植物生态学报 ›› 2022, Vol. 46 ›› Issue (2): 136-147.DOI: 10.17521/cjpe.2021.0060
熊映杰*, 于果*, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全**()
收稿日期:
2021-02-22
接受日期:
2021-09-27
出版日期:
2022-02-20
发布日期:
2022-01-07
通讯作者:
彭国全
作者简介:
(penggq@zjnu.cn)基金资助:
XIONG Ying-Jie*, YU Guo*, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan**()
Received:
2021-02-22
Accepted:
2021-09-27
Online:
2022-02-20
Published:
2022-01-07
Contact:
PENG Guo-Quan
About author:
Contributed equally to this work
Supported by:
摘要:
叶片大小是植物生态策略中的一个关键性状, 而叶脉是叶内主要的支撑和输导结构, 对叶片的生长发育具有重要的影响。该研究以天童山38种阔叶木本植物为研究对象, 以叶片面积、干质量和周长表征叶片大小, 采用标准化主轴估计(SMA)方法和系统发育独立比较(PIC)分析主脉密度、细脉密度和总叶脉密度, 以及各级叶脉单位长度的细胞壁干质量与叶片大小之间的关系, 拟从叶片内部结构和资源分配策略的角度探明叶片大小与叶脉结构之间的变化关系及生态学意义。研究结果显示: (1)叶片大小与主脉密度极显著负相关, 细脉密度以及总叶脉密度与叶片大小关系不显著, 表明叶片越小, 主脉密度越高, 而细脉密度与叶片大小无关; (2)单位主脉长度的细胞壁干质量与叶片大小极显著正相关, 单位细脉和总叶脉长度的细胞壁干质量与叶片大小的相关性均不显著, 表明随着叶片的增大, 单位主脉长度的细胞壁干质量显著增加, 而细脉的细胞壁干质量与叶片大小无关; (3)主脉密度与单位主脉长度的细胞壁干质量之间是斜率显著大于-1的负异速生长关系, 表明主脉密度随单位主脉长度的细胞壁干质量增加而显著下降, 两者之间存在权衡关系, 而单位细脉长度的细胞壁干质量与细脉密度关系不显著。上述结果表明, 与大叶片相比, 小叶中通常具有较高的主脉密度, 这不仅是叶片发育过程中叶形变化调控的结果, 也是单位叶脉长度的细胞壁干质量调控的结果, 单位叶脉长度的细胞壁干质量是导致叶片大小与主、细脉密度之间不同变化关系的直接因素。该研究结果为我们理解全球范围内叶片大小变化的生物地理分布模式以及植物对环境的适应策略提供了参考。
熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系. 植物生态学报, 2022, 46(2): 136-147. DOI: 10.17521/cjpe.2021.0060
XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China. Chinese Journal of Plant Ecology, 2022, 46(2): 136-147. DOI: 10.17521/cjpe.2021.0060
图2 天童国家森林公园38个阔叶木本植物叶片面积与叶片干质量(A)、叶片周长(B)的关系。
Fig. 2 Relationships between lamina area and lamina dry mass (A), lamina area and lamina perimeter (B) of 38 broad-leaved woody species in Tiantong National Forest Park.
指标 (y轴-x轴) Index (y axis-x axis) | 决定系数 Coefficient of determination (R2) | 斜率(95%置信区间) Slope (95% confidence interval) | p |
---|---|---|---|
叶片面积-叶片干质量 Lamina area-lamina dry mass | 0.081 | 1.102 (0.953, 1.274) | <0.001 |
叶片面积-叶片周长 Lamina area-lamina perimeter | 0.897 | 2.029 (1.821, 2.260) | <0.001 |
主脉密度-叶片面积 Major vein density-lamina area | 0.893 | -0.503 (-0.562, -0.451) | <0.001 |
主脉密度-叶片周长 Major vein density-lamina perimeter | 0.705 | -1.021 (-1.226, -0.851) | <0.001 |
主脉密度-叶片干质量 Major vein density-lamina dry mass | 0.712 | -0.555 (-0.664, -0.463) | <0.001 |
主脉密度-主脉单位长度的细胞壁干质量 Major vein density-cell wall dry mass per unit length of major vein | 0.615 | -0.699 (-0.861, -0.567) | <0.001 |
主脉单位长度的细胞壁干质量-叶片面积 Cell wall dry mass per unit length of major vein-lamina area | 0.554 | 0.721 (0.576, 0.901) | <0.001 |
主脉单位长度的细胞壁干质量-叶片周长 Cell wall dry mass per unit length of major vein-lamina perimeter | 0.445 | 1.462 (1.142, 1.872) | <0.001 |
主脉单位长度的细胞壁干质量-叶片干质量 Cell wall dry mass per unit length of major vein-lamina dry mass | 0.412 | 0.794 (0.614, 1.026) | <0.001 |
表1 天童国家森林公园38个阔叶木本植物叶片大小与叶脉结构的标准化主轴估计回归关系
Table 1 Summary of standardized major axis estimation regression parameters for the scaling relationships between lamina size and vein architecture of 38 broad-leaved woody species in Tiantong National Forest Park
指标 (y轴-x轴) Index (y axis-x axis) | 决定系数 Coefficient of determination (R2) | 斜率(95%置信区间) Slope (95% confidence interval) | p |
---|---|---|---|
叶片面积-叶片干质量 Lamina area-lamina dry mass | 0.081 | 1.102 (0.953, 1.274) | <0.001 |
叶片面积-叶片周长 Lamina area-lamina perimeter | 0.897 | 2.029 (1.821, 2.260) | <0.001 |
主脉密度-叶片面积 Major vein density-lamina area | 0.893 | -0.503 (-0.562, -0.451) | <0.001 |
主脉密度-叶片周长 Major vein density-lamina perimeter | 0.705 | -1.021 (-1.226, -0.851) | <0.001 |
主脉密度-叶片干质量 Major vein density-lamina dry mass | 0.712 | -0.555 (-0.664, -0.463) | <0.001 |
主脉密度-主脉单位长度的细胞壁干质量 Major vein density-cell wall dry mass per unit length of major vein | 0.615 | -0.699 (-0.861, -0.567) | <0.001 |
主脉单位长度的细胞壁干质量-叶片面积 Cell wall dry mass per unit length of major vein-lamina area | 0.554 | 0.721 (0.576, 0.901) | <0.001 |
主脉单位长度的细胞壁干质量-叶片周长 Cell wall dry mass per unit length of major vein-lamina perimeter | 0.445 | 1.462 (1.142, 1.872) | <0.001 |
主脉单位长度的细胞壁干质量-叶片干质量 Cell wall dry mass per unit length of major vein-lamina dry mass | 0.412 | 0.794 (0.614, 1.026) | <0.001 |
指标(y轴-x轴) Index (y axis-x axis) | 斜率 Slope | 决定系数 Coefficient of determination (R2) |
---|---|---|
叶片面积-叶片干质量 Lamina area-lamina dry mass | 1.164 | 0.952 |
叶片面积-叶片周长 Lamina area-lamina perimeter | 2.046 | 0.989 |
主脉密度-叶片面积 Major vein density-lamina area | -0.440 | 0.985 |
主脉密度-叶片周长 Major vein density-lamina perimeter | -0.898 | 0.971 |
主脉密度-叶片干质量 Major vein density-lamina dry mass | -0.508 | 0.924 |
主脉密度-主脉单位长度的细胞壁干质量 Major vein density-Cell wall dry mass per unit length of major vein | -0.817 | 0.923 |
主脉单位长度的细胞壁干质量-叶片面积 Cell wall dry mass per unit length of major vein-lamina area | 0.493 | 0.897 |
主脉单位长度的细胞壁干质量-叶片周长 Cell wall dry mass per unit length of major vein-lamina perimeter | 1.010 | 0.889 |
主脉单位长度的细胞壁干质量-叶片干质量 Cell wall dry mass per unit length of major vein-lamina dry mass | 0.562 | 0.819 |
表2 天童国家森林公园38种阔叶木本植物叶片大小与叶脉性状间的系统发育独立性比较及最小二乘法回归分析
Table 2 Results of phylogenetic independent contrasts and ordinary regression analyses of lamina size and vein architecture of 38 broad-leaved woody species in Tiantong National Forest Park
指标(y轴-x轴) Index (y axis-x axis) | 斜率 Slope | 决定系数 Coefficient of determination (R2) |
---|---|---|
叶片面积-叶片干质量 Lamina area-lamina dry mass | 1.164 | 0.952 |
叶片面积-叶片周长 Lamina area-lamina perimeter | 2.046 | 0.989 |
主脉密度-叶片面积 Major vein density-lamina area | -0.440 | 0.985 |
主脉密度-叶片周长 Major vein density-lamina perimeter | -0.898 | 0.971 |
主脉密度-叶片干质量 Major vein density-lamina dry mass | -0.508 | 0.924 |
主脉密度-主脉单位长度的细胞壁干质量 Major vein density-Cell wall dry mass per unit length of major vein | -0.817 | 0.923 |
主脉单位长度的细胞壁干质量-叶片面积 Cell wall dry mass per unit length of major vein-lamina area | 0.493 | 0.897 |
主脉单位长度的细胞壁干质量-叶片周长 Cell wall dry mass per unit length of major vein-lamina perimeter | 1.010 | 0.889 |
主脉单位长度的细胞壁干质量-叶片干质量 Cell wall dry mass per unit length of major vein-lamina dry mass | 0.562 | 0.819 |
图3 天童国家森林公园38种阔叶木本植物叶片主脉密度与叶片面积(A)、叶片干质量(B)和叶片周长(C)的关系。
Fig. 3 Relationships between the major vein density and lamina area (A), lamina dry mass (B), and lamina perimeter (C) of 38 broad-leaved woody species in Tiantong National Forest Park.
图4 天童国家森林公园38种阔叶木本植物叶片单位主脉长度的细胞壁干质量与叶片面积(A)、叶片干质量(B)和叶片周长(C)的关系。
Fig. 4 Relationships between the cell wall dry mass per unit length of major vein and lamina area (A), lamina dry mass (B), and lamina perimeter (C) of 38 broad-leaved woody species in Tiantong National Forest Park.
图5 天童国家森林公园38种阔叶木本植物主脉密度与单位主脉长度的细胞壁干质量的关系。
Fig. 5 Relationship between the major vein density and cell wall dry mass per unit length of major vein of 38 broad-leaved woody species in Tiantong National Forest Park.
[1] |
Ackerly D, Knight C, Weiss S, Barton K, Starmer K (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
DOI PMID |
[2] | Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009). Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings Biological Sciences, 276, 1771-1776. |
[3] |
Bragg JG, Westoby M (2002). Leaf size and foraging for light in a sclerophyll woodland. Functional Ecology, 16, 633-639.
DOI URL |
[4] | Brodribb TJ, Feild TS (2000). Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant, Cell & Environment, 23, 1381-1388. |
[5] |
Brodribb TJ, Feild TS, Jordan GJ (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144, 1890-1898.
PMID |
[6] |
Bühler J, Rishmawi L, Pflugfelder D, Huber G, Scharr H, Hülskamp M, Koornneef M, Schurr U, Jahnke S (2015). PhenoVein-A tool for leaf vein segmentation and analysis. Plant Physiology, 169, 2359-2370.
DOI PMID |
[7] | Choat B, Lahr EC, Melcher PJ, Zwieniecki MA, Holbrook NM (2005). The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant, Cell & Environment, 28, 1082-1089. |
[8] |
Dunbar-Co S, Sporck MJ, Sack L (2009). Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation. International Journal of Plant Sciences, 170, 61-75.
DOI URL |
[9] | Fauset S, Freitas HC, Galbraith DR, Sullivan MJP, Aidar MPM, Joly CA, Phillips OL, Vieira SA, Gloor MU (2018). Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant, Cell & Environment, 41, 1618-1631. |
[10] |
Givinish TJ (1987). Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytologist, 106, 131-160.
DOI URL |
[11] | Givnish T (1979). On the adaptive significance of leaf form//Solbrig OT, Jain S, Johnson GB, Raven PH. Topics in Plant Population Biology. Palgrave, London. 375-407. |
[12] |
Givnish TJ, Vermeij GJ (1976). Sizes and shapes of liane leaves. The American Naturalist, 110, 743-778.
DOI URL |
[13] | Harvey PH, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford. 239. |
[14] |
Hüve K, Remus R, Lüttschwager D, Merbach W (2002). Water transport in impaired leaf vein systems. Plant Biology, 4, 603-611.
DOI URL |
[15] | Kull U, Herbig A (1994). Leaf venation patterns and principles of evolution. Evolution of Natural Structures, 167-175. |
[16] | Lambers H, Poorter H (2004). Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research, 34, 283-362. |
[17] | Leaf Architecture Working Group (1999). Manual of Leaf Architecture-Morphological Description and Categorization of Dicotyledonous and Net-veined Monocotyledonous Angiosperms. Smithsonian Institution, Washington D.C. |
[18] |
Li Y, Reich PB, Schmid B, Shrestha N, Feng X, Lyu T, Maitner BS, Xu X, Li Y, Zou D, Tan ZH, Su X, Tang Z, Guo Q, Feng X, Enquist BJ, Wang Z (2020). Leaf size of woody dicots predicts ecosystem primary productivity. Ecology Letters, 23, 1003-1013.
DOI URL |
[19] |
McDonald PG, Fonseca CR, Overton JM, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57.
DOI URL |
[20] |
McKown AD, Cochard H, Sack L (2010). Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. The American Naturalist, 175, 447-460.
DOI URL |
[21] |
Michaletz ST, Cheng D, Kerkhoff AJ, Enquist BJ (2014). Convergence of terrestrial plant production across global climate gradients. Nature, 512, 39-43.
DOI URL |
[22] |
Milla R, Reich PB (2007). The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 274, 2109-2114.
DOI URL |
[23] |
Nardini A, Salleo S (2003). Effects of the experimental blockage of the major veins on hydraulics and gas exchange of Prunus laurocerasus L. leaves. Journal of Experimental Botany, 54, 1213-1219.
PMID |
[24] |
Nardini A, Tyree MT, Salleo S (2001). Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics. Plant Physiology, 125, 1700-1709.
PMID |
[25] | Niinemets Ü, Portsmuth A, Tobias M (2007). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Functional Ecology, 21, 28-40. |
[26] |
Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. New Phytologist, 143, 19-31.
DOI URL |
[27] | Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007). “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 104, 8891-8896. |
[28] |
Noblin X, Mahadevan L, Coomaraswamy IA, Weitz DA, Holbrook NM, Zwieniecki MA (2008). Optimal vein density in artificial and real leaves. Proceedings of the National Academy of Sciences of the United States of America, 105, 9140-9144.
DOI PMID |
[29] | Paradis J (2004). The relevance of specific language impairment in understanding the role of transfer in second language acquisition. Applied Psycholinguistics, 25, 67-82. |
[30] |
Parkhurst DF, Loucks OL (1972). Optimal leaf size in relation to environment. Journal of Ecology, 60, 505-537.
DOI URL |
[31] |
Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, et al. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190, 724-739.
DOI URL |
[32] |
Pitman EJG (1939). A note on normal correlation. Biometrika, 31, 9-12.
DOI URL |
[33] |
Price CA, Wing S, Weitz JS (2012). Scaling and structure of dicotyledonous leaf venation networks. Ecology letters, 15, 87-95.
DOI URL |
[34] |
Qin X, Zhu JJ, Guan XY, Yu TH, Cao KF (2017). The correlations of leaf anatomical characteristics with photosynthetic capacity and drought tolerance in seven sugarcane cultivars. Plant Physiology Journal, 53, 705-712.
DOI URL |
[ 秦茜, 朱俊杰, 关心怡, 于天卉, 曹坤芳 (2017). 七个甘蔗品种叶片解剖结构特征与光合能力和耐旱性的关联. 植物生理学报, 53, 705-712.] | |
[35] |
Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001). Evolution and function of leaf venation architecture: a review. Annals of Botany, 87, 553-566.
DOI URL |
[36] |
Sack L, Cowan PD, Holbrook NM (2003). The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae). American Journal of Botany, 90, 32-39.
DOI URL |
[37] | Sack L, Dietrich EM, Streeter CM, Sánchez-Gómez D, Holbrook NM (2008). Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption. Proceedings of the National Academy of Sciences of the United States of America, 105, 1567-1572. |
[38] |
Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 87, 483-491.
DOI URL |
[39] |
Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. Journal of Experimental Botany, 64, 4053-4080.
DOI URL |
[40] |
Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 3, 837. DOI: 10.1038/ncomms1835.
DOI URL |
[41] | Salleo S, Raimondo F, Trifilò P, Nardini A (2003). Axial-to-radial water permeability of leaf major veins: a possible determinant of the impact of vein embolism on leaf hydraulics? Plant, Cell & Environment, 26, 1749-1758. |
[42] |
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
DOI URL |
[43] |
Tsukaya H (2003). Organ shape and size: a lesson from studies of leaf morphogenesis. Current Opinion in Plant Biology, 6, 57-62.
DOI URL |
[44] |
Wang SY, Yuan SL, Su LT, Lv AM, Zhou P, An Y (2017). Aluminum toxicity in alfalfa (Medicago sativa) is alleviated by exogenous foliar IAA inducing reduction of Al accumulation in cell wall. Environmental and Experimental Botany, 139, 1-13.
DOI URL |
[45] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews of the Cambridge Philosophical Society, 81, 259-291.
DOI URL |
[46] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 31, 702-713. |
[ 杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
[47] | Zhao QL, Tian WB, Zheng Z, Shi QR, You WH, Yan ER (2020). Hydraulic architecture associated with tree height across woody plants in Tiantong, Zhejiang Province. Acta Ecologica Sinica, 40, 6905-6911. |
[ 赵琦琳, 田文斌, 郑忠, 史青茹, 由文辉, 阎恩荣 (2020). 浙江天童木本植物水力结构与树高的关联性. 生态学报, 40, 6905-6911.] |
[1] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[2] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[3] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[4] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[5] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[6] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[7] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[8] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[9] | 陈国鹏, 杨克彤, 王立, 王飞, 曹秀文, 陈林生. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J]. 植物生态学报, 2020, 44(10): 1040-1049. |
[10] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[11] | 周天阳, NARAYAN Prasad Gaire, 廖礼彬, 郑莉莉, 王金牛, 孙建, 魏彦强, 谢雨, 吴彦. 青藏高原东缘两处高山树线交错带时空动态及其建群种的生态学特征[J]. 植物生态学报, 2018, 42(11): 1082-1093. |
[12] | 韩玲, 赵成章, 冯威, 徐婷, 郑慧玲, 段贝贝. 张掖湿地芨芨草叶脉密度和叶脉直径的权衡关系对3种生境的响应[J]. 植物生态学报, 2017, 41(8): 872-881. |
[13] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[14] | 韩玲, 赵成章, 徐婷, 冯威, 段贝贝. 不同土壤水分条件下洪泛平原湿地芨芨草叶片厚度与叶脉性状的关系[J]. 植物生态学报, 2017, 41(5): 529-538. |
[15] | 王杨, 徐文婷, 熊高明, 李家湘, 赵常明, 卢志军, 李跃林, 谢宗强. 檵木生物量分配特征[J]. 植物生态学报, 2017, 41(1): 105-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19