.58 ± 4.58 | 4.67 ± 0.07 | 4.19 ± 0.07 | 4.39 ± 0.07 | 4.50 ± 0.04 | 4.24 ± 0.06 | 4.44 ± 0.03 | 4.69 ± 0.14 |
Table 1 The basic background characteristics of sample plot (mean ± SD)
因子 Factor | 林分类型 Stand type | ||||||||
---|---|---|---|---|---|---|---|---|---|
Y0 | Y13 | Y31 | |||||||
NRd | Rd | CK | NRd | Rd | CK | NRd | Rd | CK | |
治理历史 Management process | 土壤侵蚀严重 Suffer from serious soil erosion | 从2002年开始治理 Ecological restoration since from 2002 | 从1984年开始治理 Ecological restoration since from 1984 | ||||||
优势种 Dominant species | 马尾松, 芒萁 Pinus massoniana, Dicranopteris dichotoma | 马尾松, 芒萁 Pinus massoniana, Dicranopteris dichotoma | 马尾松, 芒萁 Pinus massoniana, Dicranopteris dichotoma | ||||||
平均树高 Average height of trees (m) | 2 | 7 | 13.7 | ||||||
平均胸径 Average diameter at breast height (cm) | 3.1 | 7.4 | 14 | ||||||
植株密度 Plant density (stems·hm-2) | 1 741 | 3 341 | 1 433 | ||||||
芒萁覆盖度 Coverage of Dicranopteris dichotoma (%) | 15 | 90 | 85 | ||||||
坡度 Slope (°) | 19 | 8 | 11 | ||||||
土壤有机碳 Soil organic carbon (g·kg-1) | 6.37 ± 0.12 | 3.42 ± 0.01 | 1.60 ± 0.14 | 10.16 ± 1.47 | 11.30 ± 1.28 | 8.09 ± 0.52 | 14.33 ± 4.78 | 14.23 ± 1.94 | 5.32 ± 0.54 |
总氮Total nitrogen (g·kg-1) | 0.61 ± 0.02 | 0.52 ± 0.19 | 0.26 ± 0.07 | 0.74 ± 0.04 | 0.66 ± 0.01 | 0.48 ± 0.09 | 0.91 ± 0.25 | 0.81 ± 0.02 | 0.36 ± 0.16 |
pH | 4.37 ± 0.07 | 4.58 ± 4.58 | 4.67 ± 0.07 | 4.19 ± 0.07 | 4.39 ± 0.07 | 4.50 ± 0.04 | 4.24 ± 0.06 | 4.44 ± 0.03 | 4.69 ± 0.14 |
Fig. 1 Variation of the quantity of soil dissolved organic matter (DOM) (mean ± SD). Different lowercase letters stand for the significant difference between different experimental treatments in the same vegetation restoration years (p < 0.05). Different capitals stand for the significant difference between the different vegetation restoration years in the same experimental treatment (p < 0.05). CK, control; NRd, not removed Dicranopteris dichotoma; Rd, removed D. dichotoma. Y0, without ecological restoration; Y13, ecological restoration for 13 years; Y31, ecological restoration for 31 years.
Fig. 2 Characteristics of soil dissolved organic matter (DOM) ultraviolet spectrum (mean ± SD). Different lowercase letters stand for the significant difference between different experimental treatments in the same vegetation restoration years (p < 0.05). CK, control; NRd, not removed Dicranopteris dichotoma; Rd, removed D. dichotoma. Y0, without ecological restoration; Y13, ecological restoration for 13 years; Y31, ecological restoration for 31 years. E2:E3, the ratio of ultraviolet-visible light absorption photometric quantity at 250 nm wavelength to ultraviolet-visible light absorption photometric quantity at 365 nm wavelength.
Fig. 3 Characteristics of dissolved organic matter (DOM) emission fluorescence spectrum. CK, control; NRd, not removed Dicranopteris dichotoma; Rd, removed D. dichotoma. Y0, without ecological restoration; Y13, ecological restoration for 13 years; Y31, ecological restoration for 31 years. λem, emission fluorescence spectrum wavelength.
Fig. 4 Characteristics of dissolved organic matter (DOM) synchronization fluorescence spectrum. CK, control; NRd, not removed Dicranopteris dichotoma; Rd, removed Dicranopteris dichotoma. Y0, without ecological restoration; Y13, ecological restoration for 13 years; Y31, ecological restoration for 31 years. λsyn, synchronous fluorescence spectrum wavelength.
Fig. 5 Characteristics of dissolved organic matter (DOM) fluorescence spectrum (mean ± SD). Different lowercase letters stand for the significant difference between different experimental treatments in the same vegetation restoration years (p < 0.05). CK, control; NRd, not removed Dicranopteris dichotoma; Rd, removed D. dichotoma. Y0, without ecological restoration; Y13, ecological restoration for 13 years; Y31, ecological restoration for 31 years. HIXem, emission fluorescence spectrum humification index; HIXsyn, synchronous fluorescence spectrum humification index.
Fig. 6 Characteristics of dissolved organic matter (DOM) fourier infrared transmission spectrum. CK, control; NRd, not removed Dicranopteris dichotoma; Rd, removed D. dichotoma. Y0, without ecological restoration; Y13, ecological restoration for 13 years; Y31, ecological restoration for 31 years.
[1] |
Akagi J, ádám Zsolnay, Bastida F (2007). Quantity and spectroscopic properties of soil dissolved organic matter (DOM) as a function of soil sample treatments: Air-drying and pre-incubation.Chemosphere, 69, 1040-1046.
DOI URL PMID |
[2] |
Andreasson F, Bo B, B??th E (2009). Bioavailability of DOC in leachates, soil matrix solutions and soil water extracts from beech forest floors.Soil Biology & Biochemistry, 41, 1652-1658.
DOI URL |
[3] |
Carter HT, Tipping E, Koprivnjak JF, Millerc PM, Cooksond B, Hamilton-Taylord J (2012). Freshwater DOM quantity and quality from a two-component model of UV absorbance.Water Research, 46, 4532-4542.
DOI URL PMID |
[4] |
Chang SC, Wang CP, Feng CM, Rees R, Hell U, Matzner E (2007). Soil fluxes of mineral elements and dissolved organic matter following manipulation of leaf litter input in a Taiwan Chamaecyparis forest.Forest Ecology & Management, 242, 133-141.
DOI URL |
[5] |
Fujii K, Uemura M, Hayakawa C, Funakawa S (2009). Fluxes of dissolved organic carbon in two tropical forest ecosystems of East Kalimantan, Indonesia. Geoderma, 152, 127-136.
DOI URL |
[6] |
Gielen B, Neirynck J, Luyssaert S, Janssens IA (2011). The importance of dissolved organic carbon fluxes for the carbon balance of a temperate Scots pine forest.Agricultural and Forest Meteorology, 151, 270-278.
DOI URL |
[7] |
Hagedorn F, Kaiser K, Feyen H, Schleppi P (2000). Effects of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil.Journal of Environmental Quality, 29, 288-297.
DOI URL |
[8] |
Jiao K, Li ZP (2005). Dynamics and biodegradation of dissolved organic carbon in paddy soils derived from red clay. Soils, 37, 272-276.(in Chinese with English abstract)[焦坤, 李忠佩 (2005). 红壤稻田土壤溶解有机碳含量动态及其生物降解特征. 土壤,37, 272-276.]
DOI URL |
[9] |
Kaiser K (1997). Dissolved organic matter sorption on subsoil and minerals studied by 13C-NMR and DRIFT spectroscopy.European Journal of Soil Science, 48, 301-310.
DOI URL |
[10] |
Kalbitz K, Geyer W, Geyer S (1999). Spectroscopic properties of dissolved humic substances—A reflection of land use history in a fen area.Biogeochemistry, 47, 219-238.
DOI URL |
[11] |
Kalbitz K, Kaiser K (2008). Contribution of dissolved organic matter to carbon storage in forest mineral soils.Journal of Plant Nutrition & Soil Science, 171, 52-60.
DOI URL |
[12] |
Kalbitz K, Meyer A, Yang R, Gerstberger P (2007). Response of dissolved organic matter in the forest floor to long-term manipulation of litter and throughfall inputs.Biogeochemistry, 86, 301-318.
DOI URL |
[13] | Li HT, Yu GR, Li JY, Chen YR, Liang T (2007). Decomposition dynamics and nutrient release of litters for four artificial forests in the red soil and hilly region of subtropical China.Acta Ecologica Sinica, 27, 898-908.(in Chinese with English abstract)[李海涛, 于贵瑞, 李家永, 陈永瑞, 梁涛 (2007). 亚热带红壤丘陵区四种人工林凋落物分解动态及养分释放. 生态学报,27, 898-908.] |
[14] |
Liu Z, Yang YS, Zhu JM, Xie JS, Si YT (2015). Effects of forest conversion on quantities and spectroscopic characteristics of soil dissolved organic matter in subtropical China.Acta Ecologica Sinica, 35, 6288-6297.(in Chinese with English abstract) [刘翥, 杨玉盛, 朱锦懋, 谢锦升, 司友涛 (2015). 中亚热带森林转换对土壤可溶性有机质数量与光谱学特征的影响. 生态学报,35, 6288-6297.]
DOI URL |
[15] | Mccarthy JF (2005). Carbon fluxes in soil.Journal of Geographical Sciences, 15, 149-154. |
[16] |
Michalzik B, Matzner E (1999). Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem.European Journal of Soil Science, 50, 579-590.
DOI URL |
[17] |
Peuravuori J, Pihlaja K (1997). Molecular size distribution and spectroscopic properties of aquatic humic substances.Analytica Chimica Acta, 337, 133-149.
DOI URL |
[18] |
Schwendenmann L, Veldkamp E (2005). The role of dissolved organic carbon, dissolved organic nitrogen, and dissolved inorganic nitrogen in a tropical wet forest ecosystems.Ecosystems, 8, 339-351.
DOI URL |
[19] |
Wu JS, Jiang PK, Chang SX, Xu QF, Lin Y (2010). Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China. Canadian Journal of Soil Science, 90, 27-36.
DOI URL |
[20] | Xiao YC, Dou S (2008). Study on infrared spectra of soil humus fractions.Chinese Journal of Analytical Chemistry, 35, 1596-1600.(in Chinese with English abstract) [肖彦春, 窦森 (2008). 土壤腐殖质各组分红外光谱研究. 分析化学,35, 1596-1600.] |
[21] |
Xie JS, Guo JF, Yang ZJ, Huang ZQ, Chen GS, Yang YS (2013). Rapid accumulation of carbon on severely eroded red soils through afforestation in subtropical China. Forest Ecology & Management, 300, 53-59.
DOI URL |
[22] |
Yang YS, Guo JF, Chen GS, Chen YX, Yu ZY, Liu DX (2003). Origin, property and flux of dissolved organic matter in forest ecosystems.Acta Ecologica Sinica, 23, 547-558.(in Chinese with English abstract)[杨玉盛, 郭剑芬, 陈光水, 陈银秀, 于占源, 董彬, 刘东霞 (2003). 森林生态系统DOM的来源、特性及流动. 生态学报,23, 547-558.]
DOI URL |
[23] | Zhan XH, Zhou LX, Yang H, Jiang TH (2007). Infrared spectroscopy of DOM-PAHs complexes.Acta Pedologica Sinic, 44, 47-53.(in Chinese with English abstract)[占新华, 周立祥, 杨红, 蒋廷惠 (2007). 水溶性有机物与多环芳烃结合特征的红外光谱学研究. 土壤学报,44, 47-53.] |
[24] |
Zhang H, Lyu MK, Jiang J, Pu XT, Wang EX, Qiu X, Xie JS (2016). Effect of vegetation restoration on topsoil and subsoil organic carbon mineralization in red soil erosion area,Journal of Soil and Water Conservation, 30, 244-249.(in Chinese with English abstract)[张浩, 吕茂奎, 江军, 蒲晓婷, 王恩熙, 邱曦, 谢锦升 (2016). 侵蚀红壤区植被恢复对表层与深层土壤有机碳矿化的影响. 水土保持学报,44, 244-249.]
DOI URL |
[25] |
Zhao J, Wan S, Li Z, Shao Y, Xu G, Liu Z, Zhou L, Fu S (2012). Dicranopteris-dominated understory as major driver of intensive forest ecosystem in humid subtropical and tropical region.Soil Biology & Biochemistry, 49, 78-87.
DOI URL |
[26] |
Zhou GM, Jiang PK (2004). Changes in active organic carbon of erosion red soil by vegetation recovery. Journal of Soil and Water Conservation, 18, 68-70.(in Chinese with English abstract)[周国模, 姜培坤 (2004). 不同植被恢复对侵蚀型红壤活性碳库的影响. 水土保持学报,18, 68-70.]
DOI URL |
[27] | Zhou JM, Dai JY, Pan GX (2004). Fractionation and spectroscopic property of dissolved organic matters in soils.Spectroscopy and Spectral Analysis, 24, 1060-1065.(in Chinese with English abstract)[周江敏, 代静玉, 潘根兴 (2004). 应用光谱分析技术研究土壤水溶性有机质的分组及其结构特征. 光谱学与光谱分析,24, 1060-1065.] |
[28] | Zhu HJ (1992). Soil Geography. Higher Education Press, Beijing.(in Chinese)[朱鹤健 (1992). 土壤地理学. 高等教育出版社, 北京.] |
[1] | CHEN Xue-Ping, ZHAO Xue-Yong, ZHANG Jing, WANG Rui-Xiong, LU Jian-Nan. Variation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin Sandy Land, China [J]. Chin J Plant Ecol, 2023, 47(8): 1082-1093. |
[2] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[3] | GAN Zi-Ying, WANG Hao, DING Chi, LEI Mei, YANG Xiao-Gang, CAI Jing-Yan, QIU Qing-Yan, HU Ya-Lin. Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms [J]. Chin J Plant Ecol, 2022, 46(7): 797-810. |
[4] | CUI Guang-Shuai, LUO Tian-Xiang, LIANG Er-Yuan, ZHANG Lin. Advances in the study of shrubland facilitation on herbs in arid and semi-arid regions [J]. Chin J Plant Ecol, 2022, 46(11): 1321-1333. |
[5] | DENG Meng-Da, YOU Jian-Rong, LI Jia-Xiang, LI Xiong, YANG Jing, DENG Chuang-Fa, LIU Ang, LIU Wen-Jian, DING Cong, XIE Yong, ZHOU Guo-Hui, YU Xun-Lin. Community characteristics of main vegetation types in the ecological “green-core” area of Changzhutan urban cluster [J]. Chin J Plant Ecol, 2020, 44(12): 1296-1304. |
[6] | MEI Kong-Can, CHENG Lei, ZHANG Qiu-Fang, LIN Kai-Miao, ZHOU Jia-Cong, ZENG Quan-Xin, WU Yue, XU Jian-Guo, ZHOU Jin-Rong, CHEN Yue-Min. Effects of dissolved organic matter from different plant sources on soil enzyme activities in subtropical forests [J]. Chin J Plant Ecol, 2020, 44(12): 1273-1284. |
[7] | CHEN Chan, ZHANG Shi-Ji, LI Lei-Da, LIU Zhao-Dan, CHEN Jin-Lei, GU Xiang, WANG Liu-Fang, FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671. |
[8] | WANG Ming-Ming,LIU Xin-Ping,HE Yu-Hui,ZHANG Tong-Hui,WEI Jing,Chelmge ,SUN Shan-Shan. How enclosure influences restored plant community changes of different initial types in Horqin Sandy Land [J]. Chin J Plant Ecol, 2019, 43(8): 672-684. |
[9] | YU Xiao-Ya, LI Yu-Hui, YANG Guang-Rong. Fruit types and seed dispersal modes of plants in different communities in Shilin Geopark, Yunnan, China [J]. Chin J Plant Ecol, 2018, 42(6): 663-671. |
[10] | GU Xiang, ZHANG Shi-Ji, LIU Zhao-Dan, LI Lei-Da, CHEN Jin-Lei, WANG Liu-Fang, FANG Xi. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2018, 42(5): 595-608. |
[11] | Yong BAO, Ying GAO, Xiao-Min ZENG, Ping YUAN, You-Tao SI, Yue-Min CHEN, Ying-Yi CHEN. Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China [J]. Chin J Plant Ecol, 2018, 42(4): 508-516. |
[12] | GU Xiang, ZHANG Shi-Ji, LIU Zhao-Dan, LI Lei-Da, CHEN Jin-Lei, WANG Liu-Fang, FANG Xi. Effects of vegetation restoration on soil organic carbon mineralization in the east of Hunan, China [J]. Chin J Plant Ecol, 2018, 42(12): 1211-1224. |
[13] | WAN Jing-Juan,GUO Jian-Fen,JI Shu-Rong,REN Wei-Ling,SI You-Tao,YANG Yu-Sheng. Effects of different sources of dissolved organic matter on soil CO2 emission in subtropical forests [J]. Chin J Plan Ecolo, 2015, 39(7): 674-681. |
[14] | LIU Zhu,YANG Yu-Sheng,SI You-Tao,KANG Gen-Li,ZHENG Huai-Zhou. Effects of vegetation restoration on content and spectroscopic characteristics of dissolved organic matter in eroded red soil [J]. Chin J Plant Ecol, 2014, 38(11): 1174-1183. |
[15] | TANG Yi, LIU Zhi-Min. Advances, trends and challenges in seed bank research for sand dune ecosystems [J]. Chin J Plant Ecol, 2012, 36(8): 891-898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn