植物生态学报 ›› 2023, Vol. 47 ›› Issue (2): 227-237.DOI: 10.17521/cjpe.2022.0100
刘美君1,2, 陈秋文1,2, 吕金林3,4, 李国庆1,3, 杜盛1,3,*()
收稿日期:
2022-03-18
接受日期:
2022-07-06
出版日期:
2023-02-20
发布日期:
2023-02-28
通讯作者:
ORCID: *杜盛: 0000-0002-5580-399X(shengdu@ms.iswc.ac.cn)
基金资助:
LIU Mei-Jun1,2, CHEN Qiu-Wen1,2, LÜ Jin-Lin3,4, LI Guo-Qing1,3, DU Sheng1,3,*()
Received:
2022-03-18
Accepted:
2022-07-06
Online:
2023-02-20
Published:
2023-02-28
Contact:
*(Supported by:
摘要:
树干径向生长和微变化动态受树种特性和环境因子的综合影响, 是树木响应环境因子的重要表征。解析树干直径在不同时间尺度上的动态特征是探明树木水分生理生态特性的重要途径, 在水分胁迫风险较高的半干旱地区更具有特殊意义。该研究以半干旱黄土丘陵区两典型造林树种辽东栎(Quercus mongolica var. liaotungensis)和刺槐(Robinia pseudoacacia)为对象, 运用DC3型高精度树干径向变化记录仪监测树干直径变化动态, 同步测定土壤水分动态和驱动蒸腾作用的主要气象因子, 分析两树种树干径向生长特征、直径微变化日动态与季节动态及其对环境因子的响应。结果表明, 两树种树干直径的季节性变化可划分为非生长季收缩阶段、过渡阶段和生长季增长阶段。辽东栎和刺槐径向生长启动时间分别为4月7日和5月4日前后, 9月下旬基本停止生长; 在生长阶段直径变化可分别利用指数饱和增长函数和线性增长函数拟合。两树种直径日变化模式在11月至次年3月为典型的非生长季模式, 6-9月为典型的生长季模式, 而在4-5月两树种的直径日变化模式不同, 反映了两树种的生长节律和物候期差异。非生长季两树种直径日最大收缩量均与气温、空气水汽压亏缺呈显著负相关关系, 而在生长季呈显著正相关关系。非生长季直径的收缩和膨胀受气温的影响较大, 生长季直径的日变化主要受蒸腾导致的树体内水分动态变化的影响。采用直径逐日变化量表征树体蒸腾失水量, 在自然差异的两个土壤水分条件下辽东栎单位空气水汽压亏缺的蒸腾失水量差异显著, 表明蒸腾耗水对驱动因子的响应程度发生调整, 而刺槐未达到显著水平。研究结果对于深入揭示两树种直径微变化机理以及在土壤水分变化时叶部蒸腾的调节策略具有重要贡献。
刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征. 植物生态学报, 2023, 47(2): 227-237. DOI: 10.17521/cjpe.2022.0100
LIU Mei-Jun, CHEN Qiu-Wen, LÜ Jin-Lin, LI Guo-Qing, DU Sheng. Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region. Chinese Journal of Plant Ecology, 2023, 47(2): 227-237. DOI: 10.17521/cjpe.2022.0100
树种 Species | 样树编号 Sample tree No. | 树高 Tree height (m) | 胸径 DBH (cm) |
---|---|---|---|
辽东栎 Q. mongolica var. liaotungensis | 1 | 6.9 | 20.2 |
2 | 6.9 | 25.9 | |
3 | 6.9 | 17.5 | |
刺槐 R. pseudoacacia | 4 | 8.1 | 13.3 |
5 | 8.8 | 16.1 | |
6 | 9.1 | 12.9 |
表1 黄土丘陵区辽东栎和刺槐供试样树的基本信息
Table 1 Basic information of the sample trees of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in the loess hilly region
树种 Species | 样树编号 Sample tree No. | 树高 Tree height (m) | 胸径 DBH (cm) |
---|---|---|---|
辽东栎 Q. mongolica var. liaotungensis | 1 | 6.9 | 20.2 |
2 | 6.9 | 25.9 | |
3 | 6.9 | 17.5 | |
刺槐 R. pseudoacacia | 4 | 8.1 | 13.3 |
5 | 8.8 | 16.1 | |
6 | 9.1 | 12.9 |
图1 实验期间日降雨量、日平均气温、日平均光合有效辐射及辽东栎和刺槐日最大直径变化动态。I, 日平均气温及15天滑动平均值; II, 日平均光合有效辐射及15天滑动平均值; III, 辽东栎直径日最大变化量及15天滑动平均值; IV, 刺槐直径日最大变化量及15天滑动平均值; P, 降雨量。
Fig. 1 Dynamics of daily precipitation, average daily air temperature, average daily photosynthetically active radiation and daily maximum stem diameter variation of Quercus mongolica var. liaotungensis and Robinia pseudoacacia during the experiment. I, average daily air temperature and 15-day moving average; II, average daily photosynthetically active radiation and 15-day moving average; III, maximum daily variation in stem diameter and 15-day moving average of Q. mongolica var. liaotungensis; IV, maximum daily variation in stem diameter and 15-day moving average of R. pseudoacacia; P, precipitation.
图2 生长季内辽东栎和刺槐树干直径的径向生长规律。I, 辽东栎日最大直径变化量; II, 辽东栎日最大直径变化量外包点; III, 上外包线; IV, 刺槐日最大直径变化量; V, 刺槐日最大直径变化量外包点; VI, 上外包线。生长季日序从2019年4月1日开始。
Fig. 2 Radial growth pattern of stem diameter of Quercus mongolica var. liaotungensis and Robinia pseudoacacia during the growing season. I, daily maximum stem diameter variation of Q. mongolica var. liaotungensis; II, boundary points of daily maximum diameter variation of Q. mongolica var. liaotungensis; III, upper boundary line; IV, daily maximum stem diameter variation of R. pseudoacacia; V, boundary points of daily maximum diameter variation of R. pseudoacacia; VI, upper boundary line. Day of the growing season starts April 1, 2019.
图3 辽东栎(I)和刺槐(II)每月平均树干径向日变化模式。
Fig. 3 Daily pattern of monthly average stem radial variation of Quercus mongolica var. liaotungensis (I) and Robinia pseudoacacia (II).
图4 非生长季(A)和生长季(B)典型无雨日树干直径微变化及环境因子日变化曲线。PAR, 光合有效辐射; T, 日平均气温; VPD, 空气水汽压亏缺。
Fig. 4 Diurnal variation of stem diameter and environmental factors in non-growing (A) and growing seasons (B) in typical sunny days. PAR, average daily photosynthetically active radiation; T, average daily air temperature; VPD, vapor pressure deficit.
时期 Period | 树种 Tree species | 空气温度 T (℃) | 空气相对湿度 RH (%) | 空气水汽压亏缺 VPD (kPa) | 光合有效辐射 PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|
非生长季 Non-growing season (n = 32) | 辽东栎 Q. mongolica var. liaotungensis | -0.622** | 0.308 | -0.536** | 0.198 |
刺槐 R. pseudoacacia | -0.732** | 0.151 | -0.554** | 0.214 | |
生长季盛期 Growing season (n = 30) | 辽东栎 Q. mongolia var. liaotungensis | 0.554** | -0.513** | 0.610** | 0.525** |
刺槐 R. pseudoacacia | 0.370* | -0.354* | 0.393* | 0.372* |
表2 辽东栎和刺槐在非生长季(1-2月)和生长季盛期(7-9月)直径日最大收缩量(MDS)与气象因子的相关性分析
Table 2 Correlation analysis of maximum daily shrinkage with meteorological factors during non-growing (January to February) and active growing (July to September) seasons of Quercus mongolica var. liaotungensis and Robinia pseudoacacia
时期 Period | 树种 Tree species | 空气温度 T (℃) | 空气相对湿度 RH (%) | 空气水汽压亏缺 VPD (kPa) | 光合有效辐射 PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|
非生长季 Non-growing season (n = 32) | 辽东栎 Q. mongolica var. liaotungensis | -0.622** | 0.308 | -0.536** | 0.198 |
刺槐 R. pseudoacacia | -0.732** | 0.151 | -0.554** | 0.214 | |
生长季盛期 Growing season (n = 30) | 辽东栎 Q. mongolia var. liaotungensis | 0.554** | -0.513** | 0.610** | 0.525** |
刺槐 R. pseudoacacia | 0.370* | -0.354* | 0.393* | 0.372* |
树种 Species | 项目 Item | 土壤水分较高时段 High soil water content period | 土壤水分较低时段 Low soil water content period |
---|---|---|---|
辽东栎 Q. mongolica var. liaotungensis | 土壤含水量 Soil water content (%) | 14.18 ± 0.55a | 10.20 ± 0.32b |
MDS (μm) | 204.16 ± 43.69b | 304.08 ± 53.22a | |
MDS/VPD (μm·kPa-1) | 151.04 ± 31.35a | 145.57 ± 23.31a | |
TWD (μm) | 106.98 ± 37.02a | 73.62 ± 51.83a | |
TWD/VPD (μm·kPa-1) | 91.90 ± 25.58a | 34.28 ± 22.45b | |
刺槐 R. pseudoacacia | 土壤含水量 Soil water content (%) | 10.80 ± 0.71a | 9.80 ± 0.28b |
MDS (μm) | 125.38 ± 27.56a | 136.88 ± 54.72a | |
MDS/VPD (μm·kPa-1) | 91.90 ± 13.54a | 65.25 ± 23.32a | |
TWD (μm) | 58.90 ± 21.42a | 72.96 ± 98.84a | |
TWD/VPD (μm·kPa-1) | 42.67 ± 12.18a | 34.55 ± 44.14a |
表3 辽东栎和刺槐在不同土壤含水量条件下直径日变化量及其对蒸腾驱动因子响应差异的显著性分析(平均值±标准差)
Table 3 Significance analysis of the differences in the daily variation of diameter and its response to transpiration drivers under different soil moisture conditions of Quercus mongolica var. liaotungensis and Robinia pseudoacacia (mean ± SD)
树种 Species | 项目 Item | 土壤水分较高时段 High soil water content period | 土壤水分较低时段 Low soil water content period |
---|---|---|---|
辽东栎 Q. mongolica var. liaotungensis | 土壤含水量 Soil water content (%) | 14.18 ± 0.55a | 10.20 ± 0.32b |
MDS (μm) | 204.16 ± 43.69b | 304.08 ± 53.22a | |
MDS/VPD (μm·kPa-1) | 151.04 ± 31.35a | 145.57 ± 23.31a | |
TWD (μm) | 106.98 ± 37.02a | 73.62 ± 51.83a | |
TWD/VPD (μm·kPa-1) | 91.90 ± 25.58a | 34.28 ± 22.45b | |
刺槐 R. pseudoacacia | 土壤含水量 Soil water content (%) | 10.80 ± 0.71a | 9.80 ± 0.28b |
MDS (μm) | 125.38 ± 27.56a | 136.88 ± 54.72a | |
MDS/VPD (μm·kPa-1) | 91.90 ± 13.54a | 65.25 ± 23.32a | |
TWD (μm) | 58.90 ± 21.42a | 72.96 ± 98.84a | |
TWD/VPD (μm·kPa-1) | 42.67 ± 12.18a | 34.55 ± 44.14a |
[1] | Campbell GS, Norman JM (1998). An Introduction to Environmental Biophysics. Springer, New York. |
[2] |
Deslauriers A, Anfodillo T, Rossi S, Carraro V (2007a). Using simple causal modeling to understand how water and temperature affect daily stem radial variation in trees. Tree Physiology, 27, 1125-1136.
DOI URL |
[3] | Deslauriers A, Morin H, Urbinati C, Carrer M (2003). Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees, 17, 477-484. |
[4] |
Deslauriers A, Rossi S, Anfodillo T (2007b). Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia, 25, 113-124.
DOI URL |
[5] | Dietrich L, Zweifel R, Kahmen A (2018). Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiology, 38, 941-952. |
[6] |
Dong MY, Wang BQ, Jiang Y, Ding XY (2019). Environmental controls of diurnal and seasonal variations in the stem radius of Platycladus orientalis in Northern China. Forests, 10, 784. DOI: 10.3390/f10090784.
DOI |
[7] | Downes G, Beadle C, Worledge D (1999). Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees, 14, 102-111. |
[8] |
Du S, Wang Y, Kume T, Zhang J, Otsuki K, Yamanaka N, Liu G (2011). Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agricultural and Forest Meteorology, 151, 1-10.
DOI URL |
[9] |
Duchesne L, Houle D (2011). Modelling day-to-day stem diameter variation and annual growth of balsam fir (Abies balsamea (L.) Mill.) from daily climate. Forest Ecology and Management, 262, 863-872.
DOI URL |
[10] | Duchesne L, Houle D, D’Orangeville L (2012). Influence of climate on seasonal patterns of stem increment of balsam fir in a boreal forest of Québec, Canada. Agricultural and Forest Meteorology, 162- 163, 108-114. |
[11] | Guan W, Xiong W, Wang YH, Yu PT, He CQ, Du AP, Liu HL (2007). Stem diameter growth of Larix principis-rupprechtii and its response to meteorological factors in the north of Liupan Mountain. Scientia Silvae Sinicae, 43(9), 1-6. |
[管伟, 熊伟, 王彦辉, 于澎涛, 何常清, 杜阿朋, 刘海龙 (2007). 六盘山北侧华北落叶松树干直径生长变化及其对环境因子的响应. 林业科学, 43(9), 1-6.] | |
[12] |
Intrigliolo DS, Castel JR (2007). Evaluation of grapevine water status from trunk diameter variations. Irrigation Science, 26, 49-59.
DOI URL |
[13] |
Ji QW, Zheng CY, Zhang L, Zeng FX (2020). Stem radial growth dynamics of Pinus sylvestris var. mongolica and their relationship with meteorological factor in Saihanba, Hebei, China. Chinese Journal of Plant Ecology, 44, 257-265.
DOI URL |
[季倩雯, 郑成洋, 张磊, 曾发旭 (2020). 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系. 植物生态学报, 44, 257-265.]
DOI |
|
[14] |
Jin Y, Wang CK, Sang Y (2011). Contribution of stem water storage to daily transpiration of three temperate trees in northeastern China. Chinese Journal of Plant Ecology, 35, 1310-1317.
DOI URL |
[金鹰, 王传宽, 桑英 (2011). 三种温带树种树干储存水对蒸腾的贡献. 植物生态学报, 35, 1310-1317.]
DOI |
|
[15] | Kang SZ, Zhang JH, Liang JS (1999). Combined effects of soil water content and temperature on plant root hydraulic conductivity. Acta Phytoecologica Sinica, 23, 211-219. |
[康绍忠, 张建华, 梁建生 (1999). 土壤水分与温度共同作用对植物根系水分传导的效应. 植物生态学报, 23, 211-219.] | |
[16] |
King G, Fonti P, Nievergelt D, Büntgen U, Frank D (2013). Climatic drivers of hourly to yearly tree radius variations along a 6 °C natural warming gradient. Agricultural and Forest Meteorology, 168, 36-46.
DOI URL |
[17] |
Klepper B, Browning VD, Taylor HM (1971). Stem diameter in relation to plant water status. Plant Physiology, 48, 683-685.
DOI PMID |
[18] | Li YY, Shi H, Zhang AB, Tan HC (2007). Daily changes in radial growth of several tree stems and their response to environmental factors in loess hilly region. Journal of Soil and Water Conservation, 21, 170-173. |
[李秧秧, 石辉, 张安邦, 谭红朝 (2007). 黄土丘陵区几种林木茎干径向生长的日变化及其对环境因素的响应. 水土保持学报, 21, 170-173.] | |
[19] | Liu MJ, Lyu JL, Chen QW, Yang J, Li GQ, Du S (2021). Dynamics and influencing factors of stem diameter micro-variations during the growing season in two typical forestation species in the loess hilly region, China. Chinese Journal of Applied Ecology, 32, 1673-1680. |
[刘美君, 吕金林, 陈秋文, 杨洁, 李国庆, 杜盛 (2021). 黄土丘陵区两典型造林树种生长季树干直径微变化动态及其影响因素. 应用生态学报, 32, 1673-1680.]
DOI |
|
[20] |
Lyu J, He Q, Yang J, Chen Q, Cheng R, Yan M, Yamanaka N, Du S (2020). Sap flow characteristics in growing and non-growing seasons in tree species in the semiarid Loess Plateau region of China. Trees, 34, 943-955.
DOI |
[21] | Niu HG, Zhang F, Yu AL, Wang F, Zhang JZ, Gou XH (2018). Intra-annual stem radial growth dynamics of Picea wilsorii in response to climate in the eastern Qilian Mountains. Acta Ecologica Sinica, 38, 7412-7420. |
[牛豪阁, 张芬, 于爱灵, 王放, 张军周, 勾晓华 (2018). 祁连山东部青杄年内径向生长动态对气候的响应. 生态学报, 38, 7412-7420.] | |
[22] |
Ortuño MF, Alarcón JJ, Nicolás E, Torrecillas A (2005). Sap flow and trunk diameter fluctuations of young lemon trees under water stress and rewatering. Environmental and Experimental Botany, 54, 155-162.
DOI URL |
[23] |
Ortuño MF, Conejero W, Moreno F, Moriana A, Intrigliolo DS, Biel C, Mellisho CD, Pérez-Pastor A, Domingo R, Ruiz-Sánchez MC, Casadesus J, Botany J, Torrecillas A (2010). Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives. Agricultural Water Management, 97, 1-11.
DOI URL |
[24] |
Ortuño MF, García-Orellana Y, Conejero W, Ruiz-Sánchez MC, Alarcón JJ, Torrecillas A (2006). Stem and leaf water potentials, gas exchange, sap flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees, 20, 1-8.
DOI URL |
[25] |
Rossi S, Deslauriers A, Griçar J, Seo JW, Rathgeber CB, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008). Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 17, 696-707.
DOI URL |
[26] |
Rossi S, Deslauriers A, Morin H (2003). Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia, 21, 33-39.
DOI URL |
[27] |
Sakai A (1982). Freezing tolerance of shoot and flower primordia of coniferous buds by extraorgan freezing. Plant and Cell Physiology, 23, 1219-1227.
DOI URL |
[28] |
Simonneau T, Habib R, Goutouly JP, Huguet JG (1993). Diurnal changes in stem diameter depend upon variations in water content: direct evidence in peach trees. Journal of Experimental Botany, 44, 615-621.
DOI URL |
[29] | Sun HZ, Li YP, Wang C, Zhou XF (2005). Comparative study on stem sap flow of non- and ring-porous tree species. Chinese Journal of Ecology, 24, 1434-1439. |
[孙慧珍, 李夷平, 王翠, 周晓峰 (2005). 不同木材结构树干液流对比研究. 生态学杂志, 24, 1434-1439.] | |
[30] |
Tian QY, He ZB, Xiao SC, Peng XM, Ding AJ, Lin PF (2017). Response of stem radial growth of Qinghai spruce (Picea crassifolia) to environmental factors in the Qilian Mountains of China. Dendrochronologia, 44, 76-83.
DOI URL |
[31] |
Tian Y, Zhang QL, Liu X, Meng M, Wang B (2019). The relationship between stem diameter shrinkage and tree bole moisture loss due to transpiration. Forests, 10, 290. DOI: 10.3390/f10030290.
DOI |
[32] | Wang YR, Liu ZB, Wang YH, Xiong W, Yu PT, Xu LH, Ma J (2020). Variation of stem radius of Larix principis- rupprechtii and its influencing factors in the semi-humid Liupan Mountains, China. Chinese Journal of Applied Ecology, 31, 3313-3321. |
[王亚蕊, 刘泽彬, 王彦辉, 熊伟, 于澎涛, 徐丽宏, 马菁 (2020). 六盘山半湿润区华北落叶松树干半径变化特征及其影响因素. 应用生态学报, 31, 3313-3321.]
DOI |
|
[33] | Williams M, Bond BJ, Ryan MG (2001). Evaluating different soil and plant hydraulic constraints on tree function using a model and sap flow data from ponderosa pine. Plant, Cell & Environment, 24, 679-690. |
[34] |
Xiong W, Wang YH, Yu PT, Liu HL, Shi ZJ, Guan W (2007). The growth in stem diameter of Larix principis-rupprechtii and its response to meteorological factors in the south of Liupan Mountain. Acta Ecologica Sinica, 27, 432-441.
DOI URL |
[熊伟, 王彦辉, 于澎涛, 刘海龙, 时忠杰, 管伟 (2007). 六盘山南坡华北落叶松(Larix principis-rupprechtii)树干直径生长及其对气象因子的响应. 生态学报, 27, 432-441.] | |
[35] |
Zhan JW, Wang YK, Zhang LJ, Zhang P, He JQ (2009). Micro-variation in peach diameter and its relationship with soil water potential and meteorological factors. Chinese Journal of Eco-Agriculture, 17, 489-494.
DOI URL |
[湛景武, 汪有科, 张陆军, 张平, 贺军奇 (2009). 桃树茎直径微变化与土壤水势及气象因子的关系. 中国生态农业学报, 17, 489-494.] | |
[36] | Zhang JG, Kume T, Otsuki K, Yamanaka N, Du S (2011). Sap flow dynamics of dominant trees of Quercus liaotungensis forest in the semiarid Loess Plateau region. Scientia Silvae Sinicae, 47(4), 64-69. |
[张建国, 久米朋宣, 大规恭一, 山中典和, 杜盛 (2011). 黄土高原半干旱区辽东栎的树干液流动态. 林业科学, 47(4), 64-69.] | |
[37] | Zhang JY, Duan AW, Meng ZJ, Liu ZG, Chen JP, Liu ZD (2005). Stem diameter variations of cotton under different water conditions. Transactions of the Chinese Society of Agricultural Engineering, 21(5), 7-11. |
[张寄阳, 段爱旺, 孟兆江, 刘祖贵, 陈金平, 刘战东 (2005). 不同水分状况下棉花茎直径变化规律研究. 农业工程学报, 21(5), 7-11.] | |
[38] | Zhao P (2010). Compensation of tree water storage for hydraulic limitation: research progress. Chinese Journal of Applied Ecology, 21, 1565-1572. |
[赵平 (2010). 树木储存水对水力限制的补偿研究进展. 应用生态学报, 21, 1565-1572.] | |
[39] | Zweifel R (2016). Radial stem variations—A source of tree physiological information not fully exploited yet. Plant, Cell & Environment, 39, 231-232. |
[40] |
Zweifel R, Häsler R (2000). Frost-induced reversible shrinkage of bark of mature subalpine conifers. Agricultural and Forest Meteorology, 102, 213-222.
DOI URL |
[41] |
Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006). Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57, 1445-1459.
PMID |
[1] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[2] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[3] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[4] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[5] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[6] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[7] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[8] | 季倩雯, 郑成洋, 张磊, 曾发旭. 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系[J]. 植物生态学报, 2020, 44(3): 257-265. |
[9] | 康剑, 梁寒雪, 蒋少伟, 朱火星, 周鹏, 黄建国. 竞争和气候对新疆阿尔泰山西伯利亚五针松树木径向生长的影响[J]. 植物生态学报, 2020, 44(12): 1195-1202. |
[10] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[11] | 邹安龙,李修平,倪晓凤,吉成均. 模拟氮沉降对北京东灵山辽东栎林树木生长的影响[J]. 植物生态学报, 2019, 43(9): 783-792. |
[12] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[13] | 程汉亭, 李勤奋, 刘景坤, 严廷良, 张俏燕, 王进闯. 橡胶林下益智光合特性的季节动态变化[J]. 植物生态学报, 2018, 42(5): 585-594. |
[14] | 何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应[J]. 植物生态学报, 2018, 42(4): 466-474. |
[15] | 李理渊, 李俊, 同小娟, 孟平, 张劲松, 张静茹. 黄河小浪底栓皮栎、刺槐叶片电子传递速率-光响应的模拟[J]. 植物生态学报, 2018, 42(10): 1009-1021. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19