Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (12): 1211-1224.DOI: 10.17521/cjpe.2018.0202
• Research Articles • Previous Articles
GU Xiang1,ZHANG Shi-Ji1,LIU Zhao-Dan1,LI Lei-Da1,CHEN Jin-Lei1,WANG Liu-Fang1,FANG Xi1,2,3,*()
Received:
2018-08-16
Revised:
2018-11-01
Online:
2018-12-20
Published:
2019-04-04
Contact:
FANG Xi ORCID: 0000-0003-1236-2335
Supported by:
GU Xiang, ZHANG Shi-Ji, LIU Zhao-Dan, LI Lei-Da, CHEN Jin-Lei, WANG Liu-Fang, FANG Xi. Effects of vegetation restoration on soil organic carbon mineralization in the east of Hunan, China[J]. Chin J Plant Ecol, 2018, 42(12): 1211-1224.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0202
Fig. 1 The location and distribution of the different vegetation communities in the east of Hunan Province. LVR, Loropetalum chinense-Vaccinium bracteatum-Rhododendron mariesii scrub-?grass-?land; LCQ, Loropetalum chinense-Cunninghamia lanceolata-??Quercus fabri shrubbery; PLL, Pinus massoniana-?Lithocarpus glaber-Loropetalum chinense coniferous-broad leaved mixed forest; LAG, Lithocarpus glaber-Cleyera japonica-?Cyclobalanopsis glauca evergreen broad-leaved forest.
Fig. 2 Soil organic carbon (SOC) mineralization rate at different vegetation restoration stages in the east of Hunan Province. LVR, Loropetalum chinense-Vaccinium bracteatum-Rhododendron mariesii scrub-grass-land; LCQ, Loropetalum chinense-Cunninghamia lanceolata-Quercus fabri shrubbery; PLL, Pinus massoniana-Lithocarpus glaber-Loropetalum chinense coniferous-broad leaved mixed forest; LAG, Lithocarpus glaber-Cleyera japonica-Cyclobalanopsis glauca evergreen broad-leaved forest. Different letters indicate significant differences among different vegetation restoration stages in the same soil layer at the same time of incubation (p < 0.05).
土层深度 Soil layer (cm) | 恢复阶段 Restoration stages | 回归方程 Regression equation | R2 | F | p | 土层深度 Soil layer (cm) | 恢复阶段 Restoration stages | 回归方程 Regression equation | R2 | F | p |
---|---|---|---|---|---|---|---|---|---|---|---|
0-10 | LVR | y= 0.023/x + 0.002 | 0.901 | 100.517 | 0 | 20-30 | LVR | y = 0.018/x + 0.000 | 0.866 | 71.259 | 0 |
LCQ | y = 0.053/x + 0.008 | 0.970 | 356.194 | 0 | LCQ | y = 0.021/x + 0.002 | 0.945 | 187.261 | 0 | ||
PLL | y = 0.056/x + 0.009 | 0.985 | 747.054 | 0 | PLL | y = 0.027/x + 0.002 | 0.982 | 602.893 | 0 | ||
LAG | y = 0.121/x + 0.018 | 0.978 | 496.637 | 0 | LAG | y = 0.033/x + 0.005 | 0.987 | 821.403 | 0 | ||
10-20 | LVR | y = 0.022/x + 0.001 | 0.918 | 123.038 | 0 | 30-40 | LVR | y = 0.018/x - 1.878E-6 | 0.875 | 76.822 | 0 |
LCQ | y = 0.026/x + 0.002 | 0.979 | 504.574 | 0 | LCQ | y = 0.018/x + 0.001 | 0.886 | 85.189 | 0 | ||
PLL | y = 0.029/x + 0.003 | 0.976 | 455.176 | 0 | PLL | y = 0.026/x + 0.002 | 0.967 | 318.004 | 0 | ||
LAG | y = 0.039/x + 0.006 | 0.949 | 203.566 | 0 | LAG | y = 0.036/x + 0.004 | 0.954 | 228.325 | 0 |
Table 3 Fitting of soil organic carbon (SOC) mineralization rate with incubation time using the reciprocal equations at different restoration stages in the east of Hunan Province
土层深度 Soil layer (cm) | 恢复阶段 Restoration stages | 回归方程 Regression equation | R2 | F | p | 土层深度 Soil layer (cm) | 恢复阶段 Restoration stages | 回归方程 Regression equation | R2 | F | p |
---|---|---|---|---|---|---|---|---|---|---|---|
0-10 | LVR | y= 0.023/x + 0.002 | 0.901 | 100.517 | 0 | 20-30 | LVR | y = 0.018/x + 0.000 | 0.866 | 71.259 | 0 |
LCQ | y = 0.053/x + 0.008 | 0.970 | 356.194 | 0 | LCQ | y = 0.021/x + 0.002 | 0.945 | 187.261 | 0 | ||
PLL | y = 0.056/x + 0.009 | 0.985 | 747.054 | 0 | PLL | y = 0.027/x + 0.002 | 0.982 | 602.893 | 0 | ||
LAG | y = 0.121/x + 0.018 | 0.978 | 496.637 | 0 | LAG | y = 0.033/x + 0.005 | 0.987 | 821.403 | 0 | ||
10-20 | LVR | y = 0.022/x + 0.001 | 0.918 | 123.038 | 0 | 30-40 | LVR | y = 0.018/x - 1.878E-6 | 0.875 | 76.822 | 0 |
LCQ | y = 0.026/x + 0.002 | 0.979 | 504.574 | 0 | LCQ | y = 0.018/x + 0.001 | 0.886 | 85.189 | 0 | ||
PLL | y = 0.029/x + 0.003 | 0.976 | 455.176 | 0 | PLL | y = 0.026/x + 0.002 | 0.967 | 318.004 | 0 | ||
LAG | y = 0.039/x + 0.006 | 0.949 | 203.566 | 0 | LAG | y = 0.036/x + 0.004 | 0.954 | 228.325 | 0 |
Fig. 3 Soil organic carbon cumulative mineralization (Cm) at different vegetation restoration stages in the east of Hunan Province (mean + SD). LVR, Loropetalum chinense-Vaccinium bracteatum-Rhododendron mariesii scrub-grass-land; LCQ, Loropetalum chinense-Cunninghamia lanceolata-Quercus fabri shrubbery; PLL, Pinus massoniana-Lithocarpus glaber-?Loropetalum chinense coniferous-broad leaved mixed forest; LAG, Lithocarpus glaber-Cleyera japonica-Cyclobalanopsis glauca evergreen broad-leaved forest. Different capital letters represent significant differences among different vegetation restoration stages in the same soil layer (p < 0.05), and different lower letters indicate significant differences among different soil layers at the same vegetation restoration stage (p < 0.05).
Fig. 4 The percentage of soil organic carbon cumulative mineralization to soil organic carbon content (Cm/SOC) at different vegetation restoration stages in the east of Hunan Province (mean + SD). LVR, Loropetalum chinense-Vaccinium bracteatum-Rhododendron mariesii scrub-grass-land; LCQ, Loropetalum chinense-Cunninghamia lanceolata-Quercus fabri shrubbery; PLL, Pinus massoniana-Lithocarpus glaber-?Loropetalum chinense coniferous-broad leaved mixed forest; LAG, Lithocarpus glaber-Cleyera japonica-Cyclobalanopsis glauca evergreen broad-leaved forest. Different capital letters represent significant differences among different vegetation restoration stages in the same soil layer (p < 0.05), and different lower letters indicate significant differences among different soil layers at the same vegetation restoration stage (p < 0.05).
项目 Item | 植物多样 性指数 Species diversity index | 地上部分 生物量 Aboveground biomass | 根系 生物量 Root biomass | 凋落物层 现存量 Existing biomass in litter layer | 凋落物层 C含量 C concentration in litter layer | 凋落物层 N含量 N concentration in litter layer | 凋落物层 P含量 P concentration in litter layer | 凋落物层 木质素含量 Lignin concentration in litter layer | 凋落物层 C:N The ratio of C to N in litter layer | 凋落物层 C:P The ratio of C to P in litter layer | 凋落物层 N:P The ratio of N to P in litter layer |
---|---|---|---|---|---|---|---|---|---|---|---|
Cm | 0.625* | 0.818** | 0.897** | 0.539 | 0.269 | 0.669* | 0.640* | 0.397 | 0.098 | -0.287 | -0.490 |
Cm/SOC | -0.057 | -0.150 | -0.082 | -0.075 | 0.051 | 0.171 | 0.137 | 0.016 | 0.010 | -0.027 | -0.155 |
Table 4 Pearson correlation coefficient between soil organic carbon (SOC) cumulative mineralization (Cm), the percentage of Cm to SOC content (Cm/SOC) and vegetation factors, respectively
项目 Item | 植物多样 性指数 Species diversity index | 地上部分 生物量 Aboveground biomass | 根系 生物量 Root biomass | 凋落物层 现存量 Existing biomass in litter layer | 凋落物层 C含量 C concentration in litter layer | 凋落物层 N含量 N concentration in litter layer | 凋落物层 P含量 P concentration in litter layer | 凋落物层 木质素含量 Lignin concentration in litter layer | 凋落物层 C:N The ratio of C to N in litter layer | 凋落物层 C:P The ratio of C to P in litter layer | 凋落物层 N:P The ratio of N to P in litter layer |
---|---|---|---|---|---|---|---|---|---|---|---|
Cm | 0.625* | 0.818** | 0.897** | 0.539 | 0.269 | 0.669* | 0.640* | 0.397 | 0.098 | -0.287 | -0.490 |
Cm/SOC | -0.057 | -0.150 | -0.082 | -0.075 | 0.051 | 0.171 | 0.137 | 0.016 | 0.010 | -0.027 | -0.155 |
项目 Item | 容重 Bulk density | <0.002 mm黏粒百分含量 Soil clay percentage of <0.002 mm | pH | SOC | TN | TP | C:N | C:P | N:P |
---|---|---|---|---|---|---|---|---|---|
Cm | -0.312 | 0.774** | -0.734** | 0.971** | 0.986** | 0.595* | -0.315 | 0.653* | 0.738** |
Cm/SOC | 0.154 | -0.203 | 0.323 | -0.320 | -0.223 | -0.172 | -0.732** | -0.268 | -0.096 |
Table 5 Pearson correlation coefficient between soil organic carbon (SOC) cumulative mineralization (Cm), the percentage of Cm to SOC content (Cm/SOC) and soil factors, respectively
项目 Item | 容重 Bulk density | <0.002 mm黏粒百分含量 Soil clay percentage of <0.002 mm | pH | SOC | TN | TP | C:N | C:P | N:P |
---|---|---|---|---|---|---|---|---|---|
Cm | -0.312 | 0.774** | -0.734** | 0.971** | 0.986** | 0.595* | -0.315 | 0.653* | 0.738** |
Cm/SOC | 0.154 | -0.203 | 0.323 | -0.320 | -0.223 | -0.172 | -0.732** | -0.268 | -0.096 |
因子 Factor | 主成分 Component | 因子 Factor | 主成分 Component | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | ||
植物多样性指数 Species diversity index | 0.639 | -0.103 | 0.515 | 土壤有机碳含量 Soil organic carbon concentration | 0.947 | -0.142 | -0.084 |
地上部分生物量 Aboveground biomass | 0.883 | -0.005 | -0.410 | 土壤全氮含量 Soil total nitrogen concentration | 0.951 | -0.158 | 0.043 |
根系生物量 Root biomass | 0.951 | 0.003 | -0.212 | 土壤全磷含量 Soil total phosphorus concentration | 0.536 | -0.823 | -0.064 |
凋落物层N含量 Nitrogen concentration in litter layer | 0.763 | 0.320 | 0.094 | 土壤碳磷比 Soil C:P | 0.697 | 0.675 | -0.111 |
凋落物层P含量 Phosphorus concentration in litter layer | 0.651 | -0.245 | 0.512 | 土壤氮磷比 Soil N:P | 0.767 | 0.613 | 0.073 |
<0.002 mm黏粒百分含量 Soil clay percentage of <0.002 mm | 0.711 | -0.040 | 0.473 | 贡献率 Contribution rate (%) | 61.511 | 14.966 | 10.687 |
土壤pH值 Soil pH value | -0.782 | 0.261 | -0.752 | 累积贡献率 Accumulative contribution rate (%) | 61.511 | 76.477 | 87.165 |
Table 6 The principle component loading matrix, eigenvalue and contribution rate for vegetation and soil factors
因子 Factor | 主成分 Component | 因子 Factor | 主成分 Component | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | ||
植物多样性指数 Species diversity index | 0.639 | -0.103 | 0.515 | 土壤有机碳含量 Soil organic carbon concentration | 0.947 | -0.142 | -0.084 |
地上部分生物量 Aboveground biomass | 0.883 | -0.005 | -0.410 | 土壤全氮含量 Soil total nitrogen concentration | 0.951 | -0.158 | 0.043 |
根系生物量 Root biomass | 0.951 | 0.003 | -0.212 | 土壤全磷含量 Soil total phosphorus concentration | 0.536 | -0.823 | -0.064 |
凋落物层N含量 Nitrogen concentration in litter layer | 0.763 | 0.320 | 0.094 | 土壤碳磷比 Soil C:P | 0.697 | 0.675 | -0.111 |
凋落物层P含量 Phosphorus concentration in litter layer | 0.651 | -0.245 | 0.512 | 土壤氮磷比 Soil N:P | 0.767 | 0.613 | 0.073 |
<0.002 mm黏粒百分含量 Soil clay percentage of <0.002 mm | 0.711 | -0.040 | 0.473 | 贡献率 Contribution rate (%) | 61.511 | 14.966 | 10.687 |
土壤pH值 Soil pH value | -0.782 | 0.261 | -0.752 | 累积贡献率 Accumulative contribution rate (%) | 61.511 | 76.477 | 87.165 |
项目 Item | 模型 Model | 变量 Variable | 回归方程 Regression equation | 多元相关系数 Multiple correlation coefficient (R) | 调整判定系数 Adjust R2 | F | P |
---|---|---|---|---|---|---|---|
Cm | 1 | TN | Cm = 0.572 TN + 0.250 | 0.986 | 0.969 | 380.581 | 0.000 |
2 | RB | Cm =0.474 TN + 0.000006 RB + 0.290 | 0.991 | 0.978 | 273.558 | 0.000 | |
Cm/SOC | 1 | Soil C:N | Cm/SOC = -0.302 C:N +8.717 | 0.732 | 0.494 | 12.700 | 0.004 |
Table 7 The stepwise regression analysis for main influencing factors of soil organic carbon (SOC) cumulative mineralization (Cm) and the percentage of Cm to SOC content (Cm/SOC)
项目 Item | 模型 Model | 变量 Variable | 回归方程 Regression equation | 多元相关系数 Multiple correlation coefficient (R) | 调整判定系数 Adjust R2 | F | P |
---|---|---|---|---|---|---|---|
Cm | 1 | TN | Cm = 0.572 TN + 0.250 | 0.986 | 0.969 | 380.581 | 0.000 |
2 | RB | Cm =0.474 TN + 0.000006 RB + 0.290 | 0.991 | 0.978 | 273.558 | 0.000 | |
Cm/SOC | 1 | Soil C:N | Cm/SOC = -0.302 C:N +8.717 | 0.732 | 0.494 | 12.700 | 0.004 |
[1] |
Craine JM, Fierer N, Mclauchlan KK ( 2010). Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience, 3, 854-857.
DOI URL |
[2] |
Cui J, Zhang RJ, Bu NS, Zhang HB, Tang BP, Li ZL, Jiang LF, Chen JK, Fang CM ( 2013). Changes in soil carbon sequestration and soil respiration following afforestation on paddy fields in north subtropical China. Journal of Plant Ecology, 6, 240-252.
DOI URL |
[3] |
Fan YX, Yang YS, Guo JF, Yang ZJ, Chen GS, Xie JS, Zhong XJ, Xu LL ( 2014). Changes in soil respiration and its temperature sensitivity at different successional stages of evergreen broadleaved forests in mid-subtropical China. Chinese Journal of Plant Ecology, 38, 1155-1165.
DOI URL |
[ 范跃新, 杨玉盛, 郭剑芬, 杨智杰, 陈光水, 谢锦升, 钟小剑, 徐玲琳 ( 2014). 中亚热带常绿阔叶林不同演替阶段土壤呼吸及其温度敏感性的变化. 植物生态学报, 38, 1155-1165.]
DOI URL |
|
[4] | Gu X, Fang X, Xiang WH, Li SL, Sun WJ ( 2013). Soil organic carbon and mineralizable organic carbon in four subtropical forests in hilly region of central Hunan Province, China. Chinese Journal of Ecology, 32, 2687-2694. |
[ 辜翔, 方晰, 项文化, 李胜蓝, 孙伟军 ( 2013). 湘中丘陵区4种森林类型土壤有机碳和可矿化有机碳的比较. 生态学杂志, 32, 2687-2694.] | |
[5] | Gu X, Zhang SJ, Liu ZD, Li LD, Chen JL, Wang LF, Fang X ( 2018). Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China. Chinese Journal of Plant Ecology, 42, 595-608. |
[ 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰 ( 2018). 中亚热带植被恢复对土壤有机碳含量、碳密度的影响. 植物生态学报, 42, 595-608.] | |
[6] | Hu YL, Zeng DH, Fan ZP, Ai GY ( 2007). Effects of degraded sandy grassland afforestation on soil quality in semiarid area of Northern China. Chinese Journal of Applied Ecology, 18, 2391-2397. |
[ 胡亚林, 曾德慧, 范志平, 艾桂艳 ( 2007). 半干旱区沙质退化草地造林对土壤质量的影响. 应用生态学报, 18, 2391-2397.] | |
[7] | Huang ZS, Yu LF, Fu YH ( 2012). Characteristics of soil mineralizable carbon pool in natural restoration process of karst forest vegetation. Chinese Journal of Applied Ecology, 23, 2165-2170. |
[ 黄宗胜, 喻理飞, 符裕红 ( 2012). 喀斯特森林植被自然恢复过程中土壤可矿化碳库特征. 应用生态学报, 23, 2165-2170.] | |
[8] |
Iyamuremye F, Gewin V, Dick RP, Diack M, Sene M, Badiane A ( 2000). Carbon, nitrogen and phosphorus mineralization potential of native agroforestry plant residues in soils of Senegal. Arid Soil Research and Rehabilitation, 14, 359-371.
DOI URL |
[9] |
Kuzyakov Y ( 2011). How to link soil C pools with CO2 fluxes. Biogeosciences, 8, 1523-1537.
DOI URL |
[10] |
Li JY, Dou XL, Hu YH, Gan DX, Li F ( 2018). Variation in soil organic carbon mineralization under various land cover types in urban areas. Acta Ecologica Sinica, 38, 112-121.
DOI URL |
[ 李隽永, 窦晓琳, 胡印红, 甘德欣, 李锋 ( 2018). 城市不同地表覆盖类型下土壤有机碳矿化的差异. 生态学报, 38, 112-121.]
DOI URL |
|
[11] |
Li Y, Xu M, Sun OJ, Cui W ( 2004). Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests. Soil Biology & Biochemistry, 36, 2111-2114.
DOI URL |
[12] |
Li YM, Gong L, Xie LN ( 2017). Soil organic carbon content and carbon mineralization characteristics under different land use types in Northern Tarim Basin. Bulletin of Soil and Water Conservation, 37(3), 216-221.
DOI URL |
[ 李杨梅, 贡璐, 解丽娜 ( 2017). 塔里木盆地北缘绿洲不同土地利用方式下土壤有机碳含量及其碳矿化特征. 水土保持通报, 37(3), 216-221.]
DOI URL |
|
[13] | Liu S, Yuan WY, Li XW, Rong L, Yang M, Li DH, Wang Q ( 2008). Soil chemical characteristics and their effects on C:N ratio of rhizosphere and non-rizosphere of different herbages in triploid of Populous tomentosa woodland. Reseaech of Soil and Water Conservation, 15(2), 107-110. |
[ 刘朔, 袁渭阳, 李贤伟, 荣丽, 杨渺, 李德会, 王巧 ( 2008). 不同草本层三倍体毛白杨根际与非根际土壤化学特性及其对C/N的影响. 水土保持研究, 15(2), 107-110.] | |
[14] | Liu YQ, Wang F, Ke GQ, Wang YY, Guo SM, Fan CF ( 2011). Effects of converting cultivated land into forest land on the characteristics of soil organic carbon in limestone mountain area in Ruichang, Jiangxi. Chinese Journal of Applied Ecology, 22, 885-890. |
[ 刘苑秋, 王芳, 柯国庆, 王迎迎, 郭圣茂, 范承芳 ( 2011). 江西瑞昌石灰岩山区退耕还林对土壤有机碳的影响. 应用生态学报, 22, 885-890.] | |
[15] |
Milcu A, Heim A, Ellis RJ, Scheu S, Manning P ( 2011). Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient. Ecosystems, 14, 710-719.
DOI URL |
[16] | Priha O, Grayston SJ ( 2001). Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biology & Fertility of Soils, 33, 17-24. |
[17] |
Qian HY, Pan JJ, Sun B ( 2013). The relative impact of land use and soil properties on sizes and turnover rates of soil organic carbon pools in subtropical China. Soil Use & Management, 29, 510-518.
DOI URL |
[18] |
Reza MT, Becker W, Sachsenheimer K, Mumme J ( 2014). Hydrothermal carbonization (HTC): Near infrared spectroscopy and partial least-squares regression for determination of selective components in HTC solid and liquid products derived from maize silage. Bioresource Technology, 161, 91-101.
DOI URL PMID |
[19] | Riffaldi R, Saviozzi A, Levi-Minzi R ( 1996). Carbon mineralization kinetics as in?uenced by soil properties. Biological & Fertility of Soils, 22, 293-298. |
[20] |
Ross DJ, Tate KR, Scott NA, Wilde RH, Rodda NJ, Townsend JA ( 2002). Afforestation of pastures with Pinus radiata influences soil carbon and nitrogen pools and mineralisation and microbial properties. Soil Research, 40, 1303-1318.
DOI URL |
[21] |
Saggar S, Yeates GW, Shepherd TG ( 2001). Cultivation effects on soil biological properties, microfauna and organic matter dynamics in Eutric Gleysol and Gleyic Luvisol soils in New Zealand. Soil & Tillage Research, 8, 55-68.
DOI URL |
[22] |
Schaefer DA, Feng WT, Zou XM ( 2009). Plant carbon inputs and environmental factors strongly affect soil respiration in a subtropical forest of southwestern China. Soil Biology & Biochemistry, 41, 1000-1007.
DOI URL |
[23] |
Scott-Denton LE, Sparks KL, Monson RK ( 2003). Spatial and temporal controls of soil respiration rate in a high- elevation, subalpine forest. Soil Biology & Biochemistry, 35, 525-534.
DOI URL |
[24] |
Shao YH, Pan JJ, Sun B ( 2005). Study of characteristics of soil organic carbon decompositions and carbon pool under different vegetations. Journal of Soil and Water Conservation, 19(3), 24-28.
DOI URL |
[ 邵月红, 潘剑君, 孙波 ( 2005). 不同森林植被下土壤有机碳的分解特征及碳库研究. 水土保持学报, 19(3), 24-28.]
DOI URL |
|
[25] | Song XZ, Jiang H, Yu SQ, Ma YD, Zhou GM, Dou RP, Guo PP ( 2009). Litter decomposition of dominant plant species in successional stages in mid-subtropical zone. Chinese Journal of Applied Ecology, 20, 537-542. |
[ 宋新章, 江洪, 余树全, 马元丹, 周国模, 窦荣鹏, 郭培培 ( 2009). 中亚热带森林群落不同演替阶段优势种凋落物分解试验. 应用生态学报, 20, 537-542.] | |
[26] |
Song Y, Zhao XZ, Mao ZJ, Sun T, Hou LL ( 2013). SOC decomposition of four typical broad-leaved Korean pine communities in Xiaoxing ,an Mountain . Acta Ecologica Sinica, 33, 443-453.
DOI URL |
[ 宋媛, 赵溪竹, 毛子军, 孙涛, 侯玲玲 ( 2013). 小兴安岭4种典型阔叶红松林土壤有机碳分解特性. 生态学报 , 33, 443-453.]
DOI URL |
|
[27] |
Sun SQ, Bhatti JS, Jassal RS, Chang SX, Arevalo C, Black TA, Sidders D ( 2015). Stand age and productivity control soil carbon dioxide efflux and organic carbon dynamics in poplar plantations. Soil Science Society of America Journal, 79, 1638-1649.
DOI URL |
[28] |
Sun WJ, Fang X, Xiang WH, Zhang SJ, Li SL ( 2013). Active pools of soil organic carbon in subtropical forests at different successional stages in Central Hunan, China. Acta Ecologica Sinica, 33, 7765-7773.
DOI URL |
[ 孙伟军, 方晰, 项文化, 张仕吉, 李胜蓝 ( 2013). 湘中丘陵区不同演替阶段森林土壤活性有机碳库特征. 生态学报, 33, 7765-7773.]
DOI URL |
|
[29] | Wen QX ( 1984). The Determination Method of Soil Organic Matter. Chinese Agriculture Press, Beijing. 273-284. |
[ 文启孝 ( 1984). 土壤有机质研究法. 中国农业出版社, 北京. 273-284.] | |
[30] |
Wu JG, Zhang XQ, Wang YH, Xu DY ( 2002). The effects of land use changes on the distribution of soil organic carbon in physical fraction of soil. Scientia Silvae Science, 38(4), 19-29.
DOI URL |
[ 吴建国, 张小全, 王彦辉, 徐德应 ( 2002). 土地利用变化对土壤物理组分中有机碳分配的影响. 林业科学, 38(4), 19-29.]
DOI URL |
|
[31] |
Wu JG, Zhang XQ, Xu DY ( 2004). The mineralization of soil organic carbon under different land use in the Liupan Mountains forest zone. Acta Phytoecologica Sinica, 28, 530-538.
DOI URL |
[ 吴建国, 张小全, 徐德应 ( 2004). 六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较. 植物生态学报, 28, 530-538.]
DOI URL |
|
[32] |
Wu JH, Pan JJ, Ge XJ, Cao LD, Li BY, Chen X ( 2015). Mineralization of soil organic carbon and its relationship wih organic carbon fractions under different agriculture land use. Journal of Soil and Water Conservation, 29(6), 178-183.
DOI URL |
[ 邬建红, 潘剑君, 葛序娟, 曹罗丹, 李炳亚, 陈昕 ( 2015). 不同农业利用方式土壤有机碳矿化及其与有机碳组分的关系. 水土保持学报, 29(6), 178-183.]
DOI URL |
|
[33] | Xiang WH, Fang X ( 2018). Community Structure and Soil Properties in Subtropical Secondary Forests. Science Press, Beijing. |
[ 项文化, 方晰 ( 2018). 亚热带次生林群落结构与土壤特征. 科学出版社, 北京.] | |
[34] |
Xu X, Shi Z, Li DJ, Rey A, Ruan HH, Craine J, Liang JY, Zhou JZ, Luo YQ ( 2016). Soil properties control decomposition of soil organic carbon: Results from data-assimilation analysis. Geoderma, 262, 235-242.
DOI URL |
[35] | Yan YP, Cao JH, Liang Y, Wang P, Wang H ( 2012). Organic carbon storage and decomposition rate of three subcategories of calcareous soil in karst area. Earth and Environment, 40(2), 219-226. |
[ 严毅萍, 曹建华, 梁毅, 王培, 王宏 ( 2012). 桂林毛村岩溶区三种亚类石灰土有机碳矿化研究. 地球与环境, 40(2), 219-226.] | |
[36] | Yang KJ, Yang WQ, He RY, Zhuang LY, Li ZJ, Nie FY, Wang Z, Xu ZF ( 2017). Soil organic carbon mineralization characteristics of three dominant subalpine forests in western Sichuan, China. China Journal Apply Environment Biology, 23(5), 851-856. |
[ 杨开军, 杨万勤, 贺若阳, 庄丽燕, 李志杰, 聂富育, 王壮, 徐振锋 ( 2017). 川西亚高山3种典型森林土壤碳矿化特征. 应用与环境生物学报, 23(5), 851-856.] | |
[37] | Zhang H, Lü MK, Jiang J, Pu XT, Wang EX, Qiu X, Xie JS ( 2016). Effects of vegetation restoration on topsoil and subsoil organic carbon mineralization in red soil erosion area. Journal of Soil and Water Conservation, 30(1), 244-249. |
[ 张浩, 吕茂奎, 江军, 蒲晓婷, 王恩熙, 邱曦, 谢锦升 ( 2016). 侵蚀红壤区植被恢复对表层与深层土壤有机碳矿化的影响. 水土保持学报, 30(1), 244-249.] | |
[38] |
Zhang L, Zhang DL, Mao ZJ ( 2017). Characteristic mineralization of soil organic carbon in different successional series of broadleaved Korean pine forests in the temperate zone in China,Acta Ecology Sinica, 37, 6370-6378.
DOI URL |
[ 张玲, 张东来, 毛子军 ( 2017). 中国温带阔叶红松林不同演替系列土壤有机碳矿化特征. 生态学报, 37, 6370-6378.]
DOI URL |
|
[39] |
Zhao M, Zhou J, Kalbitzb K ( 2008). Carbon mineralization and properties of water-extractable organic carbon in soils of the south Loess Plateau in China. European Journal of Soil Biology, 44, 158-165.
DOI URL |
[40] | Zhou YY, Jia XH, Zhao X, Chen GX, Gao YH, Wu P ( 2011). Soil carbon mineralization potential under different configuration of vegetation. Chinese Journal of Ecology, 30, 2442-2448. |
[ 周玉燕, 贾晓红, 赵昕, 陈国雄, 高艳红, 吴攀 ( 2011). 不同植被配置下土壤碳矿化潜力. 生态学杂志, 30, 2442-2448.] | |
[41] |
Zhu RH, Zheng ZC, Li TX, Zhang XZ, He SQ, Wang YD, Liu T, Li W ( 2017). Dynamics of soil organic carbon mineralization in tea plantations converted from farmland at Western Sichuan, China. PLOS ONE, 12(9), e0185271. DOI: 10.1371/journal.pone.0185271.
DOI URL PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn