植物生态学报 ›› 2020, Vol. 44 ›› Issue (11): 1138-1153.DOI: 10.17521/cjpe.2020.0105
所属专题: 生态化学计量
熊星烁1,2, 蔡宏宇2, 李耀琪2, 马文红3, 牛克昌4, 陈迪马5, 刘娜娜2, 苏香燕2, 景鹤影2, 冯晓娟6, 曾辉1,2,*(), 王志恒2,*()
收稿日期:
2020-04-15
接受日期:
2020-07-16
出版日期:
2020-11-20
发布日期:
2021-01-05
通讯作者:
曾辉,王志恒
作者简介:
王志恒: ORCID:0000-0003-0808-7780,Wang ZH: zhiheng.wang@pku.edu.cn基金资助:
XIONG Xing-Shuo1,2, CAI Hong-Yu2, LI Yao-Qi2, MA Wen-Hong3, NIU Ke-Chang4, CHEN Di-Ma5, LIU Na-Na2, SU Xiang-Yan2, JING He-Ying2, FENG Xiao-Juan6, ZENG Hui1,2,*(), WANG Zhi-Heng2,*()
Received:
2020-04-15
Accepted:
2020-07-16
Online:
2020-11-20
Published:
2021-01-05
Contact:
ZENG Hui,WANG Zhi-Heng
Supported by:
摘要:
分析植物叶片(C)、氮(N)、磷(P)含量及其比值的季节动态, 不仅有助于认识植物生长发育和养分吸收利用等生理生态过程, 也有利于认识植物化学计量的动态平衡关系。该文选择内蒙古典型温带草原18种常见植物, 在生长季的6-9月, 每半月一次进行连续采样, 在此基础上分析了叶片C、N、P含量及其比值在生长季内的变化。主要结果: 1)植物叶片C、N、P含量及其比值的季节性变化在不同功能类群间不同步, 其中叶片N、P含量的季节变化体现了明显的稀释作用。2)叶片C、N、P含量及其比值在不同功能类群间差异显著, 单子叶、多年生禾草类的叶片N、P含量显著低于双子叶和多年生杂类草植物, 而其叶片C:N、C:P则高于双子叶和多年生杂类草植物。3)叶片N、P含量显著正相关, 叶片C:N和C:P分别与N和P含量显著负相关, 可能体现了植物体内营养元素间的内在耦合机制。4)叶片N含量与C:N, 叶片P含量与C:P以及叶片N含量与P含量均呈现等速生长关系, 且等速生长关系在生长季保持稳定。
熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态. 植物生态学报, 2020, 44(11): 1138-1153. DOI: 10.17521/cjpe.2020.0105
XIONG Xing-Shuo, CAI Hong-Yu, LI Yao-Qi, MA Wen-Hong, NIU Ke-Chang, CHEN Di-Ma, LIU Na-Na, SU Xiang-Yan, JING He-Ying, FENG Xiao-Juan, ZENG Hui, WANG Zhi-Heng. Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China. Chinese Journal of Plant Ecology, 2020, 44(11): 1138-1153. DOI: 10.17521/cjpe.2020.0105
图1 内蒙古典型草原研究区生长季的月平均气温和月降水量(平均值±标准偏差)。
Fig. 1 Monthly average temperature and precipitation during the growing season in the study area in typical steppe in Nei Mongol (mean ± SD).
物种 Species | 发育类群 Phylogenetic group | 生活型 Life form | 6月 June | 7月 July | 8月 Aug. | 9月 Sept. |
---|---|---|---|---|---|---|
羽茅 Achnatherum sibiricum | 单子叶 Monocotyledons | 多年生禾草 Perennial grasses | A | A | B, C | D |
长柱沙参 Adenophora stenanthina | 双子叶 Dicotyledons | 多年生杂类草 Perennial forbs | A | A, B | B | B, C |
冰草 Agropyron cristatum | 单子叶 Monocotyledons | 多年生禾草 Perennial grasses | A | B, C | D | D, E |
矮韭 Allium anisopodium | 单子叶 Monocotyledons | 多年生杂类草 Perennial forbs | A, B | C | D | D |
黄花葱 Allium condensatum | 单子叶 Monocotyledons | 多年生杂类草 Perennial forbs | A, B | C | D | D |
山韭 Allium senescens | 单子叶 Monocotyledons | 多年生杂类草 Perennial forbs | A, B | C | D | D |
细叶韭 Allium tenuissimum | 单子叶 Monocotyledons | 多年生杂类草 Perennial forbs | A, B | C | D | D |
小叶锦鸡儿 Caragana microphylla | 双子叶 Dicotyledons | - | B | C | C | D |
糙隐子草 Cleistogenes squarrosa | 单子叶 Monocotyledons | 多年生禾草 Perennial grasses | A | A | B, C, D | D, E |
狗娃花 Aster hispidus | 双子叶 Dicotyledons | 多年生杂类草 Perennial forbs | B, C | C | C, D | D, E |
木地肤 Kochia prostrata | 双子叶 Dicotyledons | - | A | B, C | C, D | D, E |
[艹/洽]草 Koeleria macrantha | 单子叶 Monocotyledons | 多年生禾草 Perennial grasses | B, C | D | D | D, E |
羊草 Leymus chinensis | 单子叶 Monocotyledons | 多年生禾草 Perennial grasses | A | B, C | C, D | D, E |
裂叶荆芥 Nepeta tenuifolia | 双子叶 Dicotyledons | 多年生杂类草 Perennial forbs | A | B, C | C | D |
二裂委陵菜 Potentilla bifurca | 双子叶 Dicotyledons | 多年生杂类草 Perennial forbs | A, B | B, C | C, D | D, E |
麻花头 Klasea centauroides | 双子叶 Dicotyledons | 多年生杂类草 Perennial forbs | B, C | C | C, D | D |
大针茅 Stipa grandis | 单子叶 Monocotyledons | 多年生禾草 Perennial grasses | A | A | B, C | C, D |
展枝唐松草 Thalictrum squarrosum | 双子叶 Dicotyledons | 多年生杂类草 Perennial forbs | A | B, C | C | D |
表1 内蒙古典型草原采样物种(名称、功能类群、物候期)与采样时间
Table 1 Sampling species (species names, functional group and phenology) and sampling time in typical steppe in Nei Mongol
物种 Species | 发育类群 Phylogenetic group | 生活型 Life form | 6月 June | 7月 July | 8月 Aug. | 9月 Sept. |
---|---|---|---|---|---|---|
羽茅 Achnatherum sibiricum | 单子叶 Monocotyledons | 多年生禾草 Perennial grasses | A | A | B, C | D |
长柱沙参 Adenophora stenanthina | 双子叶 Dicotyledons | 多年生杂类草 Perennial forbs | A | A, B | B | B, C |
冰草 Agropyron cristatum | 单子叶 Monocotyledons | 多年生禾草 Perennial grasses | A | B, C | D | D, E |
矮韭 Allium anisopodium | 单子叶 Monocotyledons | 多年生杂类草 Perennial forbs | A, B | C | D | D |
黄花葱 Allium condensatum | 单子叶 Monocotyledons | 多年生杂类草 Perennial forbs | A, B | C | D | D |
山韭 Allium senescens | 单子叶 Monocotyledons | 多年生杂类草 Perennial forbs | A, B | C | D | D |
细叶韭 Allium tenuissimum | 单子叶 Monocotyledons | 多年生杂类草 Perennial forbs | A, B | C | D | D |
小叶锦鸡儿 Caragana microphylla | 双子叶 Dicotyledons | - | B | C | C | D |
糙隐子草 Cleistogenes squarrosa | 单子叶 Monocotyledons | 多年生禾草 Perennial grasses | A | A | B, C, D | D, E |
狗娃花 Aster hispidus | 双子叶 Dicotyledons | 多年生杂类草 Perennial forbs | B, C | C | C, D | D, E |
木地肤 Kochia prostrata | 双子叶 Dicotyledons | - | A | B, C | C, D | D, E |
[艹/洽]草 Koeleria macrantha | 单子叶 Monocotyledons | 多年生禾草 Perennial grasses | B, C | D | D | D, E |
羊草 Leymus chinensis | 单子叶 Monocotyledons | 多年生禾草 Perennial grasses | A | B, C | C, D | D, E |
裂叶荆芥 Nepeta tenuifolia | 双子叶 Dicotyledons | 多年生杂类草 Perennial forbs | A | B, C | C | D |
二裂委陵菜 Potentilla bifurca | 双子叶 Dicotyledons | 多年生杂类草 Perennial forbs | A, B | B, C | C, D | D, E |
麻花头 Klasea centauroides | 双子叶 Dicotyledons | 多年生杂类草 Perennial forbs | B, C | C | C, D | D |
大针茅 Stipa grandis | 单子叶 Monocotyledons | 多年生禾草 Perennial grasses | A | A | B, C | C, D |
展枝唐松草 Thalictrum squarrosum | 双子叶 Dicotyledons | 多年生杂类草 Perennial forbs | A | B, C | C | D |
功能类群 Functional group | 样本数 Sample number | 平均值 Mean | 最小值 Minimum | 最大值 Maximum | 标准偏差 Standard deviation | 变异系数 Coefficient of variation | ||
---|---|---|---|---|---|---|---|---|
碳含量 C concentration (mg·g-1) | 发育类群 Phylogenetic group | 单子叶 Monocotyledons | 70 | 431.87a | 391.36 | 468.83 | 18.2 | 0.04 |
双子叶 Dicotyledons | 56 | 435.43a | 369.88 | 474.75 | 21.03 | 0.05 | ||
生活型 Life form | 多年生禾草 Perennial grasses | 42 | 443.66a | 413.25 | 468.83 | 11.36 | 0.03 | |
多年生杂类草 Perennial forbs | 70 | 429.13b | 390.53 | 474.75 | 19.89 | 0.05 | ||
全部 All | 126 | 433.45 | 369.88 | 474.75 | 19.51 | 0.05 | ||
氮含量 N concentration (mg·g-1) | 发育类群 Phylogenetic group | 单子叶 Monocotyledons | 70 | 24.69b | 15.30 | 48.14 | 6.35 | 0.26 |
双子叶 Dicotyledons | 56 | 32.33a | 20.90 | 53.79 | 8.29 | 0.26 | ||
生活型 Life form | 多年生禾草 Perennial grasses | 42 | 23.50b | 15.30 | 35.25 | 5.13 | 0.22 | |
多年生杂类草 Perennial forbs | 70 | 29.85a | 17.00 | 53.79 | 8.42 | 0.28 | ||
全部 All | 126 | 28.08 | 15.30 | 53.79 | 8.19 | 0.29 | ||
磷含量 P concentration (mg·g-1) | 发育类群 Phylogenetic group | 单子叶 Monocotyledons | 70 | 1.41b | 0.80 | 3.09 | 0.44 | 0.31 |
双子叶 Dicotyledons | 56 | 1.75a | 1.04 | 3.60 | 0.49 | 0.28 | ||
生活型 Life form | 多年生禾草 Perennial grasses | 42 | 1.22b | 0.80 | 1.99 | 0.25 | 0.20 | |
多年生杂类草 Perennial forbs | 70 | 1.75a | 1.08 | 3.60 | 0.51 | 0.29 | ||
全部 All | 126 | 1.56 | 0.80 | 3.60 | 0.49 | 0.31 | ||
C:N | 发育类群 Phylogenetic group | 单子叶 Monocotyledons | 70 | 18.55a | 8.48 | 30.23 | 4.43 | 0.24 |
双子叶 Dicotyledons | 56 | 14.32b | 8.33 | 21.85 | 3.59 | 0.25 | ||
生活型 Life form | 多年生禾草 Perennial grasses | 42 | 19.76a | 12.36 | 30.23 | 4.28 | 0.22 | |
多年生杂类草 Perennial forbs | 70 | 15.44b | 8.33 | 23.09 | 3.99 | 0.26 | ||
全部 All | 126 | 16.67 | 8.33 | 30.23 | 4.58 | 0.27 | ||
C:P | 发育类群 Phylogenetic group | 单子叶 Monocotyledons | 70 | 330.93a | 130.66 | 573.06 | 91.16 | 0.28 |
双子叶 Dicotyledons | 56 | 267.19b | 118.13 | 423.14 | 70.72 | 0.26 | ||
生活型 Life form | 多年生禾草 Perennial grasses | 42 | 378.07a | 218.89 | 573.06 | 74.78 | 0.20 | |
多年生杂类草 Perennial forbs | 70 | 262.79b | 118.13 | 423.14 | 68.44 | 0.26 | ||
全部 All | 126 | 302.60 | 118.13 | 573.06 | 88.31 | 0.29 | ||
N:P | 发育类群 Phylogenetic group | 单子叶 Monocotyledons | 70 | 17.95a | 12.81 | 29.33 | 3.52 | 0.20 |
双子叶 Dicotyledons | 56 | 18.78a | 13.76 | 26.99 | 2.80 | 0.15 | ||
生活型 Life form | 多年生禾草 Perennial grasses | 42 | 19.50a | 14.26 | 29.33 | 3.59 | 0.18 | |
多年生杂类草 Perennial forbs | 70 | 17.16b | 12.81 | 23.62 | 2.34 | 0.14 | ||
全部 All | 126 | 18.32 | 12.81 | 29.33 | 3.24 | 0.18 |
表2 内蒙古典型草原不同功能类群植物叶片碳(C)、氮(N)、磷(P)含量及计量比值
Table 2 Leaf carbon (C), nitrogen (N), phosphorus (P) concentrations and ratios among different functional groups of typical steppe in Nei Mongol
功能类群 Functional group | 样本数 Sample number | 平均值 Mean | 最小值 Minimum | 最大值 Maximum | 标准偏差 Standard deviation | 变异系数 Coefficient of variation | ||
---|---|---|---|---|---|---|---|---|
碳含量 C concentration (mg·g-1) | 发育类群 Phylogenetic group | 单子叶 Monocotyledons | 70 | 431.87a | 391.36 | 468.83 | 18.2 | 0.04 |
双子叶 Dicotyledons | 56 | 435.43a | 369.88 | 474.75 | 21.03 | 0.05 | ||
生活型 Life form | 多年生禾草 Perennial grasses | 42 | 443.66a | 413.25 | 468.83 | 11.36 | 0.03 | |
多年生杂类草 Perennial forbs | 70 | 429.13b | 390.53 | 474.75 | 19.89 | 0.05 | ||
全部 All | 126 | 433.45 | 369.88 | 474.75 | 19.51 | 0.05 | ||
氮含量 N concentration (mg·g-1) | 发育类群 Phylogenetic group | 单子叶 Monocotyledons | 70 | 24.69b | 15.30 | 48.14 | 6.35 | 0.26 |
双子叶 Dicotyledons | 56 | 32.33a | 20.90 | 53.79 | 8.29 | 0.26 | ||
生活型 Life form | 多年生禾草 Perennial grasses | 42 | 23.50b | 15.30 | 35.25 | 5.13 | 0.22 | |
多年生杂类草 Perennial forbs | 70 | 29.85a | 17.00 | 53.79 | 8.42 | 0.28 | ||
全部 All | 126 | 28.08 | 15.30 | 53.79 | 8.19 | 0.29 | ||
磷含量 P concentration (mg·g-1) | 发育类群 Phylogenetic group | 单子叶 Monocotyledons | 70 | 1.41b | 0.80 | 3.09 | 0.44 | 0.31 |
双子叶 Dicotyledons | 56 | 1.75a | 1.04 | 3.60 | 0.49 | 0.28 | ||
生活型 Life form | 多年生禾草 Perennial grasses | 42 | 1.22b | 0.80 | 1.99 | 0.25 | 0.20 | |
多年生杂类草 Perennial forbs | 70 | 1.75a | 1.08 | 3.60 | 0.51 | 0.29 | ||
全部 All | 126 | 1.56 | 0.80 | 3.60 | 0.49 | 0.31 | ||
C:N | 发育类群 Phylogenetic group | 单子叶 Monocotyledons | 70 | 18.55a | 8.48 | 30.23 | 4.43 | 0.24 |
双子叶 Dicotyledons | 56 | 14.32b | 8.33 | 21.85 | 3.59 | 0.25 | ||
生活型 Life form | 多年生禾草 Perennial grasses | 42 | 19.76a | 12.36 | 30.23 | 4.28 | 0.22 | |
多年生杂类草 Perennial forbs | 70 | 15.44b | 8.33 | 23.09 | 3.99 | 0.26 | ||
全部 All | 126 | 16.67 | 8.33 | 30.23 | 4.58 | 0.27 | ||
C:P | 发育类群 Phylogenetic group | 单子叶 Monocotyledons | 70 | 330.93a | 130.66 | 573.06 | 91.16 | 0.28 |
双子叶 Dicotyledons | 56 | 267.19b | 118.13 | 423.14 | 70.72 | 0.26 | ||
生活型 Life form | 多年生禾草 Perennial grasses | 42 | 378.07a | 218.89 | 573.06 | 74.78 | 0.20 | |
多年生杂类草 Perennial forbs | 70 | 262.79b | 118.13 | 423.14 | 68.44 | 0.26 | ||
全部 All | 126 | 302.60 | 118.13 | 573.06 | 88.31 | 0.29 | ||
N:P | 发育类群 Phylogenetic group | 单子叶 Monocotyledons | 70 | 17.95a | 12.81 | 29.33 | 3.52 | 0.20 |
双子叶 Dicotyledons | 56 | 18.78a | 13.76 | 26.99 | 2.80 | 0.15 | ||
生活型 Life form | 多年生禾草 Perennial grasses | 42 | 19.50a | 14.26 | 29.33 | 3.59 | 0.18 | |
多年生杂类草 Perennial forbs | 70 | 17.16b | 12.81 | 23.62 | 2.34 | 0.14 | ||
全部 All | 126 | 18.32 | 12.81 | 29.33 | 3.24 | 0.18 |
图2 内蒙古典型草原植物叶片碳(C)、氮(N)、磷(P)含量及计量比值间的相关性。
Fig. 2 Correlation between leaf carbon (C), nitrogen (N), phosphorus (P) contents and their ratios in a typical steppe in Nei Mongol.
图3 内蒙古典型草原植物叶片碳氮比(C:N)与氮(N)含量(A)、碳磷比(C:P)与磷(P)含量(B)及N含量与P含量(C)间的关系。
Fig. 3 Relationships between leaf C:N and nitrogen (N) concentration (A), C:P and phosphorus (P) concentration (B), and N and P concentration (C) among species in a typical steppe in Nei Mongol.
组别 Group | C:N-N | C:P-P | P-N | ||||||
---|---|---|---|---|---|---|---|---|---|
斜率 Slope | R2 | p | 斜率 Slope | R2 | p | 斜率 Slope | R2 | p | |
06-02 | -1.04 (-1.16, -0.93) | 0.96 | <0.001 | -1.04 (-1.11, -0.97) | 0.99 | <0.001 | 1.68 (1.26, 2.23) | 0.70 | <0.001 |
06-17 | -1.00 (-1.10, -0.90) | 0.96 | <0.001 | -1.03 (-1.12, -0.95) | 0.97 | <0.001 | 1.16 (0.87, 1.53) | 0.71 | <0.001 |
07-02 | -0.95 (-1.03, -0.88) | 0.98 | <0.001 | -0.98 (-1.06, -0.90) | 0.97 | <0.001 | 0.98 (0.72, 1.32) | 0.67 | <0.001 |
07-17 | -0.97 (-1.07, -0.87) | 0.96 | <0.001 | -1.05 (-1.15, -0.96) | 0.97 | <0.001 | 0.97 (0.68, 1.38) | 0.54 | <0.001 |
08-02 | -0.97 (-1.05, -0.89) | 0.98 | <0.001 | -1.02 (-1.12, -0.93) | 0.97 | <0.001 | 0.90 (0.65, 1.24) | 0.62 | <0.001 |
08-17 | -1.03 (-1.17, -0.90) | 0.94 | <0.001 | -1.10 (-1.23, -0.98) | 0.95 | <0.001 | 1.08 (0.76, 1.54) | 0.54 | <0.001 |
09-02 | -1.03 (-1.13, -0.93) | 0.97 | <0.001 | -1.08 (-1.16, -1.01) | 0.98 | <0.001 | 1.13 (0.80, 1.60) | 0.55 | <0.001 |
共同斜率 Common slope | 斜率异质性 Heterogeneity of slopes | 共同斜率 Common slope | 斜率异质性 Heterogeneity of slopes | 共同斜率 Common slope | 斜率异质性 Heterogeneity of slopes | ||||
全部 All | -0.99 (-1.03, -0.95) | p = 0.77 | -1.04 (-1.07, -1.01) | p = 0.58 | 1.11 (0.97, 1.26) | p = 0.10 |
表3 内蒙古典型草原植物叶片碳氮比(C:N)与氮(N)含量、碳磷比(C:P)与磷(P)含量及氮(N)含量与磷(P)含量的标准主轴(SMA)回归参数在不同季节间的差异
Table 3 Parameters for leaf C:N and nitrogen (N) concentration, C:P and phosphorus (P) concentration, N and P concentrations in different developmental stage of typical steppe in Nei Mongol analyzed by Standard Main Axis (SMA) regression
组别 Group | C:N-N | C:P-P | P-N | ||||||
---|---|---|---|---|---|---|---|---|---|
斜率 Slope | R2 | p | 斜率 Slope | R2 | p | 斜率 Slope | R2 | p | |
06-02 | -1.04 (-1.16, -0.93) | 0.96 | <0.001 | -1.04 (-1.11, -0.97) | 0.99 | <0.001 | 1.68 (1.26, 2.23) | 0.70 | <0.001 |
06-17 | -1.00 (-1.10, -0.90) | 0.96 | <0.001 | -1.03 (-1.12, -0.95) | 0.97 | <0.001 | 1.16 (0.87, 1.53) | 0.71 | <0.001 |
07-02 | -0.95 (-1.03, -0.88) | 0.98 | <0.001 | -0.98 (-1.06, -0.90) | 0.97 | <0.001 | 0.98 (0.72, 1.32) | 0.67 | <0.001 |
07-17 | -0.97 (-1.07, -0.87) | 0.96 | <0.001 | -1.05 (-1.15, -0.96) | 0.97 | <0.001 | 0.97 (0.68, 1.38) | 0.54 | <0.001 |
08-02 | -0.97 (-1.05, -0.89) | 0.98 | <0.001 | -1.02 (-1.12, -0.93) | 0.97 | <0.001 | 0.90 (0.65, 1.24) | 0.62 | <0.001 |
08-17 | -1.03 (-1.17, -0.90) | 0.94 | <0.001 | -1.10 (-1.23, -0.98) | 0.95 | <0.001 | 1.08 (0.76, 1.54) | 0.54 | <0.001 |
09-02 | -1.03 (-1.13, -0.93) | 0.97 | <0.001 | -1.08 (-1.16, -1.01) | 0.98 | <0.001 | 1.13 (0.80, 1.60) | 0.55 | <0.001 |
共同斜率 Common slope | 斜率异质性 Heterogeneity of slopes | 共同斜率 Common slope | 斜率异质性 Heterogeneity of slopes | 共同斜率 Common slope | 斜率异质性 Heterogeneity of slopes | ||||
全部 All | -0.99 (-1.03, -0.95) | p = 0.77 | -1.04 (-1.07, -1.01) | p = 0.58 | 1.11 (0.97, 1.26) | p = 0.10 |
图4 内蒙古典型草原单子叶和双子叶植物叶片碳(C)、氮(N)、磷(P)含量(A、B、C)及计量比值(D、E、F)的季节动态(平均值±标准偏差)。回归图中的实线表示特定功能类群的特定计量指标随生长季的推移有显著变化(p < 0.05), 虚线表示特定功能类群的特定计量指标随生长季的推移有边缘显著变化趋势(0.05 < p < 0.1)。
Fig. 4 Seasonal dynamics of leaf carbon (C), nitrogen (N) and phosphorus (P) concentrations (A, B, C) and their ratios (D, E, F) in monocotyledons and dicotyledons in a typical steppe in Nei Mongol (mean ± SD). The solid line in the regression diagram indicates that the specific index of certain group has a significant change trend with growing season (p < 0.05). The dashed line indicates that the specific index of certain group has a marginal significant change trend with growing season (0.05 < p < 0.1).
图5 内蒙古典型草原多年生禾草和多年生杂类草叶片碳(C)、氮(N)、磷(P)含量(A、B、C)及计量比值(D、E、F)的季节动态(平均值±标准偏差)。回归图中的实线表示特定功能类群的特定计量指标随生长季的推移有显著变化趋势(p < 0.05), 虚线表示特定功能类群的特定计量指标随生长季的推移有边缘显著变化趋势(0.05 < p < 0.1)。
Fig. 5 Seasonal dynamics of leaf carbon (C), nitrogen (N), phosphorus (P) concentrations (A, B, C) and their ratios (D, E, F) in perennial grasses and perennial forbs of typical steppe in Nei Mongol (mean ± SD). The solid line in the regression diagram indicates that the specific index of certain group has a significant change trend with growing season (p < 0.05). The dashed line indicates that the specific index of certain group has a marginal significant change trend with growing season (0.05 < p < 0.1).
参数 Parameter | 发育类群 Phylogenetic group | |||
---|---|---|---|---|
变异来源 Source of variation | 离差平方和 SS | 均方 MS | F | |
碳含量 C concentration (mg·g-1) | 发育类群 Phylogenetic group | 396 | 395.9 | 1.15 |
采样日期2 Sampling date2 | 2 867 | 2 867.2 | 8.33** | |
采样日期 Sampling date | 1 741 | 1 740.6 | 5.06* | |
发育类群×采样日期2 Phylogenetic group × Sampling date2 | 169 | 168.6 | 0.49 | |
发育类群×采样日期 Phylogenetic group × Sampling date | 1 088 | 1 088.4 | 3.16? | |
氮含量 N concentration (mg·g-1) | 发育类群 Phylogenetic group | 1 815 | 1 815.2 | 61.89*** |
采样日期2 Sampling date2 | 491 | 490.7 | 16.73*** | |
采样日期 Sampling date | 2 280 | 2 279.7 | 77.73*** | |
发育类群×采样日期2 Phylogenetic group × Sampling date2 | 93 | 93.1 | 3.17? | |
发育类群×采样日期 Phylogenetic group × Sampling date | 184 | 183.7 | 6.26* | |
磷含量 P concentration (mg·g-1) | 发育类群 Phylogenetic group | 3.48 | 3.48 | 22.78*** |
采样日期2 Sampling date2 | 2.18 | 2.18 | 14.25*** | |
采样日期 Sampling date | 4.86 | 4.86 | 31.82*** | |
发育类群×采样日期2 Phylogenetic group × Sampling date2 | 0.03 | 0.03 | 0.20 | |
发育类群×采样日期 Phylogenetic group × Sampling date | 1.40 | 1.40 | 9.18** | |
C:N | 发育类群 Phylogenetic group | 554.8 | 554.8 | 56.52*** |
采样日期2 Sampling date2 | 135.2 | 135.2 | 13.78*** | |
采样日期 Sampling date | 696.9 | 696.9 | 70.80*** | |
发育类群×采样日期2 Phylogenetic group × Sampling date2 | 47.8 | 47.8 | 4.87* | |
发育类群×采样日期 Phylogenetic group × Sampling date | 5.5 | 5.5 | 0.56 | |
C:P | 发育类群 Phylogenetic group | 126 456 | 126 456 | 23.29*** |
采样日期2 Sampling date2 | 42 934 | 42 934 | 7.91** | |
采样日期 Sampling date | 118 984 | 118 984 | 21.92*** | |
发育类群×采样日期2 Phylogenetic group × Sampling date2 | 5 798 | 5 798 | 1.07 | |
发育类群×采样日期 Phylogenetic group × Sampling date | 29 439 | 29 439 | 5.42* | |
N:P | 发育类群 Phylogenetic group | 20.9 | 20.9 | 2.13 |
采样日期2 Sampling date2 | 0.2 | 0.22 | 0.02 | |
采样日期 Sampling date | 51.5 | 51.5 | 5.26* | |
发育类群×采样日期2 Phylogenetic group × Sampling date2 | 14.7 | 14.75 | 1.51 | |
发育类群×采样日期 Phylogenetic group × Sampling date | 46.9 | 46.9 | 4.80* | |
参数 Parameter | 生活型 Life form | |||
变异来源 Source of variation | 离差平方和 SS | 均方 MS | F | |
碳含量 C concentration (mg·g-1) | 生活型 Life form | 5 542 | 5 542 | 20.83*** |
采样日期2 Sampling date2 | 2 512 | 2 512 | 9.44** | |
采样日期 Sampling date | 1 810 | 1 810 | 6.80* | |
生活型×采样日期2 Life form × Sampling date2 | 10 | 10 | 0.04 | |
生活型×采样日期 Life form × Sampling date | 38 | 38 | 0.14 | |
氮含量 N concentration (mg·g-1) | 生活型 Life form | 1 060 | 1 059.6 | 31.75*** |
采样日期2 Sampling date2 | 526 | 525.5 | 15.75*** | |
采样日期 Sampling date | 1 833 | 1 832.8 | 54.92*** | |
生活型×采样日期2 Life form × Sampling date2 | 3 | 3.1 | 0.09 | |
生活型×采样日期 Life form × Sampling date | 78 | 78.1 | 2.34 | |
磷含量 P concentration (mg·g-1) | 生活型 Life form | 7.54 | 7.54 | 59.98*** |
采样日期2 Sampling date2 | 2.28 | 2.28 | 18.17*** | |
采样日期 Sampling date | 3.53 | 3.53 | 28.10*** | |
生活型×采样日期2 Life form × Sampling date2 | 0.58 | 0.58 | 4.58* | |
生活型×采样日期 Life form × Sampling date | 0.76 | 0.76 | 6.07* | |
C:N | 生活型 Life form | 490.9 | 490.9 | 48.07*** |
采样日期2 Sampling date2 | 149.0 | 149.0 | 14.58*** | |
采样日期 Sampling date | 614.6 | 614.6 | 60.17*** | |
生活型×采样日期2 Life form × Sampling date2 | 2.1 | 2.1 | 0.21 | |
生活型×采样日期 Life form × Sampling date | 3.3 | 3.3 | 0.32 | |
C:P | 生活型 Life form | 348 869 | 348 869 | 88.98*** |
采样日期2 Sampling date2 | 49 510 | 49 510 | 12.63*** | |
采样日期 Sampling date | 82 881 | 82 881 | 21.14*** | |
生活型×采样日期2 Life form × Sampling date2 | 1 157 | 1 157 | 0.30 | |
生活型×采样日期 Life form × Sampling date | 3 377 | 3 377 | 0.86 | |
N:P | 生活型 Life form | 143.7 | 143.74 | 19.92*** |
采样日期2 Sampling date2 | 0.5 | 0.46 | 0.06 | |
采样日期 Sampling date | 73.3 | 73.3 | 10.16** | |
生活型×采样日期2 Life form × Sampling date2 | 34.8 | 34.82 | 4.83* | |
生活型×采样日期 Life form × Sampling date | 32.8 | 32.80 | 4.55* |
表4 内蒙古典型草原不同发育类群和生活型植物叶片碳(C)、氮(N)、磷(P)含量及其比值的协方差分析(ANCOVA)参数
Table 4 Parameters for leaf carbon (C), nitrogen (N), phosphorus (P) concentrations and ratios among different phylogenetic groups and life forms of typical steppe in Nei Mongol analyzed by Analysis of Covariance (ANCOVA)
参数 Parameter | 发育类群 Phylogenetic group | |||
---|---|---|---|---|
变异来源 Source of variation | 离差平方和 SS | 均方 MS | F | |
碳含量 C concentration (mg·g-1) | 发育类群 Phylogenetic group | 396 | 395.9 | 1.15 |
采样日期2 Sampling date2 | 2 867 | 2 867.2 | 8.33** | |
采样日期 Sampling date | 1 741 | 1 740.6 | 5.06* | |
发育类群×采样日期2 Phylogenetic group × Sampling date2 | 169 | 168.6 | 0.49 | |
发育类群×采样日期 Phylogenetic group × Sampling date | 1 088 | 1 088.4 | 3.16? | |
氮含量 N concentration (mg·g-1) | 发育类群 Phylogenetic group | 1 815 | 1 815.2 | 61.89*** |
采样日期2 Sampling date2 | 491 | 490.7 | 16.73*** | |
采样日期 Sampling date | 2 280 | 2 279.7 | 77.73*** | |
发育类群×采样日期2 Phylogenetic group × Sampling date2 | 93 | 93.1 | 3.17? | |
发育类群×采样日期 Phylogenetic group × Sampling date | 184 | 183.7 | 6.26* | |
磷含量 P concentration (mg·g-1) | 发育类群 Phylogenetic group | 3.48 | 3.48 | 22.78*** |
采样日期2 Sampling date2 | 2.18 | 2.18 | 14.25*** | |
采样日期 Sampling date | 4.86 | 4.86 | 31.82*** | |
发育类群×采样日期2 Phylogenetic group × Sampling date2 | 0.03 | 0.03 | 0.20 | |
发育类群×采样日期 Phylogenetic group × Sampling date | 1.40 | 1.40 | 9.18** | |
C:N | 发育类群 Phylogenetic group | 554.8 | 554.8 | 56.52*** |
采样日期2 Sampling date2 | 135.2 | 135.2 | 13.78*** | |
采样日期 Sampling date | 696.9 | 696.9 | 70.80*** | |
发育类群×采样日期2 Phylogenetic group × Sampling date2 | 47.8 | 47.8 | 4.87* | |
发育类群×采样日期 Phylogenetic group × Sampling date | 5.5 | 5.5 | 0.56 | |
C:P | 发育类群 Phylogenetic group | 126 456 | 126 456 | 23.29*** |
采样日期2 Sampling date2 | 42 934 | 42 934 | 7.91** | |
采样日期 Sampling date | 118 984 | 118 984 | 21.92*** | |
发育类群×采样日期2 Phylogenetic group × Sampling date2 | 5 798 | 5 798 | 1.07 | |
发育类群×采样日期 Phylogenetic group × Sampling date | 29 439 | 29 439 | 5.42* | |
N:P | 发育类群 Phylogenetic group | 20.9 | 20.9 | 2.13 |
采样日期2 Sampling date2 | 0.2 | 0.22 | 0.02 | |
采样日期 Sampling date | 51.5 | 51.5 | 5.26* | |
发育类群×采样日期2 Phylogenetic group × Sampling date2 | 14.7 | 14.75 | 1.51 | |
发育类群×采样日期 Phylogenetic group × Sampling date | 46.9 | 46.9 | 4.80* | |
参数 Parameter | 生活型 Life form | |||
变异来源 Source of variation | 离差平方和 SS | 均方 MS | F | |
碳含量 C concentration (mg·g-1) | 生活型 Life form | 5 542 | 5 542 | 20.83*** |
采样日期2 Sampling date2 | 2 512 | 2 512 | 9.44** | |
采样日期 Sampling date | 1 810 | 1 810 | 6.80* | |
生活型×采样日期2 Life form × Sampling date2 | 10 | 10 | 0.04 | |
生活型×采样日期 Life form × Sampling date | 38 | 38 | 0.14 | |
氮含量 N concentration (mg·g-1) | 生活型 Life form | 1 060 | 1 059.6 | 31.75*** |
采样日期2 Sampling date2 | 526 | 525.5 | 15.75*** | |
采样日期 Sampling date | 1 833 | 1 832.8 | 54.92*** | |
生活型×采样日期2 Life form × Sampling date2 | 3 | 3.1 | 0.09 | |
生活型×采样日期 Life form × Sampling date | 78 | 78.1 | 2.34 | |
磷含量 P concentration (mg·g-1) | 生活型 Life form | 7.54 | 7.54 | 59.98*** |
采样日期2 Sampling date2 | 2.28 | 2.28 | 18.17*** | |
采样日期 Sampling date | 3.53 | 3.53 | 28.10*** | |
生活型×采样日期2 Life form × Sampling date2 | 0.58 | 0.58 | 4.58* | |
生活型×采样日期 Life form × Sampling date | 0.76 | 0.76 | 6.07* | |
C:N | 生活型 Life form | 490.9 | 490.9 | 48.07*** |
采样日期2 Sampling date2 | 149.0 | 149.0 | 14.58*** | |
采样日期 Sampling date | 614.6 | 614.6 | 60.17*** | |
生活型×采样日期2 Life form × Sampling date2 | 2.1 | 2.1 | 0.21 | |
生活型×采样日期 Life form × Sampling date | 3.3 | 3.3 | 0.32 | |
C:P | 生活型 Life form | 348 869 | 348 869 | 88.98*** |
采样日期2 Sampling date2 | 49 510 | 49 510 | 12.63*** | |
采样日期 Sampling date | 82 881 | 82 881 | 21.14*** | |
生活型×采样日期2 Life form × Sampling date2 | 1 157 | 1 157 | 0.30 | |
生活型×采样日期 Life form × Sampling date | 3 377 | 3 377 | 0.86 | |
N:P | 生活型 Life form | 143.7 | 143.74 | 19.92*** |
采样日期2 Sampling date2 | 0.5 | 0.46 | 0.06 | |
采样日期 Sampling date | 73.3 | 73.3 | 10.16** | |
生活型×采样日期2 Life form × Sampling date2 | 34.8 | 34.82 | 4.83* | |
生活型×采样日期 Life form × Sampling date | 32.8 | 32.80 | 4.55* |
[1] |
Aerts R (1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608.
DOI URL |
[2] | Aerts R, Chapin Ⅲ FS (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[3] | Ågren GI (2008). Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution, and Systematics, 39, 153-170. |
[4] | Bertalanfy LV (1999). Problems of Life: An Evaluation of Modern Biological Thought. The Commercial Press, Beijing. 141-168. |
[5] | Cheng B, Zhao YJ, Zhang WG, An SQ (2010). The research advances and prospect of ecological stoichiometry. Acta Ecologica Sinica, 30, 1628-1637. |
[ 程滨, 赵永军, 张文广, 安树青 (2010). 生态化学计量学研究进展. 生态学报, 30, 1628-1637.] | |
[6] | Cornelissen JHC, Lavorel S, Garnier E, Dı́az S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[7] | Dawson TP, Curran PJ (1998). A new technique for interpolating the reflectance red edge position. International Journal of Remote Sensing, 19, 2133-2139. |
[8] |
Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000a). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
URL PMID |
[9] | Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 186, 593-608. |
[10] | Elser JJ, Hayakawa K, Urabe J (2001). Nutrient limitation reduces food quality for zooplankton: daphnia response to seston phosphorus enrichment. Ecology, 82, 898-903. |
[11] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ (2000b). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550. |
[12] | Field C, Mooney HA (1986). The photosynthesis-nitrogen relationship in wild plants//Givnish TJ. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK. 25-55. |
[13] | Gao SP, Li JX, Xu MC, Chen X, Dai J (2007). Leaf N and P stoichiometry of common species in successional stages of the evergreen broad-leaved forest in Tiantong National Forest Park, Zhejiang Province, China. Acta Ecologica Sinica, 27, 947-952. |
[ 高三平, 李俊祥, 徐明策, 陈熙, 戴洁 (2007). 天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征. 生态学报, 27, 947-952.] | |
[14] | Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266. |
[15] | Güsewell S, Koerselman W, Verhoeven JTA (2003). Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecological Applications, 13, 372-384. |
[16] | Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385. |
[17] | Han WX, Wu Y, Tang LY, Chen YH, Li LP, He JS, Fang JY (2009). Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery. Acta Scientiarum Naturalium Universitatis Pekinensis, 45, 855-860. |
[ 韩文轩, 吴漪, 汤璐瑛, 陈雅涵, 李利平, 贺金生, 方精云 (2009). 北京及周边地区植物叶的碳氮磷元素计量特征. 北京大学学报(自然科学版), 45, 855-860.] | |
[18] |
He JS, Fang J, Wang Z, Guo D, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
DOI URL PMID |
[19] | He JS, Han XG (2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. |
[ 贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.] | |
[20] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
URL PMID |
[21] | Hu CC, Lei YB, Tan YH, Sun XC, Xu H, Liu CQ, Liu XY (2019). Plant nitrogen and phosphorus utilization under invasive pressure in a montane ecosystem of tropical China. Journal of Ecology, 107, 372-386. |
[22] |
Hu YS, Yao XY, Liu YH (2014). N and P stoichiometric traits of plant and soil in different forest succession stages in Changbai Mountains. Chinese Journal of Applied Ecology, 25, 632-638.
URL PMID |
[ 胡耀升, 么旭阳, 刘艳红 (2014). 长白山森林不同演替阶段植物与土壤氮磷的化学计量特征. 应用生态学报, 25, 632-638.]
PMID |
|
[23] | Huang JY, Lai RS, Yu HL, Chen WM (2013). Responses of plant and soil C:N:P stoichiometry to N addition in a desert steppe of Ningxia, Northwest China. Chinese Journal of Ecology, 32, 2850-2856. |
[ 黄菊莹, 赖荣生, 余海龙, 陈卫民 (2013). N添加对宁夏荒漠草原植物和土壤C: N: P生态化学计量特征的影响. 生态学杂志, 32, 2850-2856.] | |
[24] | Jiang W, Li XQ, Jiang Q, Huang DK, Cheng HG (2006). Kjeldahl method and the elemental analyzer method in measurement of total nitrogen in sediments: comparison and its significance. Geochimica, 35, 319-324. |
[ 江伟, 李心清, 蒋倩, 黄代宽, 程红光 (2006). 凯氏蒸馏法和元素分析仪法测定沉积物中全氮含量的异同及其意义. 地球化学, 35, 319-324.] | |
[25] | Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005). Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography, 14, 585-598. |
[26] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[27] |
Lambers H, Chapin III FS, Pons TL (1998). Plant Physiological Ecology. Spinger-Verlag, New York.
URL PMID |
[28] | Li GY, Yang DM, Sun SC (2008). Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude. Functional Ecology, 22, 557-564. |
[29] | Li R, Hu CC, Xu SQ, Wu D, Dong YP, Sun XC, Mao R, Wang XW, Liu XY (2018). Leaf C, N, and P concentrations and their stoichiometry in peatland plants of Da Hinggan Ling. Chinese Journal of Plant Ecology, 42, 1154-1167. |
[ 李瑞, 胡朝臣, 许士麒, 吴迪, 董玉平, 孙新超, 毛瑢, 王宪伟, 刘学炎 (2018). 大兴安岭泥炭地植物叶片碳氮磷含量及其化学计量学特征. 植物生态学报, 42, 1154-1167.] | |
[30] | Li YL, Mao W, Zhao XY, Zhang TH (2010). Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, north China. Environmental Sciences, 31, 1716-1725. |
[ 李玉霖, 毛伟, 赵学勇, 张铜会 (2010). 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究. 环境科学, 31, 1716-1725.] | |
[31] | Li Z, Han L, Liu YH, An SQ, Leng X (2012). C, N and P stoichiometric characteristics in leaves of Suaeda salsa during different growth phase in coastal wetlands of China. Chinese Journal of Plant Ecology, 36, 1054-1061. |
[ 李征, 韩琳, 刘玉虹, 安树青, 冷欣 (2012). 滨海盐地碱蓬不同生长阶段叶片C、N、P化学计量特征. 植物生态学报, 36, 1054-1061.] | |
[32] | Liu WD, Su JR, Li SF, Lang XD, Zhang ZJ, Huang XB (2015). Leaf carbon, nitrogen and phosphorus stoichiometry at different growth stages in dominant tree species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province, China. Chinese Journal of Plant Ecology, 39, 52-62. |
[ 刘万德, 苏建荣, 李帅锋, 郎学东, 张志钧, 黄小波 (2015). 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征. 植物生态学报, 39, 52-62.] | |
[33] | Liu WD, Su JR, Li SF, Zhang ZJ, Li ZW (2010). Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broad-leaved forest in Pu’er, Yunnan Province. Acta Ecologica Sinica, 30, 6581-6590. |
[ 刘万德, 苏建荣, 李帅锋, 张志钧, 李忠文 (2010). 云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征. 生态学报, 30, 6581-6590.] | |
[34] | Liu XZ, Zhou GY, Zhang DQ, Liu SZ, Chu GW, Yan JH (2010). N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 34, 64-71. |
[ 刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华 (2010). 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 34, 64-71.] | |
[35] | Moe SJ, Stelzer RS, Forman MR, Harpole WS, Daufresne T, Yoshida T (2005). Recent advances in ecological stoichiometry: insights for population and community ecology. Oikos, 109, 29-39. |
[36] | Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F (2007). Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Annals of Botany, 100, 283-303. |
[37] | Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/ phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8, 636-642. |
[38] | Ning ZY, Li YL, Yang HL, Sun DC, Bi JD (2017). Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land. Chinese Journal of Plant Ecology, 41, 1069-1080. |
[ 宁志英, 李玉霖, 杨红玲, 孙殿超, 毕京东 (2017). 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征. 植物生态学报, 41, 1069-1080.] | |
[39] | Niu DC, Li Q, Jiang SG, Chang PJ, Fu H (2013). Seasonal variations of leaf C:N:P stoichiometry of six shrubs in desert of China’s Alxa Plateau. Chinese Journal of Plant Ecology, 37, 317-325. |
[ 牛得草, 李茜, 江世高, 常佩静, 傅华 (2013). 阿拉善荒漠区6种主要灌木植物叶片C:N:P化学计量比的季节变化. 植物生态学报, 37, 317-325.] | |
[40] | Pitman EJG (1939). A note on normal correlation. Biometrika, 31, 9-12. |
[41] |
Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87, 1733-1743.
URL PMID |
[42] | Redfield AC (1958). The biological control of chemical factors in the environment. American Scientist, 46, 205-221. |
[43] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
URL PMID |
[44] |
Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006). Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 439, 457-461.
URL PMID |
[45] | Reiners WA (1986). Complementary models for ecosystems. The American Naturalist, 127, 59-73. |
[46] |
Ren SJ, Yu GR, Jiang CM, Fang HJ, Sun XM (2012). Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the North-South Transect of East China. Chinese Journal of Applied Ecology, 23, 581-586.
URL PMID |
[ 任书杰, 于贵瑞, 姜春明, 方华军, 孙晓敏 (2012). 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征. 应用生态学报, 23, 581-586.]
PMID |
|
[47] | Ren SJ, Yu GR, Tao B, Wang SQ (2007). Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC. Environmental Science, 28, 2665-2673. |
[ 任书杰, 于贵瑞, 陶波, 王绍强 (2007). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 28, 2665-2673.] | |
[48] | Santa RI, Rico M, Rapp M, Gallego HA (1997). Seasonal variation in nutrient concentration in leaves and branches of Quercus pyrenaica. Journal of Vegetation Science, 8, 651-654. |
[49] |
Shipley B, Lechowicz MJ, Wright I, Reich PB (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541.
URL PMID |
[50] | Song YT, Zhou DW, Li Q, Wang P, Huang YX (2012). Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China. Chinese Journal of Plant Ecology, 36, 222-230. |
[ 宋彦涛, 周道玮, 李强, 王平, 黄迎新 (2012). 松嫩草地80种草本植物叶片氮磷化学计量特征. 植物生态学报, 36, 222-230.] | |
[51] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, USA. |
[52] | Sun SC, Chen LZ (2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling mountain region. Acta Phytoecologica Sinica, 25, 76-82. |
[ 孙书存, 陈灵芝 (2001). 东灵山地区辽东栎叶养分的季节动态与回收效率. 植物生态学报, 25, 76-82.] | |
[53] | Thompson K, Parkinson JA, Band SR, Spencer RE (1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 136, 679-689. |
[54] | Tilman D (1982). Resource Competition and Community Structure. Princeton University Press, Princeton, USA. 139-177. |
[55] | Tilman D (1997). Mechanisms of plant competiton//Crawley MJ. Plant Ecology. Blackwell Science, Oxford. 239-261. |
[56] | Vanni MJ, Flecker AS, Hood JM, Headworth JL (2002). Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity biodiversity and ecosystem processes. Ecology Letters, 5, 285-293. |
[57] | Vitousek P (1982). Nutrient cycling and nutrient use efficiency. The American Naturalist, 119, 553-572. |
[58] | Wang DM, Yang HM (2011). Carbon and nitrogen stoichiometry at different growth stages in legumes and grasses. Pratacultural Science, 28, 921-925. |
[ 王冬梅, 杨惠敏 (2011). 4种牧草不同生长期C、N生态化学计量特征. 草业科学, 28, 921-925.] | |
[59] | Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174. |
[60] |
Warton DI, Wright I, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
URL PMID |
[61] | West GB, Brown JH (2005). The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. Journal of Experimental Biology, 208, 1575-1592. |
[62] |
Westheimer FH (1987). Why nature chose phosphates. Science, 235, 1173-1178.
URL PMID |
[63] | Wieder WR, Cleveland CC, Smith WK, Todd-Brown K (2015). Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8, 441-444. |
[64] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
URL PMID |
[65] | Wu TG, Chen BF, Xiao YH, Pan YJ, Chen Y, Xiao JH (2010a). Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China. Chinese Journal of Plant Ecology, 34, 58-63. |
[ 吴统贵, 陈步峰, 肖以华, 潘勇军, 陈勇, 萧江华 (2010a). 珠江三角洲3种典型森林类型乔木叶片生态化学计量学. 植物生态学报, 34, 58-63.] | |
[66] | Wu TG, Wu M, Liu L, Xiao JH (2010b). Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China. Chinese Journal of Plant Ecology, 34, 23-28. |
[ 吴统贵, 吴明, 刘丽, 萧江华 (2010b). 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化. 植物生态学报, 34, 23-28.] | |
[67] | Yan ER, Wang XH, Zhou W (2008). N:P stoichiometry in secondary succession in evergreen broad-leaved forest, Tiantong, East China. Journal of Plant Ecology (Chinese Version), 32, 13-22. |
[ 阎恩荣, 王希华, 周武 (2008). 天童常绿阔叶林演替系列植物群落的N:P化学计量特征. 植物生态学报, 32, 13-22.] | |
[68] | Yan ZB, Kim NY, Han TS, Fang JY, Han WX (2013). Effects of nitrogen and phosphorus fertilization on leaf carbon, nitrogen and phosphorus stoichiometry of Arabidopsis thaliana. Chinese Journal of Plant Ecology, 37, 551-557. |
[ 严正兵, 金南瑛, 韩廷申, 方精云, 韩文轩 (2013). 氮磷施肥对拟南芥叶片碳氮磷化学计量特征的影响. 植物生态学报, 37, 551-557.] | |
[69] |
Yan ZB, Tian D, Han WX, Tang ZY, Fang JY (2017). An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Annals of Botany, 120, 937-942.
URL PMID |
[70] | Yang K, Huang JH, Dong D, Ma WH, He JS (2010). Canopy leaf N and P stoichiometry in grassland communities of Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 34, 17-22. |
[ 杨阔, 黄建辉, 董丹, 马文红, 贺金生 (2010). 青藏高原草地植物群落冠层叶片氮磷化学计量学分析. 植物生态学报, 34, 17-22.] | |
[71] | Yin XR, Liang CZ, Wang LX, Wang W, Liu ZL, Liu XP (2010). Ecological stoichiometry of plant nutrients at different restoration succession stages in typical steppe of Inner Mongolia, China. Chinese Journal of Plant Ecology, 34, 39-47. |
[ 银晓瑞, 梁存柱, 王立新, 王炜, 刘钟龄, 刘小平 (2010). 内蒙古典型草原不同恢复演替阶段植物养分化学计量学. 植物生态学报, 34, 39-47.] | |
[72] | Zeng DH, Chen GS (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologica Sinica, 29, 1007-1019. |
[ 曾德慧, 陈广生 (2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.] | |
[73] | Zhang JL, Li XN, Zhou ZF, Mang CL (2017). Determination of mineral elements by ICP-OES in different parts of Gordonia longicarpa. Botanical Research, 6, 1-5. |
[ 张金丽, 李向楠, 周稚凡, 马长乐 (2017). ICP-OES法测定长果大头茶不同部位的矿质元素. 植物学研究, 6, 1-5.] | |
[74] | Zhang K, He MZ, Li XR, Tan HJ, Gao YH, Li G, Han GJ, Wu YY (2014). Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert. Acta Ecologica Sinica, 34, 6538-6547. |
[ 张珂, 何明珠, 李新荣, 谭会娟, 高艳红, 李刚, 韩国君, 吴杨杨 (2014). 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征. 生态学报, 34, 6538-6547.] | |
[75] | Zhang WY, Fan JW, Zhong HP, Hu ZM, Song LL, Wang N (2010). The nitrogen:phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China. Acta Agrestia Sinica, 18, 503-509. |
[ 张文彦, 樊江文, 钟华平, 胡中民, 宋璐璐, 王宁 (2010). 中国典型草原优势植物功能群氮磷化学计量学特征研究. 草业学报, 18, 503-509.] | |
[76] | Zhou ZH, Wang CK (2016). Changes of the relationships between soil and microbes in carbon, nitrogen and phosphorus stoichiometry during ecosystem succession. Chinese Journal of Plant Ecology, 40, 1257-1266. |
[ 周正虎, 王传宽 (2016). 生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化. 植物生态学报, 40, 1257-1266.] | |
[77] | Zhu JD, Meng TT, Ni J, Su HX, Xie ZQ, Zhang SR, Zheng YR, Xiao CW (2011). Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types. Chinese Journal of Plant Ecology, 35, 687-698. |
[ 祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 张守仁, 郑元润, 肖春旺 (2011). 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异. 植物生态学报, 35, 687-698.] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[4] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[5] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[6] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[7] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[8] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[9] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[10] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[11] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[12] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[13] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[14] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[15] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19