植物生态学报 ›› 2022, Vol. 46 ›› Issue (6): 687-699.DOI: 10.17521/cjpe.2022.0045
所属专题: 植物功能性状
收稿日期:
2022-01-27
接受日期:
2022-03-29
出版日期:
2022-06-20
发布日期:
2022-04-08
通讯作者:
刘志理
作者简介:
*(liuzl2093@126.com)基金资助:
LI Lu, JIN Guang-Ze, LIU Zhi-Li()
Received:
2022-01-27
Accepted:
2022-03-29
Online:
2022-06-20
Published:
2022-04-08
Contact:
LIU Zhi-Li
Supported by:
摘要:
叶包括叶片和叶柄, 二者在结构和功能上密切相关, 探究叶片性状和叶柄性状变异及性状间相关关系的影响因素对了解植物叶水平上的生物量分配策略具有重要意义。该研究以阔叶红松(Pinus koraiensis)林内3种主要阔叶树种白桦(Betula platyphylla)、紫椴(Tilia amurensis)、五角枫(Acer pictum subsp. mono)为研究对象, 每个树种选取小树(胸径: 1-6 cm)、中等树(胸径: 15-20 cm)、大树(胸径: 35-45 cm)各10株样树; 另针对大树, 考虑取样冠层位置对其结果的影响。通过测定叶片面积、叶片干质量、叶柄长和叶柄干质量, 主要探讨树种、植株大小和冠层位置(大树)对叶片性状和叶柄性状变异及其性状间相关性的影响。结果显示: (1)树种和植株大小对4个性状均存在显著影响, 3个树种小树的叶柄长和叶柄干质量显著小于大树, 紫椴和五角枫小树的叶片干质量也显著小于大树, 而白桦和紫椴小树的叶片面积显著大于大树; 对于大树, 冠层位置对4个性状变异的影响因树种而异。(2)叶片性状和叶柄性状表现为显著的异速生长关系, 且3个树种的回归斜率为紫椴>白桦>五角枫; 在白桦不同植株大小间的回归斜率为小树>大树>中等树, 而紫椴和五角枫大树的回归斜率最大; 对于大树, 在不同冠层位置叶片性状和叶柄性状间的相关关系存在共同斜率。研究结果表明叶片性状和叶柄性状的变异及其相关关系受树种和植株大小的显著影响, 冠层位置对大树柄叶性状变异及相关关系的影响则相对较小。
李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性. 植物生态学报, 2022, 46(6): 687-699. DOI: 10.17521/cjpe.2022.0045
LI Lu, JIN Guang-Ze, LIU Zhi-Li. Variations and correlations of lamina and petiole traits of three broadleaved species in a broadleaved Korean pine forest. Chinese Journal of Plant Ecology, 2022, 46(6): 687-699. DOI: 10.17521/cjpe.2022.0045
树种 Species | 植株大小 Tree size | 胸径 DBH (cm) | 树高 Tree height (m) | 第一活枝高 FLBH (m) | 土壤氮含量 Soil N content (mg·g-1) | 土壤磷含量 Soil P content (mg·g-1) | 土壤pH Soil pH | 土壤含水量 Soil water content (g·g-1) |
---|---|---|---|---|---|---|---|---|
>白桦 Betula platyphylla | 小树 Small tree | 5.13 ± 0.08c | 6.30 ± 0.25c | - | 5.47 ± 0.44b | 1.06 ± 0.07a | 4.31 ± 0.04a | 0.91 ± 0.14a |
中等树 Middle tree | 18.83 ± 0.43b | 14.42 ± 0.34b | - | 9.28 ± 0.67a | 1.24 ± 0.08a | 4.33 ± 0.10a | 1.23 ± 0.14a | |
大树 Large tree | 41.00 ± 0.69a | 18.89 ± 0.44a | 6.44 ± 0.45 | 9.49 ± 1.16a | 1.15 ± 0.07a | 4.29 ± 0.12a | 1.32 ±0.22a | |
紫椴 Tilia amurensis | 小树 Small tree | 4.35 ± 0.23c | 4.40 ± 0.29c | - | 7.12 ± 0.62b | 1.34 ± 0.09a | 4.49 ± 0.16a | 1.10 ± 0.18a |
中等树 Middle tree | 17.70 ± 0.47b | 12.60 ± 0.76b | - | 6.88 ± 0.45b | 1.25 ± 0.07a | 4.34 ± 0.16a | 0.83 ± 0.05a | |
大树 Large tree | 43.04 ± 0.88a | 18.92 ± 0.82a | 6.84 ± 0.70 | 9.30 ± 0.66a | 1.24 ± 0.09a | 5.56 ± 0.12a | 1.09 ± 0.08a | |
五角枫 Acer pictum subsp. mono | 小树 Small tree | 3.22 ± 0.18c | 4.94 ± 0.31c | - | 5.89 ± 0.37b | 1.05 ± 0.09b | 5.11 ± 0.11b | 0.62 ± 0.04b |
中等树 Middle tree | 17.19 ± 0.58b | 11.18 ± 0.38b | - | 7.14 ± 0.57b | 1.23 ± 0.08b | 4.69 ± 0.18c | 1.07 ± 0.15a | |
大树 Large tree | 41.32 ± 0.70a | 14.00 ± 0.95a | 4.79 ± 0.48 | 10.09 ± 0.59a | 1.67 ± 0.09a | 5.74 ± 0.11a | 1.13 ± 0.06a |
表1 阔叶红松林3种树种样树及土壤因子信息(平均值±标准误)
Table 1 Information on sample trees and soil factors for the three species in a broadleaved Korean pine forest (mean ± SE)
树种 Species | 植株大小 Tree size | 胸径 DBH (cm) | 树高 Tree height (m) | 第一活枝高 FLBH (m) | 土壤氮含量 Soil N content (mg·g-1) | 土壤磷含量 Soil P content (mg·g-1) | 土壤pH Soil pH | 土壤含水量 Soil water content (g·g-1) |
---|---|---|---|---|---|---|---|---|
>白桦 Betula platyphylla | 小树 Small tree | 5.13 ± 0.08c | 6.30 ± 0.25c | - | 5.47 ± 0.44b | 1.06 ± 0.07a | 4.31 ± 0.04a | 0.91 ± 0.14a |
中等树 Middle tree | 18.83 ± 0.43b | 14.42 ± 0.34b | - | 9.28 ± 0.67a | 1.24 ± 0.08a | 4.33 ± 0.10a | 1.23 ± 0.14a | |
大树 Large tree | 41.00 ± 0.69a | 18.89 ± 0.44a | 6.44 ± 0.45 | 9.49 ± 1.16a | 1.15 ± 0.07a | 4.29 ± 0.12a | 1.32 ±0.22a | |
紫椴 Tilia amurensis | 小树 Small tree | 4.35 ± 0.23c | 4.40 ± 0.29c | - | 7.12 ± 0.62b | 1.34 ± 0.09a | 4.49 ± 0.16a | 1.10 ± 0.18a |
中等树 Middle tree | 17.70 ± 0.47b | 12.60 ± 0.76b | - | 6.88 ± 0.45b | 1.25 ± 0.07a | 4.34 ± 0.16a | 0.83 ± 0.05a | |
大树 Large tree | 43.04 ± 0.88a | 18.92 ± 0.82a | 6.84 ± 0.70 | 9.30 ± 0.66a | 1.24 ± 0.09a | 5.56 ± 0.12a | 1.09 ± 0.08a | |
五角枫 Acer pictum subsp. mono | 小树 Small tree | 3.22 ± 0.18c | 4.94 ± 0.31c | - | 5.89 ± 0.37b | 1.05 ± 0.09b | 5.11 ± 0.11b | 0.62 ± 0.04b |
中等树 Middle tree | 17.19 ± 0.58b | 11.18 ± 0.38b | - | 7.14 ± 0.57b | 1.23 ± 0.08b | 4.69 ± 0.18c | 1.07 ± 0.15a | |
大树 Large tree | 41.32 ± 0.70a | 14.00 ± 0.95a | 4.79 ± 0.48 | 10.09 ± 0.59a | 1.67 ± 0.09a | 5.74 ± 0.11a | 1.13 ± 0.06a |
图1 阔叶红松林不同树种的叶片和叶柄性状在不同植株大小(A-D)和冠层位置(大树)(E-H)间的差异。S1, 白桦; S2, 紫椴; S3, 五角枫。箱体下方不同大写字母代表性状在3个树种间存在显著差异(p < 0.05)。箱体上方不同小写字母代表给定树种的叶片和叶柄性状在不同植株大小间或不同冠层位置(大树)间存在显著差异(p < 0.05)。
Fig. 1 Variations in lamina and petiole traits among tree sizes (A-D) or canopy positions (large tree)(E-H) of the three species in a broadleaved Korean pine forest. S1, Betula platyphylla; S2, Tilia amurensis; S3, Acer pictum subsp. mono. LA, lamina area; LDM, lamina dry mass; PDM, petiole dry mass; PL, petiole length. Different uppercase letters below the boxes indicated that lamina or petiole traits significantly varied with tree species (p < 0.05). Different lowercase letters above the boxes indicated that lamina or petiole traits significantly varied with different tree sizes or different canopy positions (large tree) for a given species (p < 0.05).
树种 Species | 性状 Trait | 植株大小 Tree size (%) | 冠层位置Canopy position (%) |
---|---|---|---|
白桦 Betula platyphylla | 叶片面积 LA (cm2) | 35.36 | 27.40 |
叶片干质量 LDM (g) | 38.54 | 30.36 | |
叶柄长 PL (cm) | 28.43 | 27.73 | |
叶柄干质量 PDM (g) | 48.01 | 42.00 | |
紫椴 Tilia amurensis | 叶片面积 LA (cm2) | 31.88 | 31.78 |
叶片干质量 LDM (g) | 39.19 | 34.43 | |
叶柄长 PL (cm) | 18.29 | 14.40 | |
叶柄干质量 PDM (g) | 40.47 | 35.87 | |
五角枫 Acer pictum subsp. mono | 叶片面积 LA (cm2) | 38.61 | 36.41 |
叶片干质量 LDM (g) | 44.38 | 42.34 | |
叶柄长 PL (cm) | 39.40 | 33.06 | |
叶柄干质量 PDM (g) | 66.36 | 56.17 |
表2 阔叶红松林3种树种的性状在不同植株大小和不同冠层位置(大树)的变异系数
Table 2 Coefficient of variation among tree sizes and canopy positions (large tree) of four traits in the three species of a broadleaved Korean pine forest
树种 Species | 性状 Trait | 植株大小 Tree size (%) | 冠层位置Canopy position (%) |
---|---|---|---|
白桦 Betula platyphylla | 叶片面积 LA (cm2) | 35.36 | 27.40 |
叶片干质量 LDM (g) | 38.54 | 30.36 | |
叶柄长 PL (cm) | 28.43 | 27.73 | |
叶柄干质量 PDM (g) | 48.01 | 42.00 | |
紫椴 Tilia amurensis | 叶片面积 LA (cm2) | 31.88 | 31.78 |
叶片干质量 LDM (g) | 39.19 | 34.43 | |
叶柄长 PL (cm) | 18.29 | 14.40 | |
叶柄干质量 PDM (g) | 40.47 | 35.87 | |
五角枫 Acer pictum subsp. mono | 叶片面积 LA (cm2) | 38.61 | 36.41 |
叶片干质量 LDM (g) | 44.38 | 42.34 | |
叶柄长 PL (cm) | 39.40 | 33.06 | |
叶柄干质量 PDM (g) | 66.36 | 56.17 |
图2 阔叶红松林叶片-叶柄性状相关关系在不同树种间的差异。S1, 白桦; S2, 紫椴; S3, 五角枫。LA, 叶片面积; LDM, 叶片干质量; PDM, 叶柄干质量; PL, 叶柄长。p值表示斜率(Slope)间差异的显著性; p < 0.05, 差异显著, 不具有共同斜率。图中彩色实线表示性状间相关关系显著; ***, p < 0.001。
Fig. 2 Differences in correlations between lamina-petiole traits in different tree species in a broadleaved Korean pine forest. S1, Betula platyphylla; S2, Tilia amurensis; S3, Acer pictum subsp. mono. LA, lamina area; LDM, lamina dry mass; PDM, petiole dry mass; PL, petiole length. p value represents the significance of difference in slopes; p < 0.05, the difference is significant and there is no common slope. The colored solid lines in the figure indicate that the correlations between traits were significant; ***, p < 0.001.
图3 阔叶红松林3个树种叶片-叶柄性状相关关系在不同植株大小间的差异。H1, 小树; H2, 中等树; H3, 大树。LA, 叶片面积; LDM, 叶片干质量; PDM, 叶柄干质量; PL, 叶柄长。p值表示斜率(Slope)间差异的显著性; p < 0.05, 差异显著, 不具有共同斜率; p > 0.05, 差异不显著, 具有共同斜率。图中彩色实线表示性状间相关关系显著; **, p < 0.01; ***, p < 0.001。
Fig. 3 Differences in correlations between lamina-petiole traits in different tree sizes of the three tree species in a broadleaved Korean pine forest. H1, small tree; H2, middle tree; H3, large tree. LA, lamina area; LDM, lamina dry mass; PDM, petiole dry mass; PL, petiole length. p value represents the significance of difference in slopes; p < 0.05, the difference is significant and there is no common slope; p > 0.05, the difference is not significant and there is a common slope. The colored solid lines in the figure indicate that the correlations between traits were significant; **, p < 0.01; ***, p < 0.001.
图4 阔叶红松林3个树种大树的叶片-叶柄性状相关关系在不同冠层间的差异。LA, 叶片面积; LDM, 叶片干质量; PDM, 叶柄干质量; PL, 叶柄长。p值表示斜率(Slope)间差异的显著性; p < 0.05, 差异显著, 不具有共同斜率(Common slope); p > 0.05, 差异不显著, 具有共同斜率。图中彩色实线表示性状间相关关系显著; *, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 4 Differences in correlations between lamina-petiole traits in different canopy positions of the large tree of the three species in a broadleaved Korean pine forest. LA, lamina area; LDM, lamina dry mas; PDM, petiole dry mass; PL, petiole lengths. p value represents the significance of difference in slopes; p < 0.05, the difference is significant and there is no common slope; p > 0.05, the difference is not significant and there is a common slope. The colored solid lines in the figure indicate that the correlations between traits were significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
[1] |
Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010). Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology, 98, 604-613.
DOI URL |
[2] |
Baird AS, Taylor SH, Pasquet-Kok J, Vuong C, Zhang Y, Watcharamongkol T, Scoffoni C, Edwards EJ, Christin PA, Osborne CP, Sack L (2021). Developmental and biophysical determinants of grass leaf size worldwide. Nature, 592, 242-247.
DOI URL |
[3] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91-100.
DOI URL |
[4] |
Coble AP, VanderWall B, Mau A, Cavaleri MA (2016). How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest. Tree Physiology, 36, 1077-1091.
DOI PMID |
[5] |
Dayrell RLC, Arruda AJ, Pierce S, Negreiros D, Meyer PB, Lambers H, Silveira FAO (2018). Ontogenetic shifts in plant ecological strategies. Functional Ecology, 32, 2730-2741.
DOI URL |
[6] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice C, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL |
[7] |
Dong N, Prentice IC, Wright IJ, Evans BJ, Togashi HF, Caddy-Retalic S, McInerney FA, Sparrow B, Leitch E, Lowe AJ (2020). Components of leaf-trait variation along environmental gradients. New Phytologist, 228, 82-94.
DOI URL |
[8] |
Fajardo A, Mora JP, Robert E (2020). Corner's rules pass the test of time: little effect of phenology on leaf-shoot and other scaling relationships. Annals of Botany, 126, 1129-1139.
DOI PMID |
[9] |
Galia Selaya N, Oomen RJ, Netten JJC, Werger MJA, Anten NPR (2008). Biomass allocation and leaf life span in relation to light interception by tropical forest plants during the first years of secondary succession. Journal of Ecology, 96, 1211-1221.
DOI URL |
[10] |
Gspaltl M, Bauerle W, Binkley D, Sterba H (2013). Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes. Forest Ecology and Management, 288, 49-59.
PMID |
[11] | Han DX, Jin GZ (2017). Influences of topography and competition on DBH growth in different growth stages in a typical mixed broadleaved-Korean pine forest, northeastern China. Journal of Beijing Forestry University, 39(1), 9-19. |
[韩大校, 金光泽 (2017). 地形和竞争对典型阔叶红松林不同生长阶段树木胸径生长的影响. 北京林业大学学报, 39(1), 9-19.] | |
[12] |
Ishii H, Hamada Y, Utsugi H (2012). Variation in light-intercepting area and photosynthetic rate of sun and shade shoots of two Picea species in relation to the angle of incoming light. Tree Physiology, 32, 1227-1236.
DOI URL |
[13] | Ji M, Wang YJ, Jin GZ, Liu ZL (2019). Vertical variation and model construction of area and dry mass for a single leaf from six broadleaved trees in mixed broadleaved-Korean pine forests. Chinese Journal of Applied Ecology, 30, 1667-1678. |
[纪蒙, 王彦君, 金光泽, 刘志理 (2019). 阔叶红松林6种阔叶树单个叶片叶面积和叶干质量的垂直变异及模型构建. 应用生态学报, 30, 1667-1678.]
DOI |
|
[14] | Jin MY, Jiang F, Jin GZ, Liu ZL (2018). Variations of specific leaf area in different growth periods and canopy positions of Betula platyphylla at different ages. Scientia Silvae Sinicae, 54(9), 18-26. |
[金明月, 姜峰, 金光泽, 刘志理 (2018). 不同年龄白桦比叶面积的生长阶段变异及冠层差异. 林业科学, 54(9), 18-26.] | |
[15] |
Kenzo T, Inoue Y, Yoshimura M, Yamashita M, Tanaka-Oda A, Ichie T (2015). Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. Oecologia, 177, 191-202.
DOI PMID |
[16] |
Kessler S, Sinha N (2004). Shaping up: the genetic control of leaf shape. Current Opinion in Plant Biology, 7, 65-72.
PMID |
[17] |
Koike T, Kitao M, Maruyama Y, Mori S, Lei TT (2001). Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. Tree Physiology, 21, 951-958.
PMID |
[18] |
Li GY, Yang DM, Sun SC (2008). Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude. Functional Ecology, 22, 557-564.
DOI URL |
[19] | Li JL, Wang MT, Li HS, Chen XP, Sun J, Zhong QL, Cheng DL (2021). Effects of canopy height on the relationship between individual leaf mass and leafing intensity of 69 broad leaved trees in Jiangxi Province. Scientia Silvae Sinicae, 57(2), 62-71. |
[李锦隆, 王满堂, 李涵诗, 陈晓萍, 孙俊, 钟全林, 程栋梁 (2021). 冠层高度对江西69种阔叶树小枝单叶生物量与出叶强度关系的影响. 林业科学, 57(2), 62-71.] | |
[20] |
Liu MX, Liang GL (2016). Research progress on leaf mass per area. Chinese Journal of Plant Ecology, 40, 847-860.
DOI URL |
[刘明秀, 梁国鲁 (2016). 植物比叶质量研究进展. 植物生态学报, 40, 847-860.]
DOI |
|
[21] |
Liu ZL, Hikosaka K, Li FR, Jin GZ (2020). Variations in leaf economics spectrum traits for an evergreen coniferous species: tree size dominates over environment factors. Functional Ecology, 34, 458-467.
DOI URL |
[22] |
Lusk CH, Reich PB, Montgomery RA, Ackerly DD, Cavender- Bares J, (2008). Why are evergreen leaves so contrary about shade? Trends in Ecology & Evolution, 23, 299-303.
DOI URL |
[23] |
Niinemets Ü, Al Afas N, Cescatti A, Pellis A, Ceulemans R (2004). Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations. Tree Physiology, 24, 141-154.
PMID |
[24] |
Niinemets Ü, Fleck S (2002). Petiole mechanics, leaf inclination, morphology, and investment in support in relation to light availability in the canopy of Liriodendron tulipifera. Oecologia, 132, 21-33.
DOI PMID |
[25] |
Niinemets Ü, Keenan TF, Hallik L (2015). A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytologist, 205, 973-993.
DOI PMID |
[26] |
Niinemets Ü, Kull O (1999). Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees. Tree Physiology, 19, 349-358.
PMID |
[27] |
Niinemets Ü, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171, 91-104.
PMID |
[28] |
Niinemets Ü, Valladares F (2006). Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecological Monographs, 76, 521-547.
DOI URL |
[29] |
Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. New Phytologist, 143, 19-31.
DOI URL |
[30] |
Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007). “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 104, 8891-8896.
PMID |
[31] | Osada N, Takeda H, Furukawa A, Awang M (2002). Changes in shoot allometry with increasing tree height in a tropical canopy species, Elateriospermum tapos. Tree Physiology, 22, 625-632. |
[32] | Osnas JLD, Katabuchi M, Kitajima K, Wright SJ, Reich PB, van Bael SA, Kraft NJB, Samaniego MJ, Pacala SW, Lichstein JW (2018). Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proceedings of the National Academy of Sciences of the United States of America, 115, 5480-5485. |
[33] |
Pan SA, Peng GQ, Yang DM (2015). Biomass allocation strategies within a leaf: implication for leaf size optimization. Chinese Journal of Plant Ecology, 39, 971-979.
DOI URL |
[潘少安, 彭国全, 杨冬梅 (2015). 从叶内生物量分配策略的角度理解叶大小的优化. 植物生态学报, 39, 971-979.]
DOI |
|
[34] |
Pickup M, Westoby M, Basden A (2005). Dry mass costs of deploying leaf area in relation to leaf size. Functional Ecology, 19, 88-97.
DOI URL |
[35] |
Plourde BT, Boukili VK, Chazdon RL (2015). Radial changes in wood specific gravity of tropical trees: inter- and intraspecific variation during secondary succession. Functional Ecology, 29, 111-120.
DOI URL |
[36] |
Pollastrini M, Nogales AG, Benavides R, Bonal D, Finer L, Fotelli M, Gessler A, Grossiord C, Radoglou K, Strasser RJ, Bussotti F (2017). Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest. Tree Physiology, 37, 199-208.
DOI PMID |
[37] |
Poorter L, Bongers L, Bongers F (2006). Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology, 87, 1289-1301.
DOI URL |
[38] |
Poorter L, Rozendaal DMA (2008). Leaf size and leaf display of thirty-eight tropical tree species. Oecologia, 158, 35-46.
DOI URL |
[39] |
Price CA, Weitz JS (2012). Allometric covariation: a hallmark behavior of plants and leaves. New Phytologist, 193, 882-889.
DOI URL |
[40] |
Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
DOI URL |
[41] |
Takenaka A (1994). Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecological Research, 9, 109-114.
DOI URL |
[42] |
Tang QQ, Huang YT, Ding Y, Zang RG (2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24, 262-270.
DOI URL |
[唐青青, 黄永涛, 丁易, 臧润国 (2016). 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24, 262-270.]
DOI |
|
[43] |
Thomas HJD, Bjorkman AD, Myers-Smith IH, Elmendorf SC, Kattge J, Diaz S, Vellend M, Blok D, Cornelissen JHC, Forbes BC, Henry GHR, Hollister RD, Normand S, Prevéy JS, Rixen C, et al. (2020). Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 11, 1351. DOI: 10.1038/s41467-020-15014-4.
DOI PMID |
[44] |
Weerasinghe LK, Creek D, Crous KY, Xiang S, Liddell MJ, Turnbull MH, Atkin OK (2014). Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland. Tree Physiology, 34, 564-584.
DOI PMID |
[45] |
Xiang S, Wu N, Sun SC (2009). Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis. Trees, 23, 637-647.
DOI URL |
[46] |
Yan ER, Wang XH, Chang SX, He FL (2013). Scaling relationships among twig size, leaf size and leafing intensity in a successional series of subtropical forests. Tree Physiology, 33, 609-617.
DOI URL |
[47] |
Yang JH, Li YN, Bu HY, Zhang ST, Qi W (2019). Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 43, 863-876.
DOI URL |
[杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威 (2019). 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应. 植物生态学报, 43, 863-876.]
DOI |
|
[48] |
Yao J, Li Y, Wei LP, Jiang SS, Yang S, Hou JH (2013). Changes of allometric relationships among leaf traits in different ontogenetic stages of Acer mono from different types of forests in Donglingshan of Beijing. Acta Ecologica Sinica, 33, 3907-3915.
DOI URL |
[姚婧, 李颖, 魏丽萍, 蒋思思, 杨松, 侯继华 (2013). 东灵山不同林型五角枫叶性状异速生长关系随发育阶段的变化. 生态学报, 33, 3907-3915.] | |
[49] | Yoshimura K (2010). Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution of leaves in Cedrela sinensis. Plant, Cell & Environment, 33, 750-758. |
[50] |
Yu QH, Jin GZ, Liu ZL (2020). Plant size, branch age and environment factors co-drive variations of branch traits of Pinus koraiensis. Chinese Journal of Plant Ecology, 44, 939-950.
DOI URL |
[于青含, 金光泽, 刘志理 (2020). 植株大小、枝龄和环境共同驱动红松枝性状的变异. 植物生态学报, 44, 939-950.] | |
[51] |
Zhu JD, Meng TT, Ni J, Su HX, Xie ZQ, Zhang SR, Zheng YR, Xiao CW (2011). Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types. Chinese Journal of Plant Ecology, 35, 687-698.
DOI URL |
[祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 张守仁, 郑元润, 肖春旺 (2011). 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异. 植物生态学报, 35, 687-698.] |
[1] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[3] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[4] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[5] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[6] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[7] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[8] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[9] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[10] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[11] | 陈国鹏, 杨克彤, 王立, 王飞, 曹秀文, 陈林生. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J]. 植物生态学报, 2020, 44(10): 1040-1049. |
[12] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[13] | 周天阳, NARAYAN Prasad Gaire, 廖礼彬, 郑莉莉, 王金牛, 孙建, 魏彦强, 谢雨, 吴彦. 青藏高原东缘两处高山树线交错带时空动态及其建群种的生态学特征[J]. 植物生态学报, 2018, 42(11): 1082-1093. |
[14] | 刘畅, 孙鹏森, 刘世荣. 水分敏感的反射光谱指数比较研究——以锐齿槲栎为例[J]. 植物生态学报, 2017, 41(8): 850-861. |
[15] | 韩玲, 赵成章, 徐婷, 冯威, 段贝贝. 不同土壤水分条件下洪泛平原湿地芨芨草叶片厚度与叶脉性状的关系[J]. 植物生态学报, 2017, 41(5): 529-538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19