植物生态学报 ›› 2019, Vol. 43 ›› Issue (9): 783-792.DOI: 10.17521/cjpe.2018.0232
所属专题: 全球变化与生态系统
收稿日期:
2018-09-18
接受日期:
2019-02-28
出版日期:
2019-09-20
发布日期:
2020-01-03
通讯作者:
吉成均
基金资助:
ZOU An-Long,LI Xiu-Ping,NI Xiao-Feng,JI Cheng-Jun()
Received:
2018-09-18
Accepted:
2019-02-28
Online:
2019-09-20
Published:
2020-01-03
Contact:
JI Cheng-Jun
Supported by:
摘要:
传统的元素限制模型认为氮是温带森林生长的限制元素, 不过该结论更多是从地上生物量以及群落水平进行阐述, 忽视了不同物种以及不同径级树木对外源氮的响应差异。辽东栎(Quercus wutaishanica)林是华北地区常见的森林类型, 该研究以北京东灵山辽东栎林为研究对象, 通过设置3个氮添加水平的实验, 即对照CK (0 kg·hm -2·a -1), N50 (50 kg·hm -2·a -1)和N100 (100 kg·hm -2·a -1), 模拟氮沉降对群落和物种水平以及不同径级树木生长的影响。经过7年氮添加, 实验结果显示: 物种水平上, 氮添加明显促进了优势树种辽东栎的生长; 群落水平上, 树木生长随氮浓度增加有不断上升趋势, 但统计学差异不显著; 氮添加显著抑制了辽东栎以及群落内小径级(3-10 cm)树木生长, 中(10-20 cm)、大径级(>20 cm)树木生长随氮沉降水平增加呈上升趋势, 但统计学差异不显著。表明氮是辽东栎以及温带森林树木生长的限制元素; 不同径级的辽东栎和群落内其他植物对氮添加响应不一致, 氮添加抑制了小径级树木生长, 中、大径级树木生长对氮添加响应不明显。
邹安龙,李修平,倪晓凤,吉成均. 模拟氮沉降对北京东灵山辽东栎林树木生长的影响. 植物生态学报, 2019, 43(9): 783-792. DOI: 10.17521/cjpe.2018.0232
ZOU An-Long,LI Xiu-Ping,NI Xiao-Feng,JI Cheng-Jun. Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China. Chinese Journal of Plant Ecology, 2019, 43(9): 783-792. DOI: 10.17521/cjpe.2018.0232
图1 氮添加对北京东灵山辽东栎林土壤全碳(TC)、全氮(TN), 全磷(TP)含量以及pH值的影响(平均值+标准误差, n = 3)。不同小写字母表示处理间差异显著(p < 0.05)。CK、N50、N100分别表示氮添加量0、50、100 kg·hm-2·a-1。
Fig. 1 Influence of nitrogen addition treatments on soil total carbon (TC), total nitrogen (TN), total phosphorus (TP) content and pH value in Quercus wutaishanica forests in Mt. Dongling, Beijing (mean + SE, n = 3). Different lowercase letters indicate significant difference among treatments (p < 0.05). CK, N50, N100 denote nitrogen addition 0, 50, 100 kg·hm-2·a-1, respectively.
图2 氮添加对北京东灵山辽东栎叶片全碳(TC)、全氮(TN)、全磷(TP)含量的影响(平均值+标准误差, n = 3)。不同小写字母表示处理间差异显著(p < 0.05)。CK、N50、N100分别表示氮添加量0、50、100 kg·hm-2·a-1。
Fig. 2 Influence of nitrogen additions on leaf total carbon (TC), total nitrogen (TN), total phosphorus (TP) content of Quercus wutaishanica in Mt. Dongling, Beijing (mean + SE, n = 3). Different lowercase letters indicate significant difference among treatments (p < 0.05). CK, N50, N100 denote nitrogen addition 0, 50, 100 kg·hm-2·a-1, respectively.
图3 氮添加对北京东灵山辽东栎以及群落水平树木相对增长速率(RGR)变化的影响(平均值+标准误差, n = 3)。不同小写字母表示处理间差异显著(p < 0.05)。CK、N50、N100分别表示氮添加量0、50、100 kg·hm-2·a-1。
Fig. 3 Influence of nitrogen addition treatments on the relative growth rate (RGR) of basal area of Quercus wutaishanica and trees at community level in Mt. Dongling, Beijing (mean + SE, n = 3). Different lowercase letters indicate significant difference among treatments (p < 0.05). CK, N50, N100 denote nitrogen addition 0, 50, 100 kg·hm-2·a-1, respectively.
图4 北京东灵山土壤全碳(TC)、全氮(TN)和全磷(TP)含量与辽东栎以及群落水平树木相对增长速率(RGR)的关系。每一个点表示该样方的平均值。CK、N50、N100分别表示氮添加量0、50、100 kg·hm-2·a-1。
Fig. 4 Relationships of relative growth rate (RGR) of Quercus wutaishanica and trees at community level with soil total carbon (TC), total nitrogen (TN) and total phosphorus (TP) content in Mt. Dongling, Beijing. Each dot indicates the mean in each plot. CK, N50, N100 denote nitrogen addition 0, 50, 100 kg·hm-2·a-1, respectively.
图5 北京东灵山土壤全碳(TC)、全氮(TN)和全磷(TP)含量与辽东栎叶片全碳、全氮和全磷含量的关系。每一个点表示该样方的平均值。CK、N50、N100分别表示氮添加量0、50、100 kg·hm-2·a-1。
Fig. 5 Relationships of Quercus wutaishanica leaf total carbon (TC), total nitrogen (TN) and total phosphorus (TP) content with soil total carbon, total nitrogen and total phosphorus content in Mt. Dongling, Beijing. Each dot indicates the mean in each plot. CK, N50, N100 denote nitrogen addition 0, 50, 100 kg·hm-2·a-1, respectively.
图6 氮添加对北京东灵山辽东栎以及群落水平不同径级(DBH)树木相对增长速率(RGR)的影响(平均值+标准误差, n = 3)。不同小写字母表示处理间差异显著(p < 0.05)。3-10、10-20、>20分别表示植物胸径(DBH)范围为3-10、10-20、>20 cm。CK、N50、N100分别表示氮添加量0、50、100 kg·hm-2·a-1。
Fig. 6 Influence of nitrogen addition treatments on the relative growth rate (RGR) of different diameter at breast height (DBH) classes of Quercus wutaishanica and trees at community level in Mt. Dongling, Beijing (mean + SE, n = 3). Different lowercase letters indicate significant difference among treatments (p < 0.05). 3-10, 10-20, >20 denote trees diameter at breast height (DBH) range are 3-10, 10-20, >20 cm. CK, N50, N100 denote nitrogen addition 0, 50, 100 kg·hm-2·a-1, respectively.
图7 北京东灵山土壤全氮(TN)含量与辽东栎以及群落水平不同径级(DBH)树木相对增长速率(RGR)的关系。每一个点表示该样方的平均值。CK、N50、N100分别表示氮添加量0、50、100 kg·hm-2·a-1。
Fig. 7 Relationships of relative growth rate (RGR) of different diameter at breast height (DBH) classes of Quercus wutaishanica in Mt. Dongling, Beijing and trees at community level with soil nitrogen (TN). CK, N50, N100 denote nitrogen addition 0, 50, 100 kg·hm-2·a-1, respectively.
[1] | Aber JD, Magill A, McNulty SG, Boone RD, Nadelhoffer KJ, Downs M, Hallett R ( 1995). Forest biogeochemistry and primary production altered by nitrogen saturation. Water, Air, & Soil Pollution, 85, 1665-1670. |
[2] | Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM ( 1989). Nitrogen saturation in northern forest ecosystems. BioScience, 39, 378-386. |
[3] | Alvarez-Clare S, Mack MC, Brooks M ( 2013). A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology, 94, 1540-1551. |
[4] | BassiriRad H, Lussenhop JF, Sehtiya HL, Borden KK ( 2015). Nitrogen deposition potentially contributes to oak regeneration failure in the Midwestern temperate forests of the USA. Oecologia, 177, 53-63. |
[5] | Bergkvist BO, Folkeson L ( 1992). Soil acidification and element fluxes of a Fagus sylvatica forest as influenced by simulated nitrogen deposition. Water, Air, & Soil Pollution, 65, 111-133. |
[6] | Burslem DFRP, Grubb PJ, Turner IM ( 1995). Responses to nutrient addition among shade-tolerant tree seedlings of lowland tropical rain forest in Singapore. Journal of Ecology, 83, 113-122. |
[7] | Clark CM, Tilman D ( 2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715. |
[8] | de Vries W, Du EZ, Butterbach-Bahl K ( 2014). Short and long- term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Current Opinion in Environmental Sustainability, 9- 10, 90-104. |
[9] | Deng MF, Liu LL, Sun ZZ, Piao SL, Ma YC, Chen YW, Wang J, Qiao CL, Wang X, Li P ( 2016). Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principis-rupprechtii plantations. New Phytologist, 212, 1019-1029. |
[10] | Du EZ, Zhou Z, Li P, Hu XY, Ma YC, Wang W, Zheng CY, Zhu JX, He JS, Fang JY ( 2013). NEECF: A project of nutrient enrichment experiments in China’s forests. Journal of Plant Ecology, 6, 428-435. |
[11] | Du YG, Guo XW, Cao GM, Li YK ( 2016). Increased nitrous oxide emissions resulting from nitrogen addition and increased precipitation in an alpine meadow ecosystem. Polish Journal of Environmental Studies, 25, 447-451. |
[12] | Gilliam FS ( 2006). Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology, 94, 1176-1191. |
[13] | Gundersen P, Emmett BA, Kjønaas OJ, Koopmans CJ, Tietema A ( 1998). Impact of nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data. Forest Ecology and Management, 101, 37-55. |
[14] | Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE ( 2011). Nutrient co-limitation of primary producer communities. Ecology Letters, 14, 852-862. |
[15] | Högberg P, Fan HB, Quist M, Binkley D, Tamm CO ( 2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 12, 489-499. |
[16] | Jefts S, Fernandez IJ, Rustad LE, Dail DB ( 2004). Decadal responses in soil N dynamics at the Bear Brook Watershed in Maine, USA. Forest Ecology and Management, 189, 189-205. |
[17] | Jung JY, Lal R, Jastrow JD, Tyler DD ( 2011). Nitrogenous fertilizer effects on soil structural properties under switchgrass. Agriculture Ecosystems & Environment, 141, 215-220. |
[18] | Kjønaas OJ, Stuanes AO, Huse M ( 1998). Effects of weekly nitrogen additions on N cycling in a coniferous forest catchment, Gårdsjön, Sweden. Forest Ecology and Management, 101, 227-249. |
[19] | Koerselman W, Meuleman AFM ( 1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[20] | Li Y, Tian DS, Yang H, Niu SL ( 2018). Size-dependent nutrient limitation of tree growth from subtropical to cold temperate forests. Functional Ecology, 32, 95-105. |
[21] | Lu XK, Mo JM, Dong SF ( 2008). Effects of nitrogen deposition on forest biodiversity: A review. Acta Ecologica Sinica, 28, 5532-5548. |
[ 鲁显楷, 莫江明, 董少峰 ( 2008). 氮沉降对森林生物多样性的影响. 生态学报, 28, 5532-5548.] | |
[22] | Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P ( 2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forests LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7-28. |
[23] | Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J ( 2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 849-851. |
[24] | Matson P, Lohse KA, Hall SJ ( 2002). The globalization of nitrogen deposition: Consequences for terrestrial ecosystems. AMBIO, 31, 113-119. |
[25] | McConnaughay KDM, Coleman JS ( 1999). Biomass allocation in plants: Ontogeny or optimality? A test along three resource gradients. Ecology, 80, 2581-2593. |
[26] | Nadelhoffer KJ, Emmett BA, Gundersen P, Kjønaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF ( 1999). Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 398, 145-148. |
[27] | Reidsma P, Tekelenburg T, van den Berg M, Alkemade R ( 2006). Impacts of land-use change on biodiversity: An assessment of agricultural biodiversity in the European Union. Agriculture, Ecosystems & Environment, 114, 86-102. |
[28] | Solberg S, Dobbertin M, Reinds GJ, Lange H, Andreassen K, Fernandez PG, Hildingsson A, de Vries W ( 2009). Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: A stand growth approach. Forest Ecology and Management, 258, 1735-1750. |
[29] | Stevens CJ ( 2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876-1879. |
[30] | Su HX, Li GQ ( 2012). Simulating the response of the Quercus mongolica forest ecosystem carbon budget to asymmetric warming. Chinese Science Bulletin, 57, 1544-1552. |
[ 苏宏新, 李广起 ( 2012). 模拟蒙古栎林生态系统碳收支对非对称性升温的响应. 科学通报, 57, 1544-1552.] | |
[31] | Sun BH, Hu ZY, Lü JL, Zhou LN, Xu CK ( 2006). The leaching solution chemistry of a broad-leaved forest red soil under simulated N deposition in southern China. Acta Ecologica Sinica, 26, 1872-1881. |
[ 孙本华, 胡正义, 吕家珑, 周丽娜, 徐成凯 ( 2006). 大气氮沉降对阔叶林红壤淋溶水化学模拟研究. 生态学报, 26, 1872-1881.] | |
[32] | Tian D, Li P, Fang WJ, Xu J, Luo YK, Yan ZB, Zhu B, Wang JJ, Xu XN, Fang JY ( 2017). Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China. Biogeosciences, 14, 3461-3469. |
[33] | Uriarte M, Canham CD, Thompson J, Zimmerman JK, Brokaw N ( 2005). Seedling recruitment in a hurricane-driven tropical forest: Light limitation, density-dependence and the spatial distribution of parent trees. Journal of Ecology, 93, 291-304. |
[34] | Vitousek PM, Howarth RW ( 1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[35] | Vitousek PM, Porder S, Houlton BZ, Chadwick OA ( 2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15. |
[36] | Wang QSY, Zheng CY, Zhang XY, Zeng FX, Xing J ( 2016). Impacts of nitrogen addition on foliar nitrogen and phosphorus stoichiometry in a subtropical evergreen broad- leaved forest in Mount Wuyi. Chinese Journal of Plant Ecology, 40, 1124-1135. |
[ 王乔姝怡, 郑成洋, 张歆阳, 曾发旭, 邢娟 ( 2016). 氮添加对武夷山亚热带常绿阔叶林植物叶片氮磷化学计量特征的影响. 植物生态学报, 40, 1124-1135.] | |
[37] | Wang W, Li QK, Ma KP ( 2000). Establishment and spatial distribution of Quercus liaotungensis Koidz. seedlings in Dongling Mountain. Acta Phytoecologica Sinica, 24, 595-600. |
[ 王巍, 李庆康, 马克平 ( 2000). 东灵山地区辽东栎幼苗的建立和空间分布. 植物生态学报, 24, 595-600.] | |
[38] | Wright RF, Rasmussen L ( 1998). Introduction to the NITREX and EXMAN projects. Forest Ecology and Management, 101, 1-7. |
[39] | Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD ( 2011). Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92, 1616-1625. |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[4] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[5] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[6] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[7] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[8] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[9] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[10] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[11] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[12] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[13] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[14] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[15] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19