Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (5): 595-608.DOI: 10.17521/cjpe.2018.0021
• Research Articles • Previous Articles
GU Xiang1,ZHANG Shi-Ji1,LIU Zhao-Dan1,LI Lei-Da1,CHEN Jin-Lei1,WANG Liu-Fang1,FANG Xi1,2,3,*()
Received:
2018-01-15
Revised:
2018-05-09
Online:
2018-05-20
Published:
2018-07-20
Contact:
Xi FANG
Supported by:
GU Xiang, ZHANG Shi-Ji, LIU Zhao-Dan, LI Lei-Da, CHEN Jin-Lei, WANG Liu-Fang, FANG Xi. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China[J]. Chin J Plant Ecol, 2018, 42(5): 595-608.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0021
恢复阶段 Restoration stage | 优势植物 Dominant plants | 组成比例 Composition proportion (%) | 木本植物密度 Density of woody plants (trees·hm-2) | 多样性 指数 Diversity index | 重要值Important value (%) | 平均胸径 Average DBH (cm) | 平均树高 Average tree height (m) | 海拔 Elevation (m) | 坡向 Slope aspect | 坡度 Slope |
---|---|---|---|---|---|---|---|---|---|---|
檵木-南烛- 杜鹃灌草丛 LVR | 檵木 Loropetalum chinense | 34.48 | 18125 | 0.87 | 27.46 | - | 0.85 (0.3-1.8) | 120-131 | 东南 Southeast | 18° |
南烛 Vaccinium bracteatum | 21.55 | 18.96 | ||||||||
杜鹃 Rhododendron simsii | 12.07 | 14.00 | ||||||||
白栎 Quercus fabri | 7.76 | 10.66 | ||||||||
板栗 Castanea mollissima | 5.17 | 2.72 | ||||||||
其他(8种) Others (8 species) | 18.97 | 26.20 | ||||||||
檵木-杉木- 白栎灌木林 LCQ | 檵木 Loropetalum chinense | 17.47 | 7633 | 1.06 | 22.02 | 2.74 (1.0-9.8) | 3.37 (1.5-6.5) | 120-135 | 西北 Northwest | 22° |
杉木 Cunninghamia lanceolata | 14.85 | 13.16 | ||||||||
白栎 Quercus fabri | 12.66 | 11.10 | ||||||||
南烛 Vaccinium bracteatum. | 12.66 | 9.26 | ||||||||
木姜子 Litsea spp. | 11.35 | 10.13 | ||||||||
其他(16种) Others (16 species) | 31.01 | 34.43 | ||||||||
马尾松-柯- 檵木针阔 混交林 PLL | 马尾松 Pinus massoniana | 39.69 | 17629 | 1.91 | 45.34 | 5.70 (1.0-28.0) | 6.54 (1.5-20.0) | 135-160 | 西南 Southwest | 20° |
柯 Lithocarpus glaber | 25.52 | 13.87 | ||||||||
檵木 Loropetalum chinense | 11.06 | 7.43 | ||||||||
红淡比 Cleyera japonica | 3.59 | 4.11 | ||||||||
连蕊茶 Camellia cuspidata | 3.11 | 4.02 | ||||||||
其他(22种) Others (22 species) | 17.03 | 25.23 | ||||||||
柯-红淡比- 青冈常绿 阔叶林 LAG | 柯 Lithocarpus glaber | 38.78 | 19970 | 2.29 | 25.75 | 5.63 (1.0-40.0) | 5.75 (1.5-20.0) | 200-260 | 东南 Southeast | 22° |
红淡比 Cleyera japonica | 18.70 | 11.05 | ||||||||
青冈 Cyclobalanopsis glauca | 5.82 | 8.90 | ||||||||
杉木 Cunninghamia lanceolata | 5.36 | 6.14 | ||||||||
格药柃 Eurya muricata Dunn | 5.06 | 5.73 | ||||||||
其他(31种) Others (31 species) | 26.28 | 42.44 |
Table 1 Stand characteristics at different stages during vegetation restoration
恢复阶段 Restoration stage | 优势植物 Dominant plants | 组成比例 Composition proportion (%) | 木本植物密度 Density of woody plants (trees·hm-2) | 多样性 指数 Diversity index | 重要值Important value (%) | 平均胸径 Average DBH (cm) | 平均树高 Average tree height (m) | 海拔 Elevation (m) | 坡向 Slope aspect | 坡度 Slope |
---|---|---|---|---|---|---|---|---|---|---|
檵木-南烛- 杜鹃灌草丛 LVR | 檵木 Loropetalum chinense | 34.48 | 18125 | 0.87 | 27.46 | - | 0.85 (0.3-1.8) | 120-131 | 东南 Southeast | 18° |
南烛 Vaccinium bracteatum | 21.55 | 18.96 | ||||||||
杜鹃 Rhododendron simsii | 12.07 | 14.00 | ||||||||
白栎 Quercus fabri | 7.76 | 10.66 | ||||||||
板栗 Castanea mollissima | 5.17 | 2.72 | ||||||||
其他(8种) Others (8 species) | 18.97 | 26.20 | ||||||||
檵木-杉木- 白栎灌木林 LCQ | 檵木 Loropetalum chinense | 17.47 | 7633 | 1.06 | 22.02 | 2.74 (1.0-9.8) | 3.37 (1.5-6.5) | 120-135 | 西北 Northwest | 22° |
杉木 Cunninghamia lanceolata | 14.85 | 13.16 | ||||||||
白栎 Quercus fabri | 12.66 | 11.10 | ||||||||
南烛 Vaccinium bracteatum. | 12.66 | 9.26 | ||||||||
木姜子 Litsea spp. | 11.35 | 10.13 | ||||||||
其他(16种) Others (16 species) | 31.01 | 34.43 | ||||||||
马尾松-柯- 檵木针阔 混交林 PLL | 马尾松 Pinus massoniana | 39.69 | 17629 | 1.91 | 45.34 | 5.70 (1.0-28.0) | 6.54 (1.5-20.0) | 135-160 | 西南 Southwest | 20° |
柯 Lithocarpus glaber | 25.52 | 13.87 | ||||||||
檵木 Loropetalum chinense | 11.06 | 7.43 | ||||||||
红淡比 Cleyera japonica | 3.59 | 4.11 | ||||||||
连蕊茶 Camellia cuspidata | 3.11 | 4.02 | ||||||||
其他(22种) Others (22 species) | 17.03 | 25.23 | ||||||||
柯-红淡比- 青冈常绿 阔叶林 LAG | 柯 Lithocarpus glaber | 38.78 | 19970 | 2.29 | 25.75 | 5.63 (1.0-40.0) | 5.75 (1.5-20.0) | 200-260 | 东南 Southeast | 22° |
红淡比 Cleyera japonica | 18.70 | 11.05 | ||||||||
青冈 Cyclobalanopsis glauca | 5.82 | 8.90 | ||||||||
杉木 Cunninghamia lanceolata | 5.36 | 6.14 | ||||||||
格药柃 Eurya muricata Dunn | 5.06 | 5.73 | ||||||||
其他(31种) Others (31 species) | 26.28 | 42.44 |
恢复阶段 Restoration stage | 群落总生物量 Community total biomass (kg·hm-2) | 地上部分 生物量 Aboveground biomass (kg·hm-2) | 根系生物量 Root biomass (kg·hm-2) | 凋落物层 现存量 Existing biomass in litter layer (kg·hm-2) | 凋落物层 C含量 C concentration in litter layer (g·kg-1) | 凋落物层 N含量 N concentration in litter layer (g·kg-1) | 凋落物层 P含量 P concentration in litter layer (g·kg-1) | 凋落物层 C/N比 C/N ratio in litter layer | 凋落物层 C/P比 C/P ratio in litter layer | 凋落物层N/P比 N/P ratio in litter layer |
---|---|---|---|---|---|---|---|---|---|---|
LVQ | 5 185.4 ± 2 702.5a | 2 244.5 ± 1 153.9a | 2 029.6 ± 1 515.7a | 911.4 ± 653. 9a | 315.8 ± 25.3ac | 9.84 ± 0.3a | 0.30 ± 0.02a | 35.8 ± 2.6a | 1532.2 ± 95.2a | 41.5 ± 2.9a |
LCQ | 2 0591.5 ± 9 728.9b | 10 346.7 ± 7 143.2b | 5 443.0 ± 3 467.5a | 4 801.8 ± 1 030.2b | 277.2 ± 33.3a | 11.2 ± 0.9a | 0.34 ± 0.03ab | 26.0 ± 0.2b | 914.2 ± 69.4b | 35.7 ± 3.6a |
PLL | 129 112.7 ± 19 713.5c | 107 692.6 ± 16 361.6c | 16 332.9 ± 3 047.6b | 5 087.2 ± 1 246.1b | 424.1 ± 8.6b | 11.5 ± 0.5a | 0.33 ± 0.05ab | 38.0 ± 1.6a | 1389.7 ± 227.9ab | 36.6 ± 4.4a |
LAG | 148 975.4 ± 43 906.4c | 120 695.2 ± 13 647.7c | 24 400.4 ± 5 124.8c | 3 879.8 ± 1 171.5b | 332.3 ± 53.9c | 14.0 ± 0.2b | 0.38 ± 0.04b | 23.9 ± 3.5b | 953.1 ± 44.6b | 40.3 ± 4.0a |
Table 2 Plant community biomass and nutrient characteristics of litter layer at different stages during vegetation restoration (mean ± SD)
恢复阶段 Restoration stage | 群落总生物量 Community total biomass (kg·hm-2) | 地上部分 生物量 Aboveground biomass (kg·hm-2) | 根系生物量 Root biomass (kg·hm-2) | 凋落物层 现存量 Existing biomass in litter layer (kg·hm-2) | 凋落物层 C含量 C concentration in litter layer (g·kg-1) | 凋落物层 N含量 N concentration in litter layer (g·kg-1) | 凋落物层 P含量 P concentration in litter layer (g·kg-1) | 凋落物层 C/N比 C/N ratio in litter layer | 凋落物层 C/P比 C/P ratio in litter layer | 凋落物层N/P比 N/P ratio in litter layer |
---|---|---|---|---|---|---|---|---|---|---|
LVQ | 5 185.4 ± 2 702.5a | 2 244.5 ± 1 153.9a | 2 029.6 ± 1 515.7a | 911.4 ± 653. 9a | 315.8 ± 25.3ac | 9.84 ± 0.3a | 0.30 ± 0.02a | 35.8 ± 2.6a | 1532.2 ± 95.2a | 41.5 ± 2.9a |
LCQ | 2 0591.5 ± 9 728.9b | 10 346.7 ± 7 143.2b | 5 443.0 ± 3 467.5a | 4 801.8 ± 1 030.2b | 277.2 ± 33.3a | 11.2 ± 0.9a | 0.34 ± 0.03ab | 26.0 ± 0.2b | 914.2 ± 69.4b | 35.7 ± 3.6a |
PLL | 129 112.7 ± 19 713.5c | 107 692.6 ± 16 361.6c | 16 332.9 ± 3 047.6b | 5 087.2 ± 1 246.1b | 424.1 ± 8.6b | 11.5 ± 0.5a | 0.33 ± 0.05ab | 38.0 ± 1.6a | 1389.7 ± 227.9ab | 36.6 ± 4.4a |
LAG | 148 975.4 ± 43 906.4c | 120 695.2 ± 13 647.7c | 24 400.4 ± 5 124.8c | 3 879.8 ± 1 171.5b | 332.3 ± 53.9c | 14.0 ± 0.2b | 0.38 ± 0.04b | 23.9 ± 3.5b | 953.1 ± 44.6b | 40.3 ± 4.0a |
恢复 阶段 Restoration stage | 土层 深度 Soil layer (cm) | 容重 Bulk density (g·cm-3) | 0.05-2 mm 砂粒百分含量 Soil sand (0.05-2 mm) percentage (%) | 0.002-0.05 mm粉粒百分含量 Soil silt (0.002- 0.05 mm) percentage (%) | <0.002 mm 黏粒百分含量 Soil clay (<0.002 mm) percentage (%) | pH | TP (g·kg-1) | AP (mg·kg-1) | C/N | C/P | N/P |
---|---|---|---|---|---|---|---|---|---|---|---|
LVR | 0-10 | 1.4 ± 0.2Aa | 43.6 ± 4.8Aa | 44.7 ± 6.4Aa | 11.7 ± 4.6Aa | 4.5 ± 0.2Aa | 0.17 ± 0.16Aa | 2.1 ± 0.7Aa | 22.4 ± 12.5Aa | 109.1 ± 44.7Aa | 5.3 ± 2.4Aa |
10-20 | 1.5 ± 0.1Aab | 39.5 ± 4.1Aa | 57.0 ± 5.2Ab | 3.5 ± 1.1Ab | 4.7 ± 0.2Ab | 0.12 ± 0.03Aab | 1.4 ± 0.6Ab | 20.0 ± 9.3Aab | 59.5 ± 51.4Ab | 3.3 ± 3.0Ab | |
20-30 | 1.5 ± 0.1Aab | 42.0 ± 5.6Aa | 56.5 ± 6.2Ab | 2.7 ± 0.9Ab | 4.8 ± 0.2Ab | 0.11 ± 0.04Ab | 1.3 ± 0.5Ab | 17.7 ± 9.5Aab | 42.9 ± 40.9Ab | 2.5 ± 2.2Ab | |
30-40 | 1.5 ± 0.1Ab | 43.1 ± 5.6Aa | 54.4 ± 6.1ACb | 2.5 ± 0.6Ab | 5.0 ± 0.2Ac | 0.11 ± 0.04Ab | 1.2 ± 0.5Ab | 13.7 ± 7.7ABb | 30.5 ± 37.4Ab | 2.5 ± 2.5Ab | |
LCQ | 0-10 | 1.4 ± 0.1Ab | 67.9 ± 2.1Ba | 21.6 ± 2.5Ba | 10.6 ± 2.4Aa | 4.8 ± 0.2Ba | 0.12 ± 0.03Aa | 2.6 ± 1.1ABa | 17.7 ± 6.8Aa | 164.4 ± 45.5Ba | 10.0 ± 3.1Ba |
10-20 | 1.6 ± 0.1Ab | 60.1 ± 11.1Bb | 27.2 ± 9.1Bb | 12.9 ± 5.0Ba | 4.9 ± 0.2ABab | 0.10 ± 0.03Ab | 1.9 ± 0.6Bab | 16.3 ± 4.6ABab | 90.2 ± 29.9Bb | 6.0 ± 2.8Bb | |
20-30 | 1.6 ± 0.1Ab | 63.3 ± 3.9Bab | 26.0 ± 4.9Bab | 10.7 ± 3.5Ba | 5.0 ± 0.2ABb | 0.09 ± 0.02Ab | 1.9 ± 0.7Bb | 17.0 ± 7.5ABab | 72.4 ± 47.2Bb | 4.8 ± 2.84Bbc | |
30-40 | 1.7 ± 0.0Bb | 63.4 ± 3.7Bab | 25.8 ± 5.0Bab | 10.8 ± 3.4Ba | 5.1 ± 0.2Ab | 0.10 ± 0.03Ab | 1.6 ± 0.7ABb | 12.5 ± 3.2Ab | 40.7 ± 17.7ABc | 3.5 ± 1.6ABc | |
PLL | 0-10 | 1.2 ± 0.3Aa | 49.0 ± 18.5Aa | 35.2 ± 14.0Ca | 15.8 ± 6.3Ba | 4.4 ± 0.2Ba | 0.15 ± 0.05Aa | 2.5 ± 0.9ABa | 21.5 ± 3.4Aa | 217.6 ± 54.6Ca | 10.2 ± 2.7Ba |
10-20 | 1.4 ± 0.2Aa | 45.2 ± 19.3Aa | 43.3 ± 18.0Ca | 11.6 ± 8.3Ba | 4.5 ± 0.3Bab | 0.13 ± 0.06Aa | 2.0 ± 0.4BCab | 20.1 ±6.5Aab | 103.6 ± 33.3Bb | 5.5 ± 2.1Bb | |
20-30 | 1.5 ± 0.2Aa | 43.0 ± 18.2Aa | 45.6 ± 19.4Ca | 11.5 ± 6.8Ba | 4.6 ± 0.3Bab | 0.11 ± 0.06Aa | 1.7 ± 0.8ABb | 16.6 ± 4.9ABb | 72.7 ± 26.5Bc | 4.5 ± 1.7Bbc | |
30-40 | 1.5 ± 0.1Aa | 41.2 ± 18.7Aa | 48.8 ± 19.7Aa | 10.1 ± 7.9Ba | 4.7 ± 0.3Ab | 0.13 ± 0.08Aa | 2.0 ± 1.5Bab | 17.1 ± 5.6Bb | 46.8 ± 22.4ABc | 3.1 ± 2.1Ac | |
LAG | 0-10 | 1.3 ± 0.1Aa | 26.1 ± 7.4Ca | 56.5 ± 8.4Da | 17.4 ± 4.2Ba | 4.4 ± 0.3Ca | 0.25 ± 0.05Ba | 2.8 ± 0.9Ba | 16.5 ± 2.9Aa | 151.4 ± 55.8Ba | 8.6 ± 3.7Ba |
10-20 | 1.4 ± 0.0Ab | 20.1 ± 3.6Cb | 61.2 ± 4.8Dab | 18.8 ± 4.8Ca | 4.6 ± 0.2Ca | 0.20 ± 0.04Bb | 2.5 ± 0.9Cab | 13.2 ± 1.2Bb | 84.7 ± 27.3ABb | 6.5 ± 2.1Bb | |
20-30 | 1.5 ± 0.0Ab | 21.8 ± 5.2Cab | 62.9 ± 5.0Ab | 15.3 ± 4.3Cab | 4.6 ± 0.2Ca | 0.19 ± 0.04Bb | 2.0 ± 1.0Bb | 11.9 ± 1.6Bb | 67.4 ± 25.0ABb | 5.6 ± 1.8Bb | |
30-40 | 1.5 ± 0.0Ab | 23.9 ± 6.3Cab | 62.5 ± 7.3Cb | 13.6 ± 4.5Bb | 4.6 ± 0.3Ca | 0.20 ± 0.05Bb | 1.9 ± 0.9ABb | 12.0 ± 1.7Ab | 63.3 ± 31.3Bb | 5.2 ± 2.4Bb |
Table 3 Soil physicochemical properties at different stages during vegetation restoration (mean ± SD)
恢复 阶段 Restoration stage | 土层 深度 Soil layer (cm) | 容重 Bulk density (g·cm-3) | 0.05-2 mm 砂粒百分含量 Soil sand (0.05-2 mm) percentage (%) | 0.002-0.05 mm粉粒百分含量 Soil silt (0.002- 0.05 mm) percentage (%) | <0.002 mm 黏粒百分含量 Soil clay (<0.002 mm) percentage (%) | pH | TP (g·kg-1) | AP (mg·kg-1) | C/N | C/P | N/P |
---|---|---|---|---|---|---|---|---|---|---|---|
LVR | 0-10 | 1.4 ± 0.2Aa | 43.6 ± 4.8Aa | 44.7 ± 6.4Aa | 11.7 ± 4.6Aa | 4.5 ± 0.2Aa | 0.17 ± 0.16Aa | 2.1 ± 0.7Aa | 22.4 ± 12.5Aa | 109.1 ± 44.7Aa | 5.3 ± 2.4Aa |
10-20 | 1.5 ± 0.1Aab | 39.5 ± 4.1Aa | 57.0 ± 5.2Ab | 3.5 ± 1.1Ab | 4.7 ± 0.2Ab | 0.12 ± 0.03Aab | 1.4 ± 0.6Ab | 20.0 ± 9.3Aab | 59.5 ± 51.4Ab | 3.3 ± 3.0Ab | |
20-30 | 1.5 ± 0.1Aab | 42.0 ± 5.6Aa | 56.5 ± 6.2Ab | 2.7 ± 0.9Ab | 4.8 ± 0.2Ab | 0.11 ± 0.04Ab | 1.3 ± 0.5Ab | 17.7 ± 9.5Aab | 42.9 ± 40.9Ab | 2.5 ± 2.2Ab | |
30-40 | 1.5 ± 0.1Ab | 43.1 ± 5.6Aa | 54.4 ± 6.1ACb | 2.5 ± 0.6Ab | 5.0 ± 0.2Ac | 0.11 ± 0.04Ab | 1.2 ± 0.5Ab | 13.7 ± 7.7ABb | 30.5 ± 37.4Ab | 2.5 ± 2.5Ab | |
LCQ | 0-10 | 1.4 ± 0.1Ab | 67.9 ± 2.1Ba | 21.6 ± 2.5Ba | 10.6 ± 2.4Aa | 4.8 ± 0.2Ba | 0.12 ± 0.03Aa | 2.6 ± 1.1ABa | 17.7 ± 6.8Aa | 164.4 ± 45.5Ba | 10.0 ± 3.1Ba |
10-20 | 1.6 ± 0.1Ab | 60.1 ± 11.1Bb | 27.2 ± 9.1Bb | 12.9 ± 5.0Ba | 4.9 ± 0.2ABab | 0.10 ± 0.03Ab | 1.9 ± 0.6Bab | 16.3 ± 4.6ABab | 90.2 ± 29.9Bb | 6.0 ± 2.8Bb | |
20-30 | 1.6 ± 0.1Ab | 63.3 ± 3.9Bab | 26.0 ± 4.9Bab | 10.7 ± 3.5Ba | 5.0 ± 0.2ABb | 0.09 ± 0.02Ab | 1.9 ± 0.7Bb | 17.0 ± 7.5ABab | 72.4 ± 47.2Bb | 4.8 ± 2.84Bbc | |
30-40 | 1.7 ± 0.0Bb | 63.4 ± 3.7Bab | 25.8 ± 5.0Bab | 10.8 ± 3.4Ba | 5.1 ± 0.2Ab | 0.10 ± 0.03Ab | 1.6 ± 0.7ABb | 12.5 ± 3.2Ab | 40.7 ± 17.7ABc | 3.5 ± 1.6ABc | |
PLL | 0-10 | 1.2 ± 0.3Aa | 49.0 ± 18.5Aa | 35.2 ± 14.0Ca | 15.8 ± 6.3Ba | 4.4 ± 0.2Ba | 0.15 ± 0.05Aa | 2.5 ± 0.9ABa | 21.5 ± 3.4Aa | 217.6 ± 54.6Ca | 10.2 ± 2.7Ba |
10-20 | 1.4 ± 0.2Aa | 45.2 ± 19.3Aa | 43.3 ± 18.0Ca | 11.6 ± 8.3Ba | 4.5 ± 0.3Bab | 0.13 ± 0.06Aa | 2.0 ± 0.4BCab | 20.1 ±6.5Aab | 103.6 ± 33.3Bb | 5.5 ± 2.1Bb | |
20-30 | 1.5 ± 0.2Aa | 43.0 ± 18.2Aa | 45.6 ± 19.4Ca | 11.5 ± 6.8Ba | 4.6 ± 0.3Bab | 0.11 ± 0.06Aa | 1.7 ± 0.8ABb | 16.6 ± 4.9ABb | 72.7 ± 26.5Bc | 4.5 ± 1.7Bbc | |
30-40 | 1.5 ± 0.1Aa | 41.2 ± 18.7Aa | 48.8 ± 19.7Aa | 10.1 ± 7.9Ba | 4.7 ± 0.3Ab | 0.13 ± 0.08Aa | 2.0 ± 1.5Bab | 17.1 ± 5.6Bb | 46.8 ± 22.4ABc | 3.1 ± 2.1Ac | |
LAG | 0-10 | 1.3 ± 0.1Aa | 26.1 ± 7.4Ca | 56.5 ± 8.4Da | 17.4 ± 4.2Ba | 4.4 ± 0.3Ca | 0.25 ± 0.05Ba | 2.8 ± 0.9Ba | 16.5 ± 2.9Aa | 151.4 ± 55.8Ba | 8.6 ± 3.7Ba |
10-20 | 1.4 ± 0.0Ab | 20.1 ± 3.6Cb | 61.2 ± 4.8Dab | 18.8 ± 4.8Ca | 4.6 ± 0.2Ca | 0.20 ± 0.04Bb | 2.5 ± 0.9Cab | 13.2 ± 1.2Bb | 84.7 ± 27.3ABb | 6.5 ± 2.1Bb | |
20-30 | 1.5 ± 0.0Ab | 21.8 ± 5.2Cab | 62.9 ± 5.0Ab | 15.3 ± 4.3Cab | 4.6 ± 0.2Ca | 0.19 ± 0.04Bb | 2.0 ± 1.0Bb | 11.9 ± 1.6Bb | 67.4 ± 25.0ABb | 5.6 ± 1.8Bb | |
30-40 | 1.5 ± 0.0Ab | 23.9 ± 6.3Cab | 62.5 ± 7.3Cb | 13.6 ± 4.5Bb | 4.6 ± 0.3Ca | 0.20 ± 0.05Bb | 1.9 ± 0.9ABb | 12.0 ± 1.7Ab | 63.3 ± 31.3Bb | 5.2 ± 2.4Bb |
Fig. 1 Soil organic carbon concentration at different stages during vegetation restoration (mean ± SD). LVR, Loropetalum chinense-Vaccinium bracteatum-Rhododendron simsii scrub- grass-land; LCQ, Loropetalum chinense-Cunninghamia lanceolata-Quercus fabri shrubbery; PLL, Pinus massoniana- Lithocarpus glaber-Loropetalum chinense coniferous-broad leaved mixed forest; LAG, Lithocarpus glaber-Cleyera japonica- Cyclobalanopsis glauca evergreen broad-leaved forest. Different capital letters represent significant differences among different vegetation restoration stages in the same soil layer (p < 0.05), and different lower letters indicate significant differences among different soil layers at the same vegetation restoration stage (p < 0.05).
项目 Item | 植物多样性指数Species diversity index | 群落总 生物量 Community total biomass | 地上部分 生物量 Aboveground biomass | 根系生 物量 Root biomass | 凋落物层 现存量 Existing biomass in litter layer | 凋落物层C含量 C concentration in litter layer | 凋落物层N含量 N concentration in litter layer | 凋落物层P含量 P concentration in litter layer | 凋落物层C/N比 C/N ratio in litter layer | 凋落物层C/P比 C/P ratio in litter layer | 凋落物层N/P比 N/P ratio in litter layer |
---|---|---|---|---|---|---|---|---|---|---|---|
CSOC | 0.293* | 0.479** | 0.473** | 0.478** | 0.456** | 0.162 | 0.459** | 0.378** | -0.240 | -0.279* | -0.070 |
DSOC | 0.326* | 0.476** | 0.468** | 0.495** | 0.470** | 0.102 | 0.496** | 0.424** | -0.318* | -0.348* | -0.083 |
Table 4 Pearson’s correlation coefficient between soil organic carbon concentration (CSOC), density (DSOC) and vegetation factors
项目 Item | 植物多样性指数Species diversity index | 群落总 生物量 Community total biomass | 地上部分 生物量 Aboveground biomass | 根系生 物量 Root biomass | 凋落物层 现存量 Existing biomass in litter layer | 凋落物层C含量 C concentration in litter layer | 凋落物层N含量 N concentration in litter layer | 凋落物层P含量 P concentration in litter layer | 凋落物层C/N比 C/N ratio in litter layer | 凋落物层C/P比 C/P ratio in litter layer | 凋落物层N/P比 N/P ratio in litter layer |
---|---|---|---|---|---|---|---|---|---|---|---|
CSOC | 0.293* | 0.479** | 0.473** | 0.478** | 0.456** | 0.162 | 0.459** | 0.378** | -0.240 | -0.279* | -0.070 |
DSOC | 0.326* | 0.476** | 0.468** | 0.495** | 0.470** | 0.102 | 0.496** | 0.424** | -0.318* | -0.348* | -0.083 |
项目 Item | 容重 Bulk density | 0.05-2 mm 砂粒百分含量 Soil sand percentage (0.05-2 mm) | 0.002-0.05 mm 粉粒百分含量 Soil silt percentage (0.002-0.05 mm) | <0.002 mm 黏粒百分含量 Soil clay percentage (<0.002 mm) | pH | TP | AP | C/N | C/P | N/P |
---|---|---|---|---|---|---|---|---|---|---|
CSOC | -0.678** | -0.246 | 0.027 | 0.637** | -0.666** | 0.568** | 0.727** | 0.277* | 0.792** | 0.780** |
DSOC | -0.551** | -0.209 | -0.007 | 0.623** | -0.623** | 0.564** | 0.752** | 0.2430 | 0.796** | 0.811** |
Table 5 Pearson’s correlation coefficient between soil organic carbon concentration (CSOC), density (DSOC) and soil factors
项目 Item | 容重 Bulk density | 0.05-2 mm 砂粒百分含量 Soil sand percentage (0.05-2 mm) | 0.002-0.05 mm 粉粒百分含量 Soil silt percentage (0.002-0.05 mm) | <0.002 mm 黏粒百分含量 Soil clay percentage (<0.002 mm) | pH | TP | AP | C/N | C/P | N/P |
---|---|---|---|---|---|---|---|---|---|---|
CSOC | -0.678** | -0.246 | 0.027 | 0.637** | -0.666** | 0.568** | 0.727** | 0.277* | 0.792** | 0.780** |
DSOC | -0.551** | -0.209 | -0.007 | 0.623** | -0.623** | 0.564** | 0.752** | 0.2430 | 0.796** | 0.811** |
因子 Factor | 主成分 Component | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
植物多样性指数 Species diversity index | 0.687 | -0.504 | -0.200 | -0.020 | -0.259 |
群落总生物量 Community total biomass | 0.877 | 0.247 | -0.056 | 0.301 | 0.169 |
地上部分生物量 Aboveground biomass | 0.862 | 0.279 | -0.054 | 0.311 | 0.162 |
根系部分生物量 Root biomass | 0.913 | 0.132 | -0.13 | 0.221 | 0.221 |
凋落物层现存量 Existing biomass in litter layer | 0.841 | -0.247 | 0.112 | 0.180 | 0.079 |
凋落物层C含量 C concentration in litter layer | 0.281 | 0.562 | 0.149 | 0.708 | 0.001 |
凋落物层N含量 N concentration in litter layer | 0.786 | -0.123 | -0.232 | -0.011 | 0.218 |
凋落物层P含量 P concentration in litter layer | 0.810 | -0.360 | -0.080 | 0.199 | -0.263 |
凋落物层C/N比 C/N ratio in litter layer | -0.522 | 0.625 | 0.241 | 0.501 | -0.106 |
凋落物层C/P比 C/P ratio in litter layer | -0.622 | 0.745 | 0.06 | 0.12 | 0.112 |
凋落物层N/P比 N/P ratio in litter layer | -0.204 | 0.439 | -0.3 | -0.533 | 0.577 |
土壤容重 Soil bulk density | -0.384 | -0.614 | -0.367 | 0.237 | 0.157 |
0.05-2 mm砂粒百分含量 Soil sand percentage (0.05-2.00 mm) | -0.531 | -0.57 | 0.549 | 0.187 | 0.078 |
0.002-0.05 mm粉粒百分含量 Soil silt percentage (0.002-0.05 mm) | 0.276 | 0.615 | -0.65 | -0.122 | -0.098 |
<0.002 mm黏粒百分含量 Soil clay percentage (<0.002 mm) | 0.914 | -0.023 | 0.174 | -0.21 | 0.043 |
土壤pH值 Soil pH value | -0.575 | -0.702 | -0.204 | 0.159 | 0.195 |
土壤全磷含量 Soil total phosphorus concentration | 0.631 | 0.342 | -0.248 | -0.457 | -0.291 |
土壤速效磷含量 Soil available phosphorus concentration | 0.656 | -0.095 | 0.482 | -0.204 | -0.187 |
土壤碳氮比 Soil C/N ratio | -0.244 | 0.446 | 0.616 | -0.205 | -0.273 |
土壤碳磷比 Soil C/P ratio | 0.350 | 0.066 | 0.861 | -0.155 | 0.191 |
土壤氮磷比 Soil N/P ratio | 0.499 | -0.120 | 0.720 | -0.172 | 0.296 |
贡献率 Contribution rate | 40.533 | 18.984 | 15.113 | 8.953 | 4.995 |
累积贡献率 Accumulative contribution rate | 40.533 | 59.517 | 74.630 | 83.583 | 88.578 |
Table 6 The principle component loading matrix, eigenvalue, contribution rate for vegetation and soil factors
因子 Factor | 主成分 Component | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
植物多样性指数 Species diversity index | 0.687 | -0.504 | -0.200 | -0.020 | -0.259 |
群落总生物量 Community total biomass | 0.877 | 0.247 | -0.056 | 0.301 | 0.169 |
地上部分生物量 Aboveground biomass | 0.862 | 0.279 | -0.054 | 0.311 | 0.162 |
根系部分生物量 Root biomass | 0.913 | 0.132 | -0.13 | 0.221 | 0.221 |
凋落物层现存量 Existing biomass in litter layer | 0.841 | -0.247 | 0.112 | 0.180 | 0.079 |
凋落物层C含量 C concentration in litter layer | 0.281 | 0.562 | 0.149 | 0.708 | 0.001 |
凋落物层N含量 N concentration in litter layer | 0.786 | -0.123 | -0.232 | -0.011 | 0.218 |
凋落物层P含量 P concentration in litter layer | 0.810 | -0.360 | -0.080 | 0.199 | -0.263 |
凋落物层C/N比 C/N ratio in litter layer | -0.522 | 0.625 | 0.241 | 0.501 | -0.106 |
凋落物层C/P比 C/P ratio in litter layer | -0.622 | 0.745 | 0.06 | 0.12 | 0.112 |
凋落物层N/P比 N/P ratio in litter layer | -0.204 | 0.439 | -0.3 | -0.533 | 0.577 |
土壤容重 Soil bulk density | -0.384 | -0.614 | -0.367 | 0.237 | 0.157 |
0.05-2 mm砂粒百分含量 Soil sand percentage (0.05-2.00 mm) | -0.531 | -0.57 | 0.549 | 0.187 | 0.078 |
0.002-0.05 mm粉粒百分含量 Soil silt percentage (0.002-0.05 mm) | 0.276 | 0.615 | -0.65 | -0.122 | -0.098 |
<0.002 mm黏粒百分含量 Soil clay percentage (<0.002 mm) | 0.914 | -0.023 | 0.174 | -0.21 | 0.043 |
土壤pH值 Soil pH value | -0.575 | -0.702 | -0.204 | 0.159 | 0.195 |
土壤全磷含量 Soil total phosphorus concentration | 0.631 | 0.342 | -0.248 | -0.457 | -0.291 |
土壤速效磷含量 Soil available phosphorus concentration | 0.656 | -0.095 | 0.482 | -0.204 | -0.187 |
土壤碳氮比 Soil C/N ratio | -0.244 | 0.446 | 0.616 | -0.205 | -0.273 |
土壤碳磷比 Soil C/P ratio | 0.350 | 0.066 | 0.861 | -0.155 | 0.191 |
土壤氮磷比 Soil N/P ratio | 0.499 | -0.120 | 0.720 | -0.172 | 0.296 |
贡献率 Contribution rate | 40.533 | 18.984 | 15.113 | 8.953 | 4.995 |
累积贡献率 Accumulative contribution rate | 40.533 | 59.517 | 74.630 | 83.583 | 88.578 |
因子 Factor | 模型 Model | ||
---|---|---|---|
1 | 2 | 3 | |
土壤碳磷比 Soil C/P ratio | 0.141 | 0.111 | 0.101 |
土壤pH值 Soil pH value | -17.073 | -19.492 | |
凋落物层C/P比 C/P ratio in litter layer | -0.009 | ||
常数项 Constant term | -0.285 | 82.592 | 105.516 |
多元相关系数 Multiple correlation coefficient (R) | 0.792 | 0.874 | 0.912 |
调整判定系数 Adjust R2 | 0.620 | 0.755 | 0.820 |
F | 84.203 | 79.603 | 78.584 |
p | 0.000 | 0.000 | 0.000 |
Table 7 The stepwise regression analysis for main influencing factors of soil organic carbon concentration
因子 Factor | 模型 Model | ||
---|---|---|---|
1 | 2 | 3 | |
土壤碳磷比 Soil C/P ratio | 0.141 | 0.111 | 0.101 |
土壤pH值 Soil pH value | -17.073 | -19.492 | |
凋落物层C/P比 C/P ratio in litter layer | -0.009 | ||
常数项 Constant term | -0.285 | 82.592 | 105.516 |
多元相关系数 Multiple correlation coefficient (R) | 0.792 | 0.874 | 0.912 |
调整判定系数 Adjust R2 | 0.620 | 0.755 | 0.820 |
F | 84.203 | 79.603 | 78.584 |
p | 0.000 | 0.000 | 0.000 |
因子 Factor | 模型 Model | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
土壤C/P比 Soil C/P ratio | 0.172 | 0.141 | 0.127 | 0.124 |
<0.002 mm黏粒百分含量 Soil clay percentage (< 0.002 mm) | 0.763 | 0.565 | 0.107 | |
土壤pH值 Soil pH value | -12.315 | -20.204 | ||
凋落物层C/P比 C/P ratio in litter layer | -0.012 | |||
常数项 Constant term | 1.416 | -4.094 | 57.112 | 114.025 |
多元相关系数 Multiple correlation coefficient (R) | 0.796 | 0.865 | 0.889 | 0.916 |
调整判定系数 Adjust (R2) | 0.626 | 0.739 | 0.776 | 0.825 |
F | 86.325 | 73.058 | 60.022 | 61.066 |
p | 0.000 | 0.000 | 0.000 | 0.000 |
Table 8 The stepwise regression analysis for main influencing factors of soil organic carbon density
因子 Factor | 模型 Model | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
土壤C/P比 Soil C/P ratio | 0.172 | 0.141 | 0.127 | 0.124 |
<0.002 mm黏粒百分含量 Soil clay percentage (< 0.002 mm) | 0.763 | 0.565 | 0.107 | |
土壤pH值 Soil pH value | -12.315 | -20.204 | ||
凋落物层C/P比 C/P ratio in litter layer | -0.012 | |||
常数项 Constant term | 1.416 | -4.094 | 57.112 | 114.025 |
多元相关系数 Multiple correlation coefficient (R) | 0.796 | 0.865 | 0.889 | 0.916 |
调整判定系数 Adjust (R2) | 0.626 | 0.739 | 0.776 | 0.825 |
F | 86.325 | 73.058 | 60.022 | 61.066 |
p | 0.000 | 0.000 | 0.000 | 0.000 |
[1] |
Aerts R ( 1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 79, 439-449.
DOI URL |
[2] |
Berger TW, Neubauer C, Glatzel G ( 2002). Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. Forest Ecology and Management, 159, 3-14.
DOI URL |
[3] | Bi JD, Li YL, Ning ZY, Zhao XY ( 2016). Carbon mineralization and decomposition of litters from dominant plants in the Horqin Sandy Land: Effect of litter quality. Journal of Desert Research, 36, 85-92. |
[ 毕京东, 李玉霖, 宁志英, 赵学勇 ( 2016). 科尔沁沙地优势植物叶凋落物分解及碳矿化——凋落物质量的影响. 中国沙漠, 36, 85-92.] | |
[4] |
Cao J, Yan WD, Xiang WH, Chen XY, Lei PF ( 2015). Stoichiometry characterization of soil C, N and P of Chinese fir plantations at three different ages in Huitong, Hunan Province, China. Scientia Silvae Sinicae, 51(7), 1-8.
DOI URL |
[ 曹娟, 闫文德, 项文化, 谌小勇, 雷丕锋 ( 2015). 湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征. 林业科学, 51(7), 1-8.]
DOI URL |
|
[5] |
Castro H, Fortunel C, Freitas H ( 2010). Effects of land abandonment on plant litter decomposition in a Montado system: Relation to litter chemistry and community functional parameters. Plant and Soil, 333, 181-190.
DOI URL |
[6] |
Chen J, Yang N ( 2016). Effect of re-vegetation on active organic carbon pool of purple soils on sloping-land in Hengyang, Hunan Province, China. Journal of Tropical and Subtropical Botany, 24, 568-576.
DOI URL |
[ 陈璟, 杨宁 ( 2016). 衡阳紫色土丘陵坡地植被恢复对土壤活性有机碳库的影响. 热带亚热带植物学报, 24, 568-576.]
DOI URL |
|
[7] | Chen LZ, Xie BY, Xiao WF, Huang ZL ( 2007). Organic carbon storage in soil under the major forest vegetation types in the Three Gorges Reservior area. Resources and Environment in the Yangtze Basin, 16, 640-643. |
[ 陈亮中, 谢宝元, 肖文发, 黄志霖 ( 2007). 三峡库区主要森林植被类型土壤有机碳贮量研究. 长江流域资源与环境, 16, 640-643.] | |
[8] |
Chen S, Huang Y, Zou J, Shi Y ( 2013). Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen. Global and Planetary Change, 100, 99-108.
DOI URL |
[9] | Dai QH, Liu GB, Xue S, Yu N, Zhang C, Lan X ( 2008). Effect of different vegetation restoration on soil carbon and carbon management index in eroded Hilly Loess Plateau. Research of Soil and Water Conservation, 15(3), 61-64. |
[ 戴全厚, 刘国彬, 薛萐, 于娜, 张超, 兰雪 ( 2008). 不同植被恢复模式对黄土丘陵区土壤碳库及其管理指数的影响. 水土保持研究, 15(3), 61-64.] | |
[10] |
Deng L, Wang KB, Chen ML, Shangguan ZP, Sweeney S ( 2013). Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. Catena, 110, 1-7.
DOI URL |
[11] | Ding FJ, Pan ZS, Zhou FJ, Wu P ( 2012). Organic carbon contents and vertical distribution characteristics of the soil in the three forest types of the karst regions in central Guizhou Province. Journal of Soil and Water Conservation, 26(1), 161-164. |
[ 丁访军, 潘忠松, 周凤娇, 吴鹏 ( 2012). 黔中喀斯特地区3种林型土壤有机碳含量及垂直分布特征. 水土保持学报, 26(1), 161-164.] | |
[12] |
Du H, Zeng FP, Song TQ, Wen YG, Li CG, Peng WX, Zhang H, Zeng ZX ( 2016). Spatial pattern of soil organic carbon of the main forest soils and its influencing factors in Guangxi, China. Chinese Journal of Plant Ecology, 40, 282-291.
DOI URL |
[ 杜虎, 曾馥平, 宋同清, 温远光, 李春干, 彭晚霞, 张浩, 曾昭霞 ( 2016). 广西主要森林土壤有机碳空间分布及其影响因素. 植物生态学报, 40, 282-291.]
DOI URL |
|
[13] |
Fang J, Chen A, Peng C, Zhao S, Ci L ( 2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
DOI URL PMID |
[14] |
Fisk M, Santangelo S, Minick K ( 2015). Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests. Soil Biology & Biochemistry, 81, 212-218.
DOI URL |
[15] | Fu DL, Liu MY, Liu L, Zhang K, Zuo JX ( 2014). Organic carbon density and storage in different soils on the Loess Plateau. Arid Zone Research, 1, 44-50. |
[ 付东磊, 刘梦云, 刘林, 张琨, 左进香 ( 2014). 黄土高原不同土壤类型有机碳密度与储量特征. 干旱区研究, 31, 44-50.] | |
[16] |
Gong W, Hu XT, Wang JY, Gong YB, Ran H ( 2008). Soil carbon pool and fertility under natural evergreen broad-leaved forest and its artificial regeneration forests in Southern Sichuan Province. Acta Ecologica Sinica, 28, 2536-2545.
DOI URL |
[ 龚伟, 胡庭兴, 王景燕, 宫渊波, 冉华 ( 2008). 川南天然常绿阔叶林人工更新后土壤碳库与肥力的变化. 生态学报, 28, 2536-2545.]
DOI URL |
|
[17] |
Grüneberg E, Schöning I, Hessenmöller D, Schulze ED, Weisser WW ( 2013). Organic layer and clay content control soil organic carbon stocks in density fractions of differently managed German beech forests. Forest Ecology and Management, 303, 1-10.
DOI URL |
[18] | Gu X, Fang X, Xiang WH, Li SL, Sun WJ ( 2013). Soil organic carbon and mineralizable organic carbon in four subtropical forests in hilly region of central Hunan Province, China. Chinese Journal of Ecology, 32, 2687-2694. |
[ 辜翔, 方晰, 项文化, 李胜蓝, 孙伟军 ( 2013). 湘中丘陵区4种森林类型土壤有机碳和可矿化有机碳的比较. 生态学杂志, 32, 2687-2649.] | |
[19] |
Guo SL, Ma YH, Che SG, Sun WY ( 2009). Effects of artificial and natural vegetations on litter production and soil organic carbon change in loess hilly areas. Scientia Silvae Sinicae, 45(10), 14-48.
DOI |
[ 郭胜利, 马玉红, 车升国, 孙文义 ( 2009). 黄土区人工与天然植被对凋落物量和土壤有机碳变化的影响. 林业科学, 45(10), 14-18.]
DOI |
|
[20] |
Harrison-Kirk T, Beare MH, Meenken ED, Condron LM ( 2013). Soil organic matter and texture affect responses to dry/wet cycles: Effects on carbon dioxide and nitrous oxide emissions. Soil Biology & Biochemistry, 57, 43-55.
DOI URL |
[21] |
Herbert DA, Williams M, Rastetter EB ( 2003). Amodel analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 65, 121-150.
DOI URL |
[22] | Huang ZS, Yu LF, Fu YH ( 2012). Characteristics of soil mineralizable carbon pool in natural restoration process of karst forest vegetation. Chinese Journal of Applied Ecology, 23, 2165-2170. |
[ 黄宗胜, 喻理飞, 符裕红 ( 2012). 喀斯特森林植被自然恢复过程中土壤可矿化碳库特征. 应用生态学报, 23, 2165-2170.] | |
[23] |
Jha P, De A, Lakaria BL, Biswas AK, Singh M, Reddy KS, Rao AS ( 2012). Soil carbon pools, mineralization and fluxes associated with land use change in vertisols of Central India. Natinal Academy Science Letters, 35, 475-483.
DOI URL |
[24] |
Jia GM, Cao J, Wang C, Wang G ( 2005). Microbial biomass and nutrients in soils at the different stages of secondary forest succession in Ziwulin, northwest China. Forest Ecology and Management, 217, 117-125.
DOI URL |
[25] |
Kunkel ML, Flores AN, Smith TJ, Mcnamara JP, Benner SG ( 2011). A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. Geoderma, 165, 1-11.
DOI URL |
[26] |
Lal R ( 1999). Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Progress in Environmental Science, 1, 307-326.
DOI URL |
[27] | Li B, Fang X, Li Y, Xiang WH, Tian DL, Chen XY, Yan WD, Deng DH ( 2015). Dynamic properties of soil organic carbon in Hunan’s forests. Acta Ecologica Sinica, 35, 4265-4278. |
[ 李斌, 方晰, 李岩, 项文化, 田大伦, 谌小勇, 闫文德, 邓东华 ( 2015). 湖南省森林土壤有机碳密度及碳库储量动态. 生态学报, 35, 4265-4278.] | |
[28] | Li SJ, Qiu LP, Zhang XC ( 2010). Mineralization of soil organic carbon and its relations with soil physical and chemical properties on the Loess Plateau. Acta Ecologica Sinica, 30, 1217-1226. |
[ 李顺姬, 邱莉萍, 张兴昌 ( 2010). 黄土高原土壤有机碳矿化及其与土壤理化性质的关系. 生态学报, 30, 1217-1226.] | |
[29] | Liang QP, Yu XX, Pang Z, Wang C, Lü XZ ( 2010). Study on soil organic carbon density of different forest types. Ecology and Environmental Sciences, 19, 889-893. |
[ 梁启鹏, 余新晓, 庞卓, 王琛, 吕锡芝 ( 2010). 不同林分土壤有机碳密度研究. 生态环境学报, 19, 889-893.] | |
[30] |
Liu C, Xiang WH, Lei PF, Deng XW, Tian DL, Fang X, Peng CH ( 2014). Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient. Plant and Soil, 376, 445-459.
DOI URL |
[31] | Liu JS, Yang JS, Yu JB, Wang JD ( 2003). Study on vertical distribution of soil organic carbon in wetlands Sanjiang Plain. Journal of Soil and Water Conservation, 17(3), 5-8. |
[ 刘景双, 杨继松, 于君宝, 王金达 ( 2003). 三江平原沼泽湿地土壤有机碳垂直分布特征研究. 水土保持学报, 17(3), 5-8.] | |
[32] | Liu SR, Wang H, Luan JW ( 2011). A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China. Acta Ecologica Sinica, 31, 5437-5448. |
[ 刘世荣, 王晖, 栾军伟 ( 2011). 中国森林土壤碳储量与土壤碳过程研究进展. 生态学报, 31, 5437-5448.] | |
[33] |
Liu W, Chen S, Qin X, Baumann F, Scholten T, Zhou Z, Sun W, Zhang T, Ren J, Qin D ( 2012). Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environmental Research Letters, 7, 35401-35412.
DOI URL |
[34] | Liu WD, Su JR, Li SF, Zhang ZJ, Li ZW ( 2010). Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broad-leaved forest in Pu’er, Yunnan Province. Acta Ecologica Sinica, 30, 6581-6590. |
[ 刘万德, 苏建荣, 李帅锋, 张志钧, 李忠文 ( 2010). 云南普洱季风常绿阔叶林演替系列植物和土壤 C、N、P 化学计量特征. 生态学报, 30, 6581-6590.] | |
[35] | Liu ZH, Chen LX, Wang LL ( 2009). Soil active carbon in soils under different stages of Korean pine and broadleaf forest. Chinese Journal of Soil Science, 40, 1088-1103. |
[ 刘振花, 陈立新, 王琳琳 ( 2009). 红松阔叶混交林不同演替阶段土壤活性有机碳的研究. 土壤通报, 40, 1088-1103.] | |
[36] |
McKane RB, Rastetter EB, Melillo JM, Shaver GR, Hopkinson CS, Fernandes DN ( 1995). Effects of global change on carbon storage in tropical forests of South America. Global Biogeochemical Cycle, 9, 329-350.
DOI URL |
[37] |
Motavalli PP, Palm CA, Parton CA, Elliott ET, Frey SD ( 1995). Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies. Soil Biology & Biochemistry, 27, 1589-1599.
DOI URL |
[38] |
Post WM, Kwon KC ( 2000). Soil carbon sequestration and land-use change: Processes and Potential. Global Change Biology, 6, 317-327.
DOI URL |
[39] |
Ramesh T, Manjaiah KM, Mohopatra KP, Rajasekar K, Ngachan SV ( 2015). Assessment of soil organic carbon stocks and fractions under different agroforestry systems in subtropical hill agroecosystems of north-east India. Agroforestry Systems, 89, 677-690.
DOI URL |
[40] |
Reichstein M, Bahn M, Ciais P, Frank D, Mahecha1 MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M ( 2013). Climate extremes and the carbon cycle. Nature, 500, 287-295.
DOI URL PMID |
[41] |
Sá JCDM, Lal R ( 2009). Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil and Tillage Research, 103, 46-56.
DOI URL |
[42] | Sun BW, Yang XD, Zhang ZH, Ma WJ, Arshad A, Huang HX, Yan ER ( 2013). Relationships between soil carbon pool and vegetation carbon return through succession of evergreen broad-leaved forests in Tiantong region, Zhejiang Province, Eastern China. Chinese Journal of Plant Ecology, 37, 803-810. |
[ 孙宝伟, 杨晓东, 张志浩, 马文济, Ali Arshad, 黄海侠, 阎恩荣 ( 2013). 浙江天童常绿阔叶林演替过程中土壤碳库与植被碳归还的关系. 植物生态学报, 37, 803-810.] | |
[43] |
Sun WJ, Fang X, Xiang WH, Zhang SJ, Li SL ( 2013). Active pools of soil organic carbon in subtropical forests at different successional stages in Central Hunan, China. Acta Ecologica Sinica, 33, 7765-7773.
DOI URL |
[ 孙伟军, 方晰, 项文化, 张仕吉, 李胜蓝 ( 2013). 湘中丘陵区不同演替阶段森林土壤活性有机碳库特征. 生态学报, 33, 7765-7773.]
DOI URL |
|
[44] |
Tang PH, Dang KL, Wang LH, Ma J ( 2016). Factors affecting soil organic carbon density in Betula albo-sinensis forests on the southern slope of the Qinling Mountains. Acta Ecologica Sinica, 36, 1030-1039.
DOI URL |
[ 唐朋辉, 党坤良, 王连贺, 马俊 ( 2016). 秦岭南坡红桦林土壤有机碳密度影响因素. 生态学报, 36, 1030-1039.]
DOI URL |
|
[45] |
Wang H, Hall CAS ( 2004). Modeling the effects of Hurricane Hugo on spatial and temporal variation in primary productivity and soil carbon and nitrogen in the Luquillo Experimental Forest, Puerto Rico. Plant and Soil, 263, 69-84.
DOI URL |
[46] | Wang SF, Wang XK, Ouyang ZY ( 2012). Factors controlling soil organic carbon and total nitrogen densities in the upstream watershed of Miyun Reservoir, north China. Environmental Science, 33, 946-951. |
[ 王淑芳, 王效科, 欧阳志云 ( 2012). 密云水库上游流域土壤有机碳和全氮密度影响因素研究. 环境科学, 33, 946-951.] | |
[47] |
Wang YF, Fu BJ, Lü YH, Chen LD ( 2011). Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. Catena, 85, 58-66.
DOI URL |
[48] |
Weintraub MN, Schimel JP ( 2003). Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils. Ecosystems, 6, 129-143.
DOI URL |
[49] |
Wynn JG, Bird MI, Vellen L, Grand-Clement E, Carter J, Berry SL ( 2006). Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Global Biogeochemical Cycles, 20, 1-12.
DOI URL |
[50] |
Xiang WH, Zhou J, Ouyang S, Zhang SL, Lei PF, Li JX, Deng XW, Fang X, Forrester DI ( 2016). Species-specific and general allometric equations for estimating tree biomass components of subtropical forests in southern China. European Journal of Forest Research, 135, 1-17.
DOI URL |
[51] |
Xue S, Liu GB, Pan YP, Dai QH, Zhang C, Yu N ( 2009). Evolution of soil labile organic matter and carbon management index in the artificial Robinia of loess hilly area. Scientia Agricultura Sinica, 42, 1458-1464.
DOI URL |
[ 薛萐, 刘国彬, 潘彦平, 戴全厚, 张超, 余娜 ( 2009). 黄土丘陵区人工刺槐林土壤活性有机碳与碳库管理指数演变. 中国农业科学, 42, 1458-1464.]
DOI URL |
|
[52] |
You LH, Ye GF, Chen ZH, Luo MJ, Gao W, You SS ( 2014). Litter decomposition and initial nutrient content of major dominant tree species on coastal sandy areas. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 43, 585-591.
DOI URL |
[ 尤龙辉, 叶功富, 陈增鸿, 罗美娟, 高伟, 游水生 ( 2014). 滨海沙地主要优势树种的凋落物分解及其与初始养分含量的关系. 福建农林大学学报(自然科学版), 43, 585-591.]
DOI URL |
|
[53] |
Zak DR, Holmes WE, Burton AJ, Pregitzer KS, Talhelm AF ( 2008). Simulated atmospheric NO -3 deposition increases soil organic matter by slowing decomposition . Ecological Applications, 18, 2016-2027.
DOI URL PMID |
[54] |
Zhang X, Han SJ, Wang SQ, Gu Y, Yue LY, Feng Y, Geng SC, Chen ZJ ( 2016). Change of soil organic carbon fractions at different successional stages of Betula platyphylla forest in Changbai Mountains. Chinese Journal of Ecology, 35, 282-289.
DOI URL |
[ 张雪, 韩士杰, 王树起, 谷越, 岳琳艳, 冯月, 耿世聪, 陈志杰 ( 2016). 长白山白桦林不同演替阶段土壤有机碳组分的变化. 生态学杂志, 35, 282-289.]
DOI URL |
|
[55] |
Zhao YG, Liu XF, Wang ZL, Zhao SW ( 2015). Soil organic carbon fractions and sequestration across a 150-yr secondary forest chronosequence on the Loess Plateau, China. Catena, 133, 303-308.
DOI URL |
[56] |
Zhu LQ, Huang RZ, Duan HL, Jia L, Wang H, Huang SH, Yi ZQ, Zhang WF ( 2017). Effects of artificially restored forests on soil organic carbon and active organic carbon in eroded red soil. Acta Ecologica Sinica, 37, 249-257.
DOI URL |
[ 朱丽琴, 黄荣珍, 段洪浪, 贾龙, 王赫, 黄诗华, 易志强, 张文锋 ( 2017). 红壤侵蚀地不同人工恢复林对土壤总有机碳和活性有机碳的影响. 生态学报, 37, 249-257.]
DOI URL |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | CHEN Xue-Ping, ZHAO Xue-Yong, ZHANG Jing, WANG Rui-Xiong, LU Jian-Nan. Variation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin Sandy Land, China [J]. Chin J Plant Ecol, 2023, 47(8): 1082-1093. |
[3] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[4] | CUI Guang-Shuai, LUO Tian-Xiang, LIANG Er-Yuan, ZHANG Lin. Advances in the study of shrubland facilitation on herbs in arid and semi-arid regions [J]. Chin J Plant Ecol, 2022, 46(11): 1321-1333. |
[5] | ZHU Hua. Vegetation geography of evergreen broad-leaved forests in Yunnan, southwestern China [J]. Chin J Plant Ecol, 2021, 45(3): 224-241. |
[6] | DENG Meng-Da, YOU Jian-Rong, LI Jia-Xiang, LI Xiong, YANG Jing, DENG Chuang-Fa, LIU Ang, LIU Wen-Jian, DING Cong, XIE Yong, ZHOU Guo-Hui, YU Xun-Lin. Community characteristics of main vegetation types in the ecological “green-core” area of Changzhutan urban cluster [J]. Chin J Plant Ecol, 2020, 44(12): 1296-1304. |
[7] | MO Dan, WANG Zhen-Meng, ZUO You-Lu, XIANG Shuang. Trade-off between shooting and leaf developing of woody species saplings in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2020, 44(10): 995-1006. |
[8] | CHEN Chan, ZHANG Shi-Ji, LI Lei-Da, LIU Zhao-Dan, CHEN Jin-Lei, GU Xiang, WANG Liu-Fang, FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671. |
[9] | WANG Ming-Ming,LIU Xin-Ping,HE Yu-Hui,ZHANG Tong-Hui,WEI Jing,Chelmge ,SUN Shan-Shan. How enclosure influences restored plant community changes of different initial types in Horqin Sandy Land [J]. Chin J Plant Ecol, 2019, 43(8): 672-684. |
[10] | FAN Hai-Dong, CHEN Hai-Yan, WU Yan-Nan, LIU Jian-Feng, XU De-Yu, CAO Jia-Yu, YUAN Quan, TAN Bin, LIU Xiao-Tong, XU Jia, WANG Guo-Min, HAN Wen-Juan, LIU Li-Bin, NI Jian. Community characteristics of main vegetation types on the southern slope of Beishan Mountain in Jinhua, Zhejiang, China [J]. Chin J Plant Ecol, 2019, 43(10): 921-928. |
[11] | CHEN Lin, WANG Lei, YANG Xin-Guo, SONG Nai-Ping, LI Yue-Fei, SU Ying, BIAN Ying-Ying, ZHU Zhong-You, MENG Wen-Ting. Reproductive characteristics of Artemisia scoparia and the analysis of the underlying soil drivers in a desert steppe of China [J]. Chin J Plant Ecol, 2019, 43(1): 65-76. |
[12] | YU Xiao-Ya, LI Yu-Hui, YANG Guang-Rong. Fruit types and seed dispersal modes of plants in different communities in Shilin Geopark, Yunnan, China [J]. Chin J Plant Ecol, 2018, 42(6): 663-671. |
[13] | Shun ZOU, Guo-Yi ZHOU, Qian-Mei ZHANG, Shan XU, Xin XIONG, Yan-Ju XIA, Shi-Zhong LIU, Ze MENG, Guo-Wei CHU. Long-term (1992-2015) dynamics of community composition and structure in a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve [J]. Chin J Plant Ecol, 2018, 42(4): 442-452. |
[14] | Han-Dong WEN, Lu-Xiang LIN, Jie YANG, Yue-Hua HU, Min CAO, Yu-Hong LIU, Zhi-Yun LU, You-Neng XIE. Species composition and community structure of a 20 hm2 plot of mid-mountain moist evergreen broad-leaved forest on the Mts. Ailaoshan, Yunnan Province, China [J]. Chin J Plant Ecol, 2018, 42(4): 419-429. |
[15] | GU Xiang, ZHANG Shi-Ji, LIU Zhao-Dan, LI Lei-Da, CHEN Jin-Lei, WANG Liu-Fang, FANG Xi. Effects of vegetation restoration on soil organic carbon mineralization in the east of Hunan, China [J]. Chin J Plant Ecol, 2018, 42(12): 1211-1224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn