植物生态学报 ›› 2022, Vol. 46 ›› Issue (12): 1573-1584.DOI: 10.17521/cjpe.2022.0036
• 研究论文 • 上一篇
收稿日期:
2022-01-21
接受日期:
2022-02-23
出版日期:
2022-12-20
发布日期:
2023-01-13
通讯作者:
*于海英, E-mail: 基金资助:
YU Hai-Ying(), YANG Li-Lin, FU Su-Jing, ZHANG Zhi-Min, YAO Qi-Fu
Received:
2022-01-21
Accepted:
2022-02-23
Online:
2022-12-20
Published:
2023-01-13
Supported by:
摘要:
为了解气候急剧变暖造成的冬春季节的低温和热量积累变化对自然环境中植物春季物候产生的影响, 利用北京东灵山暖温带森林25种木本植物2003-2019年的展叶始期数据, 采用偏最小二乘回归、动力学模型和生长度小时模型等方法模拟了各物种展叶始期所需的低温和热量累积量, 并应用线性回归分析了展叶始期对低温和热量累积变化的响应, 利用单因素方差分析对比了灌木和乔木展叶始期及其对低温和热量累积变化响应的差异。结果显示: (1) 25种木本植物展叶始期的平均低温和热量累积期分别在10月6日至次年3月17日和1月21日至4月26日之间, 平均低温和热量累积量分别为66.16冷激份额(CP)和2 933.12生长度小时(GDH)。(2)展叶始期对低温和热量累积变化的响应敏感度均值分别为每10 CP延迟3.54 d和每1 000 GDH延迟7.09 d, 各有2个和23个物种显著, 说明暖温带木本植物展叶始期主要受热量累积的影响。(3)灌木的展叶始期比乔木早3.87 d, 热量累积比乔木少543.56 GDH, 且展叶始期越早的植物, 所需热量累积也越少, 可能与其采取机会主义生存策略有关。(4)灌木和乔木展叶始期对热量累积的响应敏感度分别为每1 000 GDH延迟8.10和延迟6.13 d, 两者的差异呈边缘显著。这意味着随着气候变暖, 灌木展叶始期提前的速度可能比乔木更快。
于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应. 植物生态学报, 2022, 46(12): 1573-1584. DOI: 10.17521/cjpe.2022.0036
YU Hai-Ying, YANG Li-Lin, FU Su-Jing, ZHANG Zhi-Min, YAO Qi-Fu. Response of leaf-unfolding dates of woody species to variation of chilling and heat accumulation in warm temperate forests. Chinese Journal of Plant Ecology, 2022, 46(12): 1573-1584. DOI: 10.17521/cjpe.2022.0036
图1 1955-2020年怀来气象站(黑色曲线)和2002-2019年北京森林站(灰色曲线)年平均气温年际变化趋势。
Fig. 1 Interannual change trend of mean annual temperature of the Huailai Meteorological Station during 1955-2020 (black curve) and Beijing Forestry Ecosystem Research Station during 2002-2019 (grey curve).
物种 Species | 生活型 Life form | 平均展叶始期 Mean leaf-unfolding date (month-day) | 最早展叶始期 The earliest leaf-unfolding date (month-day) | 最晚展叶始期 The latest leaf-unfolding date (month-day) | 观测年数 Number of observed years |
---|---|---|---|---|---|
白桦 Betula platyphylla | 乔木 Tree | 05-04 | 04-27 | 05-17 | 15 |
大花溲疏 Deutzia grandiflora | 灌木 Shrub | 04-28 | 04-11 | 05-17 | 15 |
蒿柳 Salix schwerinii | 灌木 Shrub | 04-23 | 04-10 | 05-10 | 15 |
黑桦 Betula dahurica | 乔木 Tree | 05-04 | 04-25 | 05-13 | 11 |
胡桃楸 Juglans mandshurica | 乔木 Tree | 05-02 | 04-20 | 05-15 | 11 |
花曲柳 Fraxinus chinensis subsp. rhynchophylla | 乔木 Tree | 05-02 | 04-21 | 05-18 | 11 |
华北落叶松 Larix gmelinii var. principis-rupprechtii | 乔木 Tree | 04-22 | 04-09 | 05-08 | 11 |
金花忍冬 Lonicera chrysantha | 灌木 Shrub | 04-25 | 04-10 | 05-11 | 14 |
辽东栎 Quercus wutaishansea | 乔木 Tree | 05-03 | 04-20 | 05-15 | 16 |
裂叶榆 Ulmus laciniata | 乔木 Tree | 04-27 | 04-15 | 05-09 | 15 |
六道木 Zabelia biflora | 灌木 Shrub | 04-27 | 04-13 | 05-09 | 16 |
毛榛 Corylus mandshurica | 灌木 Shrub | 04-27 | 04-20 | 05-05 | 14 |
蒙椴 Tilia mongolica | 乔木 Tree | 04-30 | 04-17 | 05-08 | 15 |
巧玲花 Syringa pubescens | 灌木 Shrub | 04-19 | 04-03 | 05-06 | 11 |
青杨 Populus cathayana | 乔木 Tree | 04-27 | 04-12 | 05-07 | 15 |
山桃 Prunus davidiana | 乔木 Tree | 04-21 | 04-06 | 05-14 | 16 |
山杏 Prunus sibirica | 乔木 Tree | 04-26 | 04-10 | 05-10 | 16 |
土庄绣线菊 Spiraea pubescens | 灌木 Shrub | 04-28 | 04-18 | 05-14 | 11 |
卫矛 Euonymus alatus | 灌木 Shrub | 04-22 | 04-04 | 05-11 | 14 |
五角枫 Acer pictum subsp. mono | 乔木 Tree | 04-27 | 04-16 | 05-08 | 14 |
小花溲疏 Deutzia parviflora | 灌木 Shrub | 04-29 | 04-11 | 05-17 | 16 |
小叶鼠李 Rhamnus parvifolia | 灌木 Shrub | 04-21 | 04-09 | 05-15 | 15 |
迎红杜鹃 Rhododendron mucronulatum | 灌木 Shrub | 04-27 | 04-15 | 05-11 | 15 |
油松 Pinus tabuliformis | 乔木 Tree | 05-09 | 04-22 | 05-30 | 15 |
照山白 Rhododendron micranthum | 灌木 Shrub | 05-02 | 04-15 | 05-22 | 15 |
表1 研究所选物种及相关信息
Table 1 List of the species used in the study and related information
物种 Species | 生活型 Life form | 平均展叶始期 Mean leaf-unfolding date (month-day) | 最早展叶始期 The earliest leaf-unfolding date (month-day) | 最晚展叶始期 The latest leaf-unfolding date (month-day) | 观测年数 Number of observed years |
---|---|---|---|---|---|
白桦 Betula platyphylla | 乔木 Tree | 05-04 | 04-27 | 05-17 | 15 |
大花溲疏 Deutzia grandiflora | 灌木 Shrub | 04-28 | 04-11 | 05-17 | 15 |
蒿柳 Salix schwerinii | 灌木 Shrub | 04-23 | 04-10 | 05-10 | 15 |
黑桦 Betula dahurica | 乔木 Tree | 05-04 | 04-25 | 05-13 | 11 |
胡桃楸 Juglans mandshurica | 乔木 Tree | 05-02 | 04-20 | 05-15 | 11 |
花曲柳 Fraxinus chinensis subsp. rhynchophylla | 乔木 Tree | 05-02 | 04-21 | 05-18 | 11 |
华北落叶松 Larix gmelinii var. principis-rupprechtii | 乔木 Tree | 04-22 | 04-09 | 05-08 | 11 |
金花忍冬 Lonicera chrysantha | 灌木 Shrub | 04-25 | 04-10 | 05-11 | 14 |
辽东栎 Quercus wutaishansea | 乔木 Tree | 05-03 | 04-20 | 05-15 | 16 |
裂叶榆 Ulmus laciniata | 乔木 Tree | 04-27 | 04-15 | 05-09 | 15 |
六道木 Zabelia biflora | 灌木 Shrub | 04-27 | 04-13 | 05-09 | 16 |
毛榛 Corylus mandshurica | 灌木 Shrub | 04-27 | 04-20 | 05-05 | 14 |
蒙椴 Tilia mongolica | 乔木 Tree | 04-30 | 04-17 | 05-08 | 15 |
巧玲花 Syringa pubescens | 灌木 Shrub | 04-19 | 04-03 | 05-06 | 11 |
青杨 Populus cathayana | 乔木 Tree | 04-27 | 04-12 | 05-07 | 15 |
山桃 Prunus davidiana | 乔木 Tree | 04-21 | 04-06 | 05-14 | 16 |
山杏 Prunus sibirica | 乔木 Tree | 04-26 | 04-10 | 05-10 | 16 |
土庄绣线菊 Spiraea pubescens | 灌木 Shrub | 04-28 | 04-18 | 05-14 | 11 |
卫矛 Euonymus alatus | 灌木 Shrub | 04-22 | 04-04 | 05-11 | 14 |
五角枫 Acer pictum subsp. mono | 乔木 Tree | 04-27 | 04-16 | 05-08 | 14 |
小花溲疏 Deutzia parviflora | 灌木 Shrub | 04-29 | 04-11 | 05-17 | 16 |
小叶鼠李 Rhamnus parvifolia | 灌木 Shrub | 04-21 | 04-09 | 05-15 | 15 |
迎红杜鹃 Rhododendron mucronulatum | 灌木 Shrub | 04-27 | 04-15 | 05-11 | 15 |
油松 Pinus tabuliformis | 乔木 Tree | 05-09 | 04-22 | 05-30 | 15 |
照山白 Rhododendron micranthum | 灌木 Shrub | 05-02 | 04-15 | 05-22 | 15 |
图2 东灵山蒙椴和大花溲疏展叶始期与日低温(A, B, E, F)和热量累积量(C, D, G, H)的偏最小二乘回归分析。图中黑色代表系数显著(变量投影重要性(VIP) ≥0.8)。
Fig. 2 Results of Partial Least Squares regression between daily chilling (A, B, E, F) and heat accumulation (C, D, G, H) and leaf-unfolding dates of Tilia mongolica and Deutzia grandiflora in Dongling Mountain. Black bars indicate the coefficients are significant (variable importance in the projection (VIP) ≥0.8).
物种 Species | 低温累积期 Chilling periods | 低温累积量 Chilling accumulation (CP) | 热量累积期 Forcing periods | 热量累积量 Heat accumulation (GDH) | ||
---|---|---|---|---|---|---|
开始日期 Start date (month-day) | 结束日期 End date (month-day) | 开始日期 Start date (month-day) | 结束日期 End date (month-day) | |||
白桦 Betula platyphylla | 09-30 | 01-11 | 43.37 ± 5.79 | 03-22 | 05-03 | 3 640.58 ± 963.76 |
大花溲疏 Deutzia grandiflora | 09-30 | 03-23 | 73.26 ± 6.64 | 01-04 | 04-27 | 2 924.49 ± 824.72 |
蒿柳 Salix schwerinii | 10-06 | 03-07 | 60.57 ± 6.14 | 03-03 | 04-22 | 2 304.28 ± 699.59 |
黑桦 Betula dahurica | 10-31 | 03-23 | 55.55 ± 7.03 | 01-26 | 05-03 | 3 887.06 ± 1 105.56 |
胡桃楸 Juglans mandshurica | 09-29 | 03-23 | 74.46 ± 7.52 | 12-19 | 05-01 | 3 562.93 ± 1 066.70 |
花曲柳 Fraxinus chinensis subsp. rhynchophylla | 10-04 | 03-20 | 70.33 ± 6.99 | 01-04 | 05-01 | 3 562.62 ± 1 066.71 |
华北落叶松 Larix gmelinii var. principis-rupprechtii | 10-26 | 03-07 | 48.92 ± 6.77 | 01-26 | 04-21 | 2 279.80 ± 775.96 |
金花忍冬 Lonicera chrysantha | 09-30 | 03-23 | 73.28 ± 6.84 | 12-22 | 04-24 | 2 566.87 ± 783.05 |
辽东栎 Quercus wutaishansea | 10-26 | 03-23 | 58.23 ± 6.29 | 01-26 | 05-02 | 3 669.40 ± 928.35 |
裂叶榆 Ulmus laciniata | 09-29 | 03-23 | 73.62 ± 6.74 | 01-26 | 04-26 | 2 799.27 ± 797.50 |
六道木 Zabelia biflora | 09-30 | 03-23 | 73.07 ± 6.47 | 12-13 | 04-26 | 2 750.16 ± 796.11 |
毛榛 Corylus mandshurica | 09-28 | 03-02 | 61.20 ± 6.76 | 12-22 | 04-26 | 2 808.29 ± 931.77 |
蒙椴 Tilia mongolica | 10-26 | 03-23 | 58.52 ± 5.89 | 01-23 | 04-29 | 3 200.84 ± 884.28 |
巧玲花 Syringa pubescens | 09-02 | 03-24 | 79.72 ± 7.54 | 01-26 | 04-17 | 1 949.79 ± 711.70 |
青杨 Populus cathayana | 12-05 | 03-24 | 36.79 ± 5.91 | 03-02 | 04-26 | 2 777.00 ± 512.17 |
山桃 Prunus davidiana | 09-02 | 03-23 | 78.39 ± 6.43 | 03-20 | 04-20 | 1 879.42 ± 652.17 |
山杏 Prunus sibirica | 09-30 | 03-22 | 72.40 ± 6.47 | 12-22 | 04-25 | 2 626.39 ± 773.89 |
土庄绣线菊 Spiraea pubescens | 10-05 | 03-23 | 71.86 ± 6.97 | 12-17 | 04-27 | 2 995.08 ± 936.94 |
卫矛 Euonymus alatus | 09-30 | 03-23 | 73.28 ± 6.84 | 03-19 | 04-21 | 2 059.65 ± 709.69 |
五角枫 Acer pictum subsp. mono | 09-30 | 03-22 | 72.60 ± 6.84 | 01-22 | 04-26 | 2 808.06 ± 831.75 |
小花溲疏 Deutzia parviflora | 09-29 | 03-23 | 73.44 ± 6.56 | 12-22 | 04-28 | 3 012.81 ± 844.57 |
小叶鼠李 Rhamnus parvifolia | 09-30 | 03-23 | 73.26 ± 6.64 | 01-22 | 04-20 | 2 106.40 ± 666.57 |
迎红杜鹃 Rhododendron mucronulatum | 09-29 | 03-23 | 73.62 ± 6.74 | 12-22 | 04-26 | 2 799.54 ± 797.67 |
油松 Pinus tabuliformis | 10-22 | 03-08 | 51.62 ± 6.26 | 03-03 | 05-08 | 4 829.02 ± 1 002.10 |
照山白 Rhododendron micranthum | 09-30 | 03-22 | 72.60 ± 6.63 | 12-22 | 05-01 | 3 528.25 ± 932.79 |
均值 Average | 10-06 | 03-17 | 66.16 ± 11.26 | 01-21 | 04-26 | 2 933.12 ± 677.50 |
表2 东灵山25种木本植物展叶始期的低温和热量累积期及累积量(平均值±标准差)
Table 2 Chilling and heat accumulation (mean ± SD) during each chilling and forcing periods for 25 woody species in Dongling Mountain
物种 Species | 低温累积期 Chilling periods | 低温累积量 Chilling accumulation (CP) | 热量累积期 Forcing periods | 热量累积量 Heat accumulation (GDH) | ||
---|---|---|---|---|---|---|
开始日期 Start date (month-day) | 结束日期 End date (month-day) | 开始日期 Start date (month-day) | 结束日期 End date (month-day) | |||
白桦 Betula platyphylla | 09-30 | 01-11 | 43.37 ± 5.79 | 03-22 | 05-03 | 3 640.58 ± 963.76 |
大花溲疏 Deutzia grandiflora | 09-30 | 03-23 | 73.26 ± 6.64 | 01-04 | 04-27 | 2 924.49 ± 824.72 |
蒿柳 Salix schwerinii | 10-06 | 03-07 | 60.57 ± 6.14 | 03-03 | 04-22 | 2 304.28 ± 699.59 |
黑桦 Betula dahurica | 10-31 | 03-23 | 55.55 ± 7.03 | 01-26 | 05-03 | 3 887.06 ± 1 105.56 |
胡桃楸 Juglans mandshurica | 09-29 | 03-23 | 74.46 ± 7.52 | 12-19 | 05-01 | 3 562.93 ± 1 066.70 |
花曲柳 Fraxinus chinensis subsp. rhynchophylla | 10-04 | 03-20 | 70.33 ± 6.99 | 01-04 | 05-01 | 3 562.62 ± 1 066.71 |
华北落叶松 Larix gmelinii var. principis-rupprechtii | 10-26 | 03-07 | 48.92 ± 6.77 | 01-26 | 04-21 | 2 279.80 ± 775.96 |
金花忍冬 Lonicera chrysantha | 09-30 | 03-23 | 73.28 ± 6.84 | 12-22 | 04-24 | 2 566.87 ± 783.05 |
辽东栎 Quercus wutaishansea | 10-26 | 03-23 | 58.23 ± 6.29 | 01-26 | 05-02 | 3 669.40 ± 928.35 |
裂叶榆 Ulmus laciniata | 09-29 | 03-23 | 73.62 ± 6.74 | 01-26 | 04-26 | 2 799.27 ± 797.50 |
六道木 Zabelia biflora | 09-30 | 03-23 | 73.07 ± 6.47 | 12-13 | 04-26 | 2 750.16 ± 796.11 |
毛榛 Corylus mandshurica | 09-28 | 03-02 | 61.20 ± 6.76 | 12-22 | 04-26 | 2 808.29 ± 931.77 |
蒙椴 Tilia mongolica | 10-26 | 03-23 | 58.52 ± 5.89 | 01-23 | 04-29 | 3 200.84 ± 884.28 |
巧玲花 Syringa pubescens | 09-02 | 03-24 | 79.72 ± 7.54 | 01-26 | 04-17 | 1 949.79 ± 711.70 |
青杨 Populus cathayana | 12-05 | 03-24 | 36.79 ± 5.91 | 03-02 | 04-26 | 2 777.00 ± 512.17 |
山桃 Prunus davidiana | 09-02 | 03-23 | 78.39 ± 6.43 | 03-20 | 04-20 | 1 879.42 ± 652.17 |
山杏 Prunus sibirica | 09-30 | 03-22 | 72.40 ± 6.47 | 12-22 | 04-25 | 2 626.39 ± 773.89 |
土庄绣线菊 Spiraea pubescens | 10-05 | 03-23 | 71.86 ± 6.97 | 12-17 | 04-27 | 2 995.08 ± 936.94 |
卫矛 Euonymus alatus | 09-30 | 03-23 | 73.28 ± 6.84 | 03-19 | 04-21 | 2 059.65 ± 709.69 |
五角枫 Acer pictum subsp. mono | 09-30 | 03-22 | 72.60 ± 6.84 | 01-22 | 04-26 | 2 808.06 ± 831.75 |
小花溲疏 Deutzia parviflora | 09-29 | 03-23 | 73.44 ± 6.56 | 12-22 | 04-28 | 3 012.81 ± 844.57 |
小叶鼠李 Rhamnus parvifolia | 09-30 | 03-23 | 73.26 ± 6.64 | 01-22 | 04-20 | 2 106.40 ± 666.57 |
迎红杜鹃 Rhododendron mucronulatum | 09-29 | 03-23 | 73.62 ± 6.74 | 12-22 | 04-26 | 2 799.54 ± 797.67 |
油松 Pinus tabuliformis | 10-22 | 03-08 | 51.62 ± 6.26 | 03-03 | 05-08 | 4 829.02 ± 1 002.10 |
照山白 Rhododendron micranthum | 09-30 | 03-22 | 72.60 ± 6.63 | 12-22 | 05-01 | 3 528.25 ± 932.79 |
均值 Average | 10-06 | 03-17 | 66.16 ± 11.26 | 01-21 | 04-26 | 2 933.12 ± 677.50 |
图3 东灵山25种木本植物展叶始期与低温和热量累积期内平均气温及低温和热量累积量的回归系数。A, 低温累积期平均气温。B, 热量累积期平均气温。C, 低温累积量。D, 热量累积量。图中灰色代表回归系数显著(p < 0.05), 白色代表回归系数不显著。CP, 冷激份额; GDH, 生长度小时。
Fig. 3 Regression coefficients between mean temperature, chilling and heat accumulation and leaf-unfolding dates during chilling and forcing periods for 25 woody species in Dongling Mountain. A, Mean temperature during chilling period. B, Mean temperature during forcing period. C, Chilling accumulation. D, Heat accumulation. Grey bars indicate regression coefficients are significant (p < 0.05), and white bars indicate regression coefficients are insignificant.CP, chilling portion; GDH, growing degree hour.
图4 东灵山灌木和乔木的展叶始期及其对气候变暖响应的差异比较(平均值±标准差)。H, 展叶始期与热量累积期平均气温的回归系数。I, 展叶始期与热量累积量的回归系数。DOY, 年序日。CP, 冷激份额; GDH, 生长度小时。
Fig. 4 Difference between leaf-unfolding dates of shrubs and trees and their responses to climate warming in Dongling Mountain (mean ± SD). H, Regression coefficients between leaf-unfolding dates and mean temperature during forcing period. I, Regression coefficients between leaf-unfolding dates and heat accumulation. DOY, day of the year. CP, chilling portion; GDH, growing degree hour.
图5 东灵山12种灌木和13种乔木的热量累积量与展叶始期的关系。DOY, 年序日; GDH, 生长度小时。
Fig. 5 Linear regression between heat accumulation and leaf-unfolding dates of 12 shrubs and 13 trees in Dongling Mountain. DOY, day of the year; GDH, growing degree hour.
[1] | Anderson JL, Richardson EA, Kesner CD (1986). Validation of chill unit and flower bud phenology models for “Montmorency” sour cherry. Acta Horticulturae, 184, 71-78. |
[2] |
Asse D, Chuine I, Vitasse Y, Yoccoz NG, Delpierre N, Badeau V, Delestrade A, Randin CF (2018). Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agricultural and Forest Meteorology, 252, 220-230.
DOI URL |
[3] |
Benmoussa H, Ghrab M, Ben Mimoun M, Luedeling E (2017). Chilling and heat requirements for local and foreign almond (Prunus dulcis Mill.) cultivars in a warm Mediterranean location based on 30 years of phenology records. Agricultural and Forest Meteorology, 239, 34-46.
DOI URL |
[4] |
Caffarra A, Donnelly A (2011). The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. International Journal of Biometeorology, 55, 711-721.
DOI PMID |
[5] |
Campoy JA, Ruiz D, Cook N, Allderman L, Egea J (2011a). High temperatures and time to budbreak in low chill apricot “Palsteyn”. Towards a better understanding of chill and heat requirements fulfilment. Scientia Horticulturae, 129, 649-655.
DOI URL |
[6] |
Campoy JA, Ruiz D, Egea J (2011b). Dormancy in temperate fruit trees in a global warming context: a review. Scientia Horticulturae, 130, 357-372.
DOI URL |
[7] |
Cannell MGR, Smith RI (1986). Climate warming, spring budburst and forest damage on trees. Journal of Applied Ecology, 23, 177-191.
DOI URL |
[8] |
Charrier G, Bonhomme M, Lacointe A, Améglio T (2011). Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control? International Journal of Biometeorology, 55, 763-774.
DOI URL |
[9] |
Chen XQ, An S, Inouye DW, Schwartz MD (2015). Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Global Change Biology, 21, 3635-3646.
DOI URL |
[10] |
Chen XQ, Wang LX, Inouye D (2017). Delayed response of spring phenology to global warming in subtropics and tropics. Agricultural and Forest Meteorology, 234-235, 222-235.
DOI URL |
[11] |
Chuine I (2000). A unified model for budburst of trees. Journal of Theoretical Biology, 207, 337-347.
DOI PMID |
[12] |
Chuine I, Cour P (1999). Climatic determinants of budburst seasonality in four temperate-zone tree species. New Phytologist, 143, 339-349.
DOI URL |
[13] |
Dantec CF, Vitasse Y, Bonhomme M, Louvet JM, Kremer A, Delzon S (2014). Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range. International Journal of Biometeorology, 58, 1853-1864.
DOI PMID |
[14] |
Delpierre N, Vitasse Y, Chuine I, Guillemot J, Bazot S, Rutishauser T, Rathgeber CBK (2016). Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Annals of Forest Science, 73, 5-25.
DOI URL |
[15] |
Donnelly A, Yu R (2021). Temperate deciduous shrub phenology: the overlooked forest layer. International Journal of Biometeorology, 65, 343-355.
DOI |
[16] |
Flynn DFB, Wolkovich EM (2018). Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytologist, 219, 1353-1362.
DOI PMID |
[17] |
Ford KR, Harrington CA, Bansal S, Gould PJ, St Clair JB (2016). Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Global Change Biology, 22, 3712-3723.
DOI PMID |
[18] |
Fu YH, Campioli M, van Oijen M, Deckmyn G, Janssens IA (2012). Bayesian comparison of six different temperature- based budburst models for four temperate tree species. Ecological Modelling, 230, 92-100.
DOI URL |
[19] |
Fu YH, Piao SL, Vitasse Y, Zhao HF, de Boeck HJ, Liu Q, Yang H, Weber U, Hänninen H, Janssens IA (2015). Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: effects of chilling, precipitation and insolation. Global Change Biology, 21, 2687-2697.
DOI PMID |
[20] |
Fu YH, Piao SL, Zhao HF, Jeong SJ, Wang XH, Vitasse Y, Ciais P, Janssens IA (2014). Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Global Change Biology, 20, 3743-3755.
DOI PMID |
[21] |
Ge Q, Wang H, Dai J (2013). Shifts in spring phenophases, frost events and frost risk for woody plants in temperate China. Climate Research, 57, 249-258.
DOI URL |
[22] |
Guo L, Dai JH, Ranjitkar S, Yu HY, Xu JC, Luedeling E (2014). Chilling and heat requirements for flowering in temperate fruit trees. International Journal of Biometeorology, 58, 1195-1206.
DOI URL |
[23] | Guo L, Dai JH, Wang MC, Xu JC, Luedeling E (2015). Responses of spring phenology in temperate zone trees to climate warming: a case study of apricot flowering in China. Agricultural and Forest Meteorology, 201, 1-7. |
[24] |
Guo L, Wang JH, Li MJ, Liu L, Xu JC, Cheng JM, Gang CC, Yu Q, Chen J, Peng CH, Luedeling E (2019). Distribution margins as natural laboratories to infer species’ flowering responses to climate warming and implications for frost risk. Agricultural and Forest Meteorology, 268, 299-307.
DOI URL |
[25] | Hänninen H (2016). Boreal and Temperate Trees in a Changing Climate. Springer Business Media, Dordrecht, the Netherlands. |
[26] |
Harrington CA, Gould PJ (2015). Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species. Frontiers in Plant Science, 6, 120. DOI: 10.3389/fpls.2015.00120.
DOI PMID |
[27] |
Harrington CA, Gould PJ, St Clair JB (2010). Modeling the effects of winter environment on dormancy release of Douglas-fir. Forest Ecology and Management, 259, 798-808.
DOI URL |
[28] |
Hart R, Salick J, Ranjitkar S, Xu JC (2014). Herbarium specimens show contrasting phenological responses to Himalayan climate. Proceedings of the National Academy of Sciences of the United States of America, 111, 10615-10619.
DOI PMID |
[29] | IPCC (2013). Climate Change 2013: The Physical Science Basis. Working Group I, Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
[30] |
Jones HG, Hillis RM, Gordon SL, Brennan RM (2013). An approach to the determination of winter chill requirements for different Ribes cultivars. Plant Biology, 15, 18-27.
DOI URL |
[31] |
Keeling RF, Piper SC, Heimann M (1996). Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature, 381, 218-221.
DOI |
[32] |
Lang G (1987). Dormancy: a new universal terminology. HortScience, 22, 817-820.
DOI URL |
[33] |
Laube J, Sparks TH, Estrella N, Höfler J, Ankerst DP, Menzel A (2014). Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology, 20, 170-182.
DOI PMID |
[34] |
Lechowicz MJ (1984). Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities. The American Naturalist, 124, 821-842.
DOI URL |
[35] |
Leida C, Conesa A, Llácer G, Badenes ML, Ríos G (2012). Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytologist, 193, 67-80.
DOI URL |
[36] | Linvill DE (1989). Using maximum and minimum temperatures to determine chilling completion. Acta Horticulturae, 254, 249-254. |
[37] |
Linvill DE (1990). Calculating chilling hours and chill units from daily maximum and minimum temperature observations. HortScience, 25, 14-16.
DOI URL |
[38] |
Liu L, Guo L, Li MH, Fu WD, Luan Q (2020). Changes of chilling and heat accumulation of apple and their effects on the first flowering date in the main planting areas of Northern China. Chinese Journal of Applied Ecology, 31, 2457-2463.
DOI |
[ 刘璐, 郭梁, 李曼华, 傅玮东, 栾青 (2020). 中国北方主产地苹果冷热积累变化及其对始花期的影响. 应用生态学报, 31, 2457-2463.]
DOI |
|
[39] |
Luedeling E, Brown PH (2011). A global analysis of the comparability of winter chill models for fruit and nut trees. International Journal of Biometeorology, 55, 411-421.
DOI PMID |
[40] |
Luedeling E, Gassner A (2012). Partial least squares regression for analyzing walnut phenology in California. Agricultural and Forest Meteorology, 158-159, 43-52.
DOI URL |
[41] |
Luedeling E, Guo L, Dai JH, Leslie C, Blanke MM (2013). Differential responses of trees to temperature variation during the chilling and forcing phases. Agricultural and Forest Meteorology, 181, 33-42.
DOI URL |
[42] |
Martínez-Lüscher J, Hadley P, Ordidge M, Xu XM, Luedeling E (2017). Delayed chilling appears to counteract flowering advances of apricot in southern UK. Agricultural and Forest Meteorology, 237-238, 209-218.
DOI URL |
[43] |
Menzel A, Fabian P (1999). Growing season extended in Europe. Nature, 397, 659.
DOI URL |
[44] |
Morin X, Lechowicz MJ, Augspurger C, O’keefe J, Viner D, Chuine I (2009). Leaf phenology in 22 North American tree species during the 21st century. Global Change Biology, 15, 961-975.
DOI URL |
[45] |
Murray MB, Cannell MGR, Smith RI (1989). Date of budburst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology, 26, 693-700.
DOI URL |
[46] |
Olson MS, Levsen N, Soolanayakanahally RY, Guy RD, Schroeder WR, Keller SR, Tiffin P (2013). The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate. Molecular Ecology, 22, 1214-1230.
DOI URL |
[47] |
Panchen ZA, Primack RB, Nordt B, Ellwood ER, Stevens AD, Renner SS, Willis CG, Fahey R, Whittemore A, Du YJ, Davis CC (2014). Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. New Phytologist, 203, 1208-1219.
DOI PMID |
[48] |
Piao SL, Liu Q, Chen AP, Janssens IA, Fu YS, Dai JH, Liu LL, Lian X, Shen MG, Zhu XL (2019). Plant phenology and global climate change: current progresses and challenges. Global Change Biology, 25, 1922-1940.
DOI PMID |
[49] |
Polgar C, Gallinat A, Primack RB (2014). Drivers of leaf-out phenology and their implications for species invasions: insights from Thoreau’s Concord. New Phytologist, 202, 106-115.
DOI URL |
[50] |
Polgar C, Primack R, Du YJ (2013). Leaf out phenology in temperate forests. Biodiversity Science, 21, 111-116.
DOI |
[ Polgar C, Primack R, 杜彦君 (2013). 温带森林展叶物候学. 生物多样性, 21, 111-116.] | |
[51] |
Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156-173.
DOI URL |
[52] |
Ríos G, Leida C, Conejero A, Badenes ML (2014). Epigenetic regulation of bud dormancy events in perennial plants. Frontiers in Plant Science, 5, 247. DOI: 10.3389/fpls.2014.00247.
DOI PMID |
[53] |
Roberts AMI, Tansey C, Smithers RJ, Phillimore AB (2015). Predicting a change in the order of spring phenology in temperate forests. Global Change Biology, 21, 2603-2611.
DOI PMID |
[54] |
Rollinson CR, Kaye MW (2012). Experimental warming alters spring phenology of certain plant functional groups in an early-successional forest community. Global Change Biology, 18, 1108-1116.
DOI URL |
[55] |
Rosbakh S, Hartig F, Sandanov DV, Bukharova EV, Miller TK, Primack RB (2021). Siberian plants shift their phenology in response to climate change. Global Change Biology, 27, 4435-4448.
DOI PMID |
[56] |
Sanz-Pérez V, Castro-Díez P, Valladares F (2009). Differential and interactive effects of temperature and photoperiod on budburst and carbon reserves in two co-occurring Mediterranean oaks. Plant Biology, 11, 142-151.
DOI PMID |
[57] |
Scheifinger H, Menzel A, Koch E, Peter C (2003). Trends of spring time frost events and phenological dates in Central Europe. Theoretical and Applied Climatology, 74, 41-51.
DOI URL |
[58] |
Sun SC, Jin DM, Li RJ (2006). Leaf emergence in relation to leaf traits in temperate woody species in East-Chinese Quercus fabri forests. Acta Oecologica, 30, 212-222.
DOI URL |
[59] | Tao ZX, Ge QS, Dai JH, Wang HJ (2020). Changes in temperature-relevant period for the leaf unfolding date of main woody plants in eastern China during 1980-2018. Acta Ecologica Sinica, 40, 7777-7789. |
[ 陶泽兴, 葛全胜, 戴君虎, 王焕炯 (2020). 1980-2018年中国东部主要木本植物展叶始期的温度相关时段变化. 生态学报, 40, 7777-7789.] | |
[60] | The Committee of the Third National Assessment Report on Climate Change (2015). The Third National Assessment Report on Climate Change. Science Press, Beijing. |
[《第三次气候变化国家评估报告》编写委员会 (2015). 第三次气候变化国家评估报告. 科学出版社, 北京.] | |
[61] |
Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351-1363.
DOI PMID |
[62] |
Vitasse Y (2013). Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytologist, 198, 149-155.
DOI PMID |
[63] |
Vitasse Y, François C, Delpierre N, Dufrêne E, Kremer A, Chuine I, Delzon S (2011). Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology, 151, 969-980.
DOI URL |
[64] |
Wang HJ, Wang H, Ge QS, Dai JH (2020a). The interactive effects of chilling, photoperiod, and forcing temperature on flowering phenology of temperate woody plants. Frontiers in Plant Science, 11, 443. DOI: 10.3389/fpls.2020.00443.
DOI URL |
[65] |
Wang HJ, Wu CY, Ciais P, Peñuelas J, Dai JH, Fu YS, Ge QS (2020b). Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling. Nature Communications, 11, 4945. DOI: 10.1038/s41467-020-18743-8.
DOI |
[66] |
Wold S, Sjöström M, Eriksson L (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109-130.
DOI URL |
[67] |
Xu L, Chen XQ (2013). Regional unified model-based leaf unfolding prediction from 1960 to 2009 across Northern China. Global Change Biology, 19, 1275-1284.
DOI PMID |
[68] |
Xu YJ, Dai JH, Ge QS, Wang HJ, Tao ZX (2021). Comparison of chilling and heat requirements for leaf unfolding in deciduous woody species in temperate and subtropical China. International Journal of Biometeorology, 65, 393-403.
DOI |
[69] |
Yang Y, Wu ZF, Guo L, He HS, Ling YH, Wang L, Zong SW, Na RS, Du HB, Li MH (2020). Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region. Science of the Total Environment, 725, 138323. DOI: 10.1016/j.scitotenv.2020.138323.
DOI URL |
[70] |
Zohner CM, Renner SS (2014). Common garden comparison of the leaf-out phenology of woody species from different native climates, combined with herbarium records, forecasts long-term change. Ecology Letters, 17, 1016-1025.
DOI PMID |
[1] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[2] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[3] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[4] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[5] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[6] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[7] | 李雪莹, 朱文泉, 李培先, 谢志英, 赵涔良. 气候变暖背景下青藏高原草本植物物候变化空间换时间预测[J]. 植物生态学报, 2020, 44(7): 742-751. |
[8] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[9] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
[10] | 王焕炯, 陶泽兴, 葛全胜. 气候波动对西安39种木本植物展叶始期及其积温需求的影响[J]. 植物生态学报, 2019, 43(10): 877-888. |
[11] | 邢小艺, 郝培尧, 李冠衡, 李慧, 董丽. 北京植物物候的季节动态特征——以北京植物园为例[J]. 植物生态学报, 2018, 42(9): 906-916. |
[12] | 王冠钦, 李飞, 彭云峰, 陈永亮, 韩天丰, 杨贵彪, 刘莉, 周国英, 杨元合. 土壤含水量调控高寒草原生态系统N2O排放对增温的响应[J]. 植物生态学报, 2018, 42(1): 105-115. |
[13] | 王军, 王冠钦, 李飞, 彭云峰, 杨贵彪, 郁建春, 周国英, 杨元合. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报, 2018, 42(1): 116-125. |
[14] | 李道新, 李果, 沈泽昊, 徐慎东, 韩庆瑜, 王功芳, 田风雷. 植物生长型显著影响三峡大老岭地区木本植物种子质量的海拔格局[J]. 植物生态学报, 2017, 41(5): 539-548. |
[15] | 常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3): 279-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19