植物生态学报 ›› 2017, Vol. 41 ›› Issue (5): 529-538.DOI: 10.17521/cjpe.2016.0123
所属专题: 植物功能性状
韩玲, 赵成章*, 徐婷, 冯威, 段贝贝
出版日期:
2017-05-10
发布日期:
2017-06-22
通讯作者:
赵成章
作者简介:
* 通信作者Author for correspondence (E-mail:
Ling HAN, Cheng-Zhang ZHAO*, Ting XU, Wei FENG, Bei-Bei DUAN
Online:
2017-05-10
Published:
2017-06-22
Contact:
Cheng-Zhang ZHAO
About author:
KANG Jing-yao(1991-), E-mail:
摘要:
叶片厚度和叶脉性状的关联性影响着叶片水分的动态平衡, 对揭示植物叶片水分运输与生长速率耦合的生理生态学机制具有重要的意义。该文选择位于张掖市黑河干流边缘的洪泛平原湿地作为实验地, 以河边为起点, 沿垂直河岸线的方向依次设置I (50.07%)、II (38.77%)、III (31.5%)、IV (20.4%) 4个土壤含水量梯度样地, 采用标准化主轴估计(SMA)方法, 以叶脉密度和叶脉直径分别表示叶脉性状, 研究了不同土壤水分条件下芨芨草(Achnatherum splendens)种群的叶片厚度与叶脉性状的生长关系。结果表明: 随着湿地群落土壤含水量的逐渐降低, 湿地群落的植被密度和高度逐渐降低, 土壤电导率逐渐增大; 芨芨草的叶脉密度、叶片厚度、水分利用效率和光合有效辐射呈逐渐增加的趋势, 叶脉直径、蒸腾速率和分枝数呈逐渐减小的趋势, 净光合速率和株高呈先增大后减小的趋势; 随着湿地群落土壤含水量的逐渐降低, 芨芨草叶片厚度与叶脉密度、叶脉直径的相关性在不同样地间存在差异; 芨芨草叶片厚度与叶脉密度呈显著的正相关关系, SMA的斜率呈逐渐减小的趋势, 且在样地I和样地IV与1.0存在显著差异; 叶片厚度与叶脉直径呈显著的负相关关系, SMA的斜率呈逐渐增大的趋势, 且在样地I和样地IV与-1.0存在显著差异。芨芨草在土壤水分较充足的湿地群落倾向于少量粗脉的薄叶片构建方式, 在受土壤水分胁迫时选择大量细脉的厚叶片的生长模式, 体现了湿地植物在资源异质性分布的生境中根据其功能需求在自身性状之间进行的资源优化配置。
韩玲, 赵成章, 徐婷, 冯威, 段贝贝. 不同土壤水分条件下洪泛平原湿地芨芨草叶片厚度与叶脉性状的关系. 植物生态学报, 2017, 41(5): 529-538. DOI: 10.17521/cjpe.2016.0123
Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland, Heihe River, China. Chinese Journal of Plant Ecology, 2017, 41(5): 529-538. DOI: 10.17521/cjpe.2016.0123
样地 Plot | 土壤含水量 Soil moisture content (%) | 土壤电导率 Soil electrical conductivity (ms·cm-1) | 高度 High (cm) | 密度 Density (plant·m-2) | PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|
I | 50.07 ± 1.24a | 3.01 ± 0.19d | 171.20 ± 5.24a | 19.5 ± 0.55a | 645.30 ± 13.18d |
II | 38.77 ± 1.03b | 5.88 ± 0.23c | 146.37 ± 4.62b | 16.4 ± 0.34b | 833.10 ± 22.48c |
III | 31.50 ± 1.01c | 7.79 ± 0.33b | 127.33 ± 3.25c | 10.3 ± 0.24c | 921.40 ± 31.24b |
IV | 20.40 ± 0.67d | 11.90 ± 0.55a | 98.57 ± 3.66d | 6.3 ± 0.1d | 1β397.10 ± 45.25a |
表1 不同样地的湿地群落生物学特征和土壤理化性质(平均值±标准误差, n = 30)
Table 1 Wetland community biology characteristics and soil physicochemical properties in different plots (mean ± SE, n = 30)
样地 Plot | 土壤含水量 Soil moisture content (%) | 土壤电导率 Soil electrical conductivity (ms·cm-1) | 高度 High (cm) | 密度 Density (plant·m-2) | PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|
I | 50.07 ± 1.24a | 3.01 ± 0.19d | 171.20 ± 5.24a | 19.5 ± 0.55a | 645.30 ± 13.18d |
II | 38.77 ± 1.03b | 5.88 ± 0.23c | 146.37 ± 4.62b | 16.4 ± 0.34b | 833.10 ± 22.48c |
III | 31.50 ± 1.01c | 7.79 ± 0.33b | 127.33 ± 3.25c | 10.3 ± 0.24c | 921.40 ± 31.24b |
IV | 20.40 ± 0.67d | 11.90 ± 0.55a | 98.57 ± 3.66d | 6.3 ± 0.1d | 1β397.10 ± 45.25a |
各功能性状 Functional characteristic | 样地 Plot | |||
---|---|---|---|---|
I | II | III | IV | |
株高 Plant height (cm) | 130.34 ± 4.50b | 149.67 ± 4.62a | 152.00 ± 5.24a | 95.67 ± 3.56c |
分枝数 Twig number (No.·clump-1) | 203.33 ± 8.83a | 173.67 ± 6.34b | 155.33 ± 5.90b | 113.33 ± 4.29c |
叶片厚度 Leaf thickness (mm) | 0.145 ± 0.01c | 0.158 ± 0.02b | 0.162 ± 0.02b | 0.166 ± 0.02a |
叶脉直径 Vein diameter (mm) | 0.208 ± 0.04a | 0.195 ± 0.03b | 0.184 ± 0.02b | 0.164 ± 0.02c |
叶脉密度 Vein destiny (mm·mm-1) | 1.283 ± 0.05c | 1.406 ± 0.04b | 1.439 ± 0.03b | 1.587 ± 0.03a |
Pn (μmol CO2·m-2·s-1) | 13.20 ± 0.12c | 13.94 ± 0.17a | 14.05 ± 0.18a | 13.87 ± 0.13b |
Tr (mmol H2O·m-2·s-1) | 6.83 ± 0.11a | 6.67 ± 0.10b | 6.63 ± 0.09b | 6.35 ± 0.07c |
WUE (μmol CO2·mmol-1 H2O) | 1.93 ± 0.01c | 2.08 ± 0.02b | 2.12 ± 0.02b | 2.18 ± 0.03a |
表2 不同样地芨芨草各功能性状(平均值±标准误差, n = 30)
Table 2 Functional characteristics of Achnatherum splendens in different plots (mean ± SE, n = 30)
各功能性状 Functional characteristic | 样地 Plot | |||
---|---|---|---|---|
I | II | III | IV | |
株高 Plant height (cm) | 130.34 ± 4.50b | 149.67 ± 4.62a | 152.00 ± 5.24a | 95.67 ± 3.56c |
分枝数 Twig number (No.·clump-1) | 203.33 ± 8.83a | 173.67 ± 6.34b | 155.33 ± 5.90b | 113.33 ± 4.29c |
叶片厚度 Leaf thickness (mm) | 0.145 ± 0.01c | 0.158 ± 0.02b | 0.162 ± 0.02b | 0.166 ± 0.02a |
叶脉直径 Vein diameter (mm) | 0.208 ± 0.04a | 0.195 ± 0.03b | 0.184 ± 0.02b | 0.164 ± 0.02c |
叶脉密度 Vein destiny (mm·mm-1) | 1.283 ± 0.05c | 1.406 ± 0.04b | 1.439 ± 0.03b | 1.587 ± 0.03a |
Pn (μmol CO2·m-2·s-1) | 13.20 ± 0.12c | 13.94 ± 0.17a | 14.05 ± 0.18a | 13.87 ± 0.13b |
Tr (mmol H2O·m-2·s-1) | 6.83 ± 0.11a | 6.67 ± 0.10b | 6.63 ± 0.09b | 6.35 ± 0.07c |
WUE (μmol CO2·mmol-1 H2O) | 1.93 ± 0.01c | 2.08 ± 0.02b | 2.12 ± 0.02b | 2.18 ± 0.03a |
图2 不同土壤水分条件下芨芨草叶片厚度与叶脉密度的关系。I, 样地I (土壤含水量50.07%); II, 样地II (土壤含水量38.77%); III, 样地III (土壤含水量31.5%); IV, 样地IV (土壤含水量20.4%)。
Fig. 2 Relationship between leaf thickness and vein density of Achnatherum splendens among different soil moisture conditions. I, plot I (soil moisture content 50.07%); II, plot II (soil moisture content 38.77%); III, plot III (soil moisture content 31.5%); IV, plot IV (soil moisture content 20.4%).
图3 不同土壤水分条件下芨芨草叶片厚度与叶脉直径的关系。I, 样地I (土壤含水量50.07%); II, 样地II (土壤含水量38.77%); III, 样地III (土壤含水量31.5%); IV, 样地IV (土壤含水量20.4%)。
Fig. 3 Relationship between leaf thickness and vein diameter of Achnatherum splendens among different soil moisture conditions. I, plot I (soil moisture content 50.07%); II, plot II (soil moisture content 38.77%); III, plot III (soil moisture content 31.5%); IV, plot IV (soil moisture content 20.4%).
[1] | Berlyn GP, Miksche JP (1976). Botanical Microtechnique and Cytochemistry. Iowa State University Press, Ames. |
[2] | Blonder B, Violle C, Bentley LP, Enquist BJ (2010). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91-100. |
[3] | Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448. |
[4] | Brodribb TJ, Feild TS, Jordan GJ (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics.Plant Physiology, 144, 1890-1898. |
[5] | Domínguez MT, Aponte C, Perez-Ramos IM (2012). Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities.Plant and Soil, 357, 407-424. |
[6] | Falster DS, Warton DI, Wright IJ (. |
[7] | Gago J, Douthe C, Florez-Sarasa I, Escalona JM, Galmes J, Fernie AR, Flexas J, Medrano H (2014). Opportunities for improving leaf water use efficiency under climate change conditions.Plant Science, 226, 108-119. |
[8] | Givnish TJ (1987). Comparative studies of leaf form: Assessing the relative roles of selective pressures and phylogenetic constraints.The New Phytologist, 106, 131-160. |
[9] | Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions. Chinese Journal of Plant Ecology, 39, 300-308. (in English with Chinese abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.] |
[10] | Harvey PH, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK. |
[11] | Han L, Zhao CZ, Xu T, Feng W, Duan BB, Zheng HL (2016). Trade-off between leaf size and vein density of Achnatherum splendens in Zhangye wetland.Chinese Journal of Plant Ecology, 40, 788-797. (in Chinese with English abstract)[韩玲, 赵成章, 徐婷, 冯威, 段贝贝, 郑慧玲 (2016). 张掖湿地芨芨草叶大小和叶脉密度的权衡关系. 植物生态学报, 40, 788-797.] |
[12] | Hou ZJ, Zhao CZ, Li Y, Zhang Q, Ma XL (2014). Trade-off between height and branch numbers in Stellera chamaejasme on slopes of different aspects in a degraded alpine grassland. Chinese Journal of Plant Ecology, 38, 281-288. (in English with Chinese abstract)[侯兆疆, 赵成章, 李钰, 张茜, 马小丽 (2014). 不同坡向高寒退化草地狼毒株高和枝条数的权衡关系. 植物生态学报, 38, 281-288.] |
[13] | Hultine KR, Marshall JD (2000). Altitude trends in conifer leaf morphology and stable carbon isotope composition.Oecologia, 123, 32-40. |
[14] | Kang SZ, Zhang JH (2004). Controlled alternate partial root- zone irrigation: Its physiological consequences and impact on water use efficiency.Journal of Experimental Botany, 55, 2437-2446. |
[15] | Li R, Jiang ZM, Zhang SX, Cai J (2015). A review of new research progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 39, 838-848. (in English with Chinese abstract)[李荣, 姜在民, 张硕新, 蔡靖 (2015). 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 39, 838-848.] |
[16] | Matthew-Ogburn R, Edwards EJ (2013). Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants.Current Biology, 23, 722-726. |
[17] | McKown AD, Cochard H, Sack L (2010). Decoding leaf hydraulics with a spatially explicit model: Principles of venation architecture and implications for its evolution.The American Naturalist, 175, 447-460. |
[18] | Moles AT, Perkins SE, Laffan SW (2014). Which is a better predictor of plant traits: Temperature or precipitation?Journal of Vegetation Science, 25, 1167-1180. |
[19] | Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes.Functional Ecology, 28, 810-818. |
[20] | Nardini A, Pedà G, La Rocca N (2012). Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho- anatomical bases, carbon costs and ecological consequences.New Phytologist, 196, 788-798. |
[21] | Nardini A, Raimondo F, LoGullo MA (2010). Leaf miners help us understand leaf hydraulic design.Plant, Cell & Environment, 33, 1091-1100. |
[22] | Ogburn RM, Edwards EJ (2012). Quantifying succulence: A rapid, physiologically meaningful metric of plant water storage.Plant, Cell & Environment, 35, 1533-1542. |
[23] | Pausas JG, Austin MP (2001). Patterns of plant species richness in relation to different environments: An appraisal.Journal of Vegetation Science, 12, 153-166. |
[24] | Perez-Ramos IM, Roumet C, Cruz P (2012). Evidence for a plant community economics spectrum driven by nutrient and water limitations in a Mediterranean rangeland of southern France.Journal of Ecology, 100, 1315-1327. |
[25] | Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species.Ecology, 87, 1733-1743. |
[26] | Quan XK, Wang CK (2015). Comparison of foliar water use efficiency among 17 provenances ofLarix gmelinii in the Mao’ershan area. Chinese Journal of Plant Ecology, 39, 352-361. (in English with Chinese abstract)[全先奎, 王传宽 (2015). 帽儿山17个种源落叶松针叶的水分利用效率比较. 植物生态学报, 39, 352-361.] |
[27] | Ren QJ, Li HL, Bu HY (2015). Comparison of physiological and leaf morphological traits for photosynthesis of the 51 plant species in the Maqu alpine swamp meadow.Chinese Journal of Plant Ecology, 39, 593-603. (in English with Chinese abstract)[任青吉, 李宏林, 卜海燕 (2015). 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较. 植物生态学报, 39, 593-603.] |
[28] | Reich PB, Cornelissen H (2014). The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto.Journal of Ecology, 102, 275-301. |
[29] | Sack L, Scoffoni C, McKown AD (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns.Nature Communications, 3, 837. |
[30] | Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future.New Phytologist, 198, 983-1000. |
[31] | Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.Journal of Experimental Botany, 64, 4053-4080. |
[32] | Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture.Plant Physiology, 156, 832-843. |
[33] | Scoffoni C, Kunkle J, Pasquet-Kok J, Vuong C, Patel AJ, Montgomery RA, Givnish TJ, Sack L (2015). Light induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads.New Phytologist, 207, 43-58. |
[34] | Silvertown J, Charlesworth D (2001). Introduction to Plant Population Biology. Blackwell, London. |
[35] | Song LL, Fan JW, Wu SH, Zhong HP, Wang N (2012). Response characteristics of leaf traits of common species along an altitudinal gradient in Hongchiba Grassland, Chongqing.Acta Ecologica Sinica, 32, 2759-2767. (in English with Chinese abstract)[宋璐璐, 樊江文, 吴绍洪, 钟华平, 王宁 (2012). 红池坝草地常见物种叶片性状沿海拔梯度的响应特征. 生态学报, 32, 2759-2767.] |
[36] | Sperry JS (2000). Hydraulic constraints on plant gas exchange.Agricultural and Forest Meteorology, 104, 13-23. |
[37] | Villagra M, Campanello PI, Bucci SJ, Goldstein G (2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.Tree Physiology, 33, 1308-1318. |
[38] | Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2015). Latitudinal patterns and influencing factors of leaf functional traits in Chinese forest ecosystems.Acta Geographica Sinica, 70, 1735-1746. (in English with Chinese abstract)[王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2015). 中国森林叶片功能属性的纬度格局及其影响因素. 地理学报, 70, 1735-1746.] |
[39] | Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models.Biometrical Journal, 44, 161-174. |
[40] | Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291. |
[41] | Wang J, Cheng JM, Wan HE, Fang F (2004). Study on soil moisture characteristics and water use efficiency ofAchnatherum splendens grassland in Loess Plateau. Arid Meteorology, 22, 51-55. |
[42] | Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies.New Phytologist, 143, 155-162. |
[43] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827. |
[44] | Wu HW, Li XY, Jing ZY, Li J, Zheng XR, Zhao DZ (2015). Variations in water use forAchnatherum splendens in Lake Qinghai watershed based on δD and δ18O. Acta Ecologica Sinica, 35, 8174-8183. (in English with Chinese abstract)[吴华武, 李小雁, 蒋志云, 李静, 郑肖然, 赵殿智 (2015). 基于δD、δ18O的青海湖流域芨芨草水分利用来源变化研究. 生态学报, 35, 8174-8183.] |
[45] | Xu MS, Huang HX, Shi QR, Yang XD, Zhou LL, Zhao YT, Zhang QQ, Yan ER (2015). Responses of soil water content to change in plant functional traits in evergreen broadleaved forests in eastern Zhejiang Province. Chinese Journal of Plant Ecology, 39, 857-866. (in English with Chinese abstract)[许洺山, 黄海侠, 史青茹, 杨晓东, 周刘丽, 赵延涛, 张晴晴, 阎恩荣 (2015). 浙东常绿阔叶林植物功能性状对土壤含水量变化的响应. 植物生态学报, 39, 857-866.] |
[46] | Xu T, Zhao CZ, Duan BB, Han L, Zhen HL, Feng W (2016). Slope-related variations of different levels of vein density and leaf size inRobinia pseudoacacia in the northern mountains of Lanzhou. Chinese Journal of Ecology, 35, 41-47. (in English with Chinese abstract)[徐婷, 赵成章, 段贝贝, 韩玲, 郑慧玲, 冯威 (2016). 兰州北山刺槐不同等级叶脉密度与叶大小关系的坡向差异性. 生态学杂志, 35, 41-47.] |
[47] | Yu HY, Chen YT, Xu ZZ, Zhou GS (2014). Analysis of relationships among leaf functional traits and economics spectrum of plant species in the desert steppe of Nei Mongol. Chinese Journal of Plant Ecology, 38, 1029-1040. (in English with Chinese abstract)[于鸿莹, 陈莹婷, 许振柱, 周广胜 (2014). 内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析. 植物生态学报, 38, 1029-1040.] |
[48] | Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H (2012). Evolutionary association of stomatal traits with leaf vein density inPaphiopedilum, Orchidaceae. PLOS ONE, 7: e40080. doi: 10.1371/journal.pone.0040080. |
[49] | Zhang ZL, Liu GD, Zhang FC, Zheng CX, Kang YH (2014). Research progress of plant leaf hydraulic conductivity. Chinese Journal of Ecology, 33, 1663-1670. (in English with Chinese abstract)[张志亮, 刘国东, 张富仓, 郑彩霞, 康银红 (2014). 植物叶片导水率的研究进展. 生态学杂志, 33, 1663-1670.] |
[50] | Zhang MJ, Liu MS, Xu C, Chi T, Hong C (2012). Spatial pattern responses ofAchnatherum splendens to environmental stress in different density levels. Acta Ecologica Sinica, 32, 595-604. (in English with Chinese abstract)[张明娟, 刘茂松, 徐驰, 池婷, 洪超 (2012). 不同密度条件下芨芨草空间格局对环境胁迫的响应. 生态学报, 32, 595-604.] |
[51] | Zhang YQ, Liang CZ, Wang W, Wang LX, Peng JT, Yan JC, Jia JC (2010). Soil salinity andAchnatherum splendens distribution. Chinese Journal of Ecology, 29, 2438-2443. (in English with Chinese abstract)[张雅琼, 梁存柱, 王炜, 王立新, 彭江涛, 闫建成, 贾成朕 (2010). 芨芨草群落土壤盐分特征. 生态学杂志, 29, 2438-2443.] |
[52] | Zhou HH, Li WH (2015). Responses and adaptation of xylem hydraulic conductivity to salt stress inPopulus euphratica. Chinese Journal of Plant Ecology, 39, 81-91. (in English with Chinese abstract)[周洪华, 李卫红 (2015). 胡杨木质部水分传导对盐胁迫的响应与适应. 植物生态学报, 39, 81-91.] |
[1] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[2] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[3] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[4] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[5] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[6] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[7] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[8] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[9] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[10] | 陈国鹏, 杨克彤, 王立, 王飞, 曹秀文, 陈林生. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J]. 植物生态学报, 2020, 44(10): 1040-1049. |
[11] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[12] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[13] | 周天阳, NARAYAN Prasad Gaire, 廖礼彬, 郑莉莉, 王金牛, 孙建, 魏彦强, 谢雨, 吴彦. 青藏高原东缘两处高山树线交错带时空动态及其建群种的生态学特征[J]. 植物生态学报, 2018, 42(11): 1082-1093. |
[14] | 韩玲, 赵成章, 冯威, 徐婷, 郑慧玲, 段贝贝. 张掖湿地芨芨草叶脉密度和叶脉直径的权衡关系对3种生境的响应[J]. 植物生态学报, 2017, 41(8): 872-881. |
[15] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19