植物生态学报 ›› 2023, Vol. 47 ›› Issue (5): 724-732.DOI: 10.17521/cjpe.2021.0226
所属专题: 生态化学计量
李兆光*, 文高*, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光**()
收稿日期:
2021-06-15
接受日期:
2022-10-19
出版日期:
2023-05-20
发布日期:
2022-11-02
通讯作者:
**(625563498@qq.com)
作者简介:
*第一联系人:同等贡献
LI Zhao-Guang*, YANG Wen-Gao*, HE Gui-Qing, XU Tian-Cai, HE Qiong-Ji, HOU Zhi-Jiang, LI Yan, XUE Run-Guang**()
Received:
2021-06-15
Accepted:
2022-10-19
Online:
2023-05-20
Published:
2022-11-02
About author:
First author contact:*Contributed equally to this work(Li ZG, lzg148@126.com; Yang WG, jinguwuqie@163.com)
摘要:
氮(N)、磷(P)、钾(K)是植物生长发育的关键元素, 探明N、P、K生态化学计量特征的物候期动态有助于更好地理解植物生长过程中养分限制、资源吸收利用及生物量分配等生理生态过程。该研究以滇西北地区大田栽培藜麦(Chenopodium quinoa)为研究对象, 采用田间观测、取样和室内实验相结合的方法, 分析了藜麦根、茎、叶片和穗N、P、K含量及其计量比在生长显穗期、开花期、灌浆期和成熟期之间的差异, 及与各器官生物量分配比的相关性。结果显示: (1)藜麦根、茎、叶片、穗N含量分别为9.28、12.22、33.68、31.28 mg·g-1, P含量为2.64、3.71、4.98、5.68 mg·g-1, K含量为25.63、43.80、74.08、56.73 mg·g-1, N:P为4.66、4.20、7.37、5.70, N:K为0.39、0.31、0.46、0.62, K:P为13.77、14.31、16.82、9.79。(2)藜麦根、茎、穗N、P、K含量及叶片N、P含量均随物候期的推移显著下降, 体现出明显的物候期稀释效应。相反, 藜麦叶片K含量随着生长进程显著升高, 可能表明干旱胁迫下藜麦极强的抗旱机制。藜麦根和茎中N、P、K分配比及生物量分配比相对稳定, 而叶片中分配比均在开花期最高而后显著下降, 穗中分配比随物候期推移显著上升并在成熟期达到最高值, 表明藜麦开花期叶片和穗发生关键的资源分配调节, 进入灌浆期营养元素逐渐向穗中转移, 生物量显著提高。(3)变异来源分析表明, 器官对藜麦N、K含量及N:P变异的贡献大于物候期变化, 而物候期对藜麦P含量变化的贡献大于器官间的差异。(4)藜麦各器官间N、P、K分配比和生物量分配比存在紧密耦合, 具体为藜麦根和叶片生物量分配比与根和叶片N、P、K分配比均呈显著正相关关系, 与穗N、P、K分配比呈显著负相关关系; 穗生物量分配比仅与穗N、P、K分配比呈显著正相关关系, 与根和叶片N、P、K分配比均呈显著负相关关系。
李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态. 植物生态学报, 2023, 47(5): 724-732. DOI: 10.17521/cjpe.2021.0226
LI Zhao-Guang, YANG Wen-Gao, HE Gui-Qing, XU Tian-Cai, HE Qiong-Ji, HOU Zhi-Jiang, LI Yan, XUE Run-Guang. Phenological dynamics of nitrogen, phosphorus and potassium stoichiometry in Chenopodium quinoa in northwest Yunnan, China. Chinese Journal of Plant Ecology, 2023, 47(5): 724-732. DOI: 10.17521/cjpe.2021.0226
图1 不同物候期藜麦氮(N)、磷(P)、钾(K)含量特征(平均值±标准误)。不同大写和小写字母分别表示不同器官在相同物候期和相同器官在不同物候期之间差异显著(p < 0.05)。
Fig. 1 Nitrogen (N), phosphorus (P) and potassium (K) contents in Chenopodium quinoa at different phenological stages (mean ± SE). Different uppercase and lowercase letters indicate that different organs are significantly different in the same phenological stage and the same organs are significantly different in different phenological stages (p < 0.05), respectively.
图2 不同物候期藜麦氮(N)、磷(P)、钾(K)含量比值特征(平均值±标准误)。不同大写和小写字母分别表示不同器官在相同物候期和相同器官在不同物候期之间差异显著(p < 0.05)。
Fig. 2 Nitrogen (N), phosphorus (P) and potassium (K) contents ratios in Chenopodium quinoa at different phenological stages (mean ± SE). Different uppercase and lowercase letters indicate that different organs are significantly different in the same phenological stage and the same organs are significantly different in different phenological stages (p < 0.05), respectively.
图3 不同物候期藜麦氮(N)、磷(P)、钾(K)分配比的变化(平均值±标准误)。不同大写和小写字母分别表示不同器官在相同物候期和相同器官在不同物候期之间差异显著(p < 0.05)。
Fig. 3 Nitrogen (N), phosphorus (P) and potassium (K) allocation ratios in Chenopodium quinoa at different phenological stages (mean ± SE). Different uppercase and lowercase letters indicate that different organs are significantly different in the same phenological stage and the same organs are significantly different in different phenological stages (p < 0.05), respectively.
图4 不同物候期藜麦生物量分配比的变化(平均值±标准误)。不同大写和小写字母分别表示不同器官在相同物候期和相同器官在不同物候期之间差异显著(p < 0.05)。
Fig. 4 Biomass allocation ratios in Chenopodium quinoa at different phenological stages (mean ± SE). Different uppercase and lowercase letters indicate that different organs are significantly different in the same phenological stage and the same organs are significantly different in different phenological stages (p < 0.05), respectively.
器官 Organ | 元素 Element | 生物量分配比 Biomass allocation ratios (%) | |||
---|---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | 穗 Spike | ||
根 Root | N | 0.815** | 0.065 | 0.650* | -0.784** |
P | 0.770** | 0.279 | 0.512 | -0.704* | |
K | 0.601* | 0.451 | 0.243 | -0.471 | |
茎 Stem | N | 0.408 | 0.711** | -0.139 | -0.158 |
P | 0.805** | 0.182 | 0.616* | -0.779** | |
K | 0.107 | -0.119 | 0.096 | -0.084 | |
叶 Leaf | N | 0.612* | -0.412 | 0.994** | -0.904** |
P | 0.685* | -0.315 | 0.965** | -0.922** | |
K | 0.650* | -0.289 | 0.969** | -0.921** | |
穗 Spike | N | -0.829** | 0.065 | -0.924** | 0.985** |
P | -0.896** | 0.008 | -0.886** | 0.986** | |
K | -0.741** | 0.145 | -0.872** | 0.900** |
表1 藜麦器官氮(N)、磷(P)、钾(K)分配比与其生物量分配比的相关性
Table 1 Pearson correlation of nitrogen (N), phosphorus (P), potassium (K) and biomass allocation ratios in Chenopodium quinoa
器官 Organ | 元素 Element | 生物量分配比 Biomass allocation ratios (%) | |||
---|---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | 穗 Spike | ||
根 Root | N | 0.815** | 0.065 | 0.650* | -0.784** |
P | 0.770** | 0.279 | 0.512 | -0.704* | |
K | 0.601* | 0.451 | 0.243 | -0.471 | |
茎 Stem | N | 0.408 | 0.711** | -0.139 | -0.158 |
P | 0.805** | 0.182 | 0.616* | -0.779** | |
K | 0.107 | -0.119 | 0.096 | -0.084 | |
叶 Leaf | N | 0.612* | -0.412 | 0.994** | -0.904** |
P | 0.685* | -0.315 | 0.965** | -0.922** | |
K | 0.650* | -0.289 | 0.969** | -0.921** | |
穗 Spike | N | -0.829** | 0.065 | -0.924** | 0.985** |
P | -0.896** | 0.008 | -0.886** | 0.986** | |
K | -0.741** | 0.145 | -0.872** | 0.900** |
因素 Factor | 项目 Item | df | F | p |
---|---|---|---|---|
器官 Organ | N | 3 | 305.65 | <0.001 |
P | 3 | 25.04 | <0.001 | |
K | 3 | 89.91 | <0.001 | |
N:P | 3 | 9.08 | <0.001 | |
N:K | 3 | 14.78 | <0.001 | |
K:P | 3 | 2.39 | 0.09 | |
物候期 Phenological stage | N | 3 | 24.44 | <0.001 |
P | 3 | 39.93 | <0.001 | |
K | 3 | 23.15 | <0.001 | |
N:P | 3 | 7.45 | <0.001 | |
N:K | 3 | 1.50 | 0.23 | |
K:P | 3 | 2.39 | 0.09 | |
交互作用 Interaction | N | 9 | 3.55 | <0.001 |
P | 9 | 1.14 | 0.36 | |
K | 9 | 12.21 | <0.001 | |
N:P | 9 | 2.04 | 0.07 | |
N:K | 9 | 3.62 | <0.001 | |
K:P | 9 | 1.82 | 0.10 |
表2 藜麦氮(N)、磷(P)、钾(K)含量及其比值的变异来源分析
Table 2 Variation source analysis of contents of nitrogen (N), phosphorus (P) and potassium (K) and their ratios in Chenopodium quinoa
因素 Factor | 项目 Item | df | F | p |
---|---|---|---|---|
器官 Organ | N | 3 | 305.65 | <0.001 |
P | 3 | 25.04 | <0.001 | |
K | 3 | 89.91 | <0.001 | |
N:P | 3 | 9.08 | <0.001 | |
N:K | 3 | 14.78 | <0.001 | |
K:P | 3 | 2.39 | 0.09 | |
物候期 Phenological stage | N | 3 | 24.44 | <0.001 |
P | 3 | 39.93 | <0.001 | |
K | 3 | 23.15 | <0.001 | |
N:P | 3 | 7.45 | <0.001 | |
N:K | 3 | 1.50 | 0.23 | |
K:P | 3 | 2.39 | 0.09 | |
交互作用 Interaction | N | 9 | 3.55 | <0.001 |
P | 9 | 1.14 | 0.36 | |
K | 9 | 12.21 | <0.001 | |
N:P | 9 | 2.04 | 0.07 | |
N:K | 9 | 3.62 | <0.001 | |
K:P | 9 | 1.82 | 0.10 |
[1] | Andrés Z, Pérez-Hormaeche J, Leidi EO, Schlücking K, Steinhorst L, McLachlan DH, Schumacher K, Hetherington AM, Kudla J, Cubero B, Pardo JM (2014). Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proceedings of the National Academy of Sciences of the United States of America, 111, E1806-E1814. |
[2] |
Baldwin DS, Rees GN, Mitchell AM, Watson G, Williams J (2006). The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands, 26, 455-464.
DOI URL |
[3] |
Cai Q, Ding JX, Zhang ZL, Hu J, Wang QT, Yin MZ, Liu Q, Yin HJ (2019). Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 43, 1048-1060.
DOI |
[蔡琴, 丁俊祥, 张子良, 胡君, 汪其同, 尹明珍, 刘庆, 尹华军 (2019). 青藏高原东缘主要针叶树种叶片碳氮磷化学计量分布格局及其驱动因素. 植物生态学报, 43, 1048-1060.]
DOI |
|
[4] |
Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J, Laughlin DC, Sutton-Grier AE, Williams L, Wright J (2017). Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews, 92, 1156-1173.
DOI URL |
[5] |
Gómez-Caravaca AM, Iafelice G, Lavini A, Pulvento C, Caboni MF, Marconi E (2012). Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. Journal of Agricultural and Food Chemistry, 60, 4620-4627.
DOI PMID |
[6] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[7] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI PMID |
[8] |
Hariadi Y, Marandon K, Tian Y, Jacobsen SE, Shabala S (2011). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany, 62, 185-193.
DOI PMID |
[9] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
DOI URL |
[10] | He JS, Han XG (2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. |
[贺金生, 韩兴国 (2010). 生态化学计量学:探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.]
DOI |
|
[11] |
Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[12] | Kong WW, Wang XF, Lu HY, Liu TT, Gong XJ, Liu H, Yuan XZ (2020). Ecological stoichiometry of four typical herbaceous species in the littoral zone of Three Gorges Reservoir. Acta Ecologica Sinica, 40, 4493-4506. |
[孔维苇, 王晓锋, 卢虹宇, 刘婷婷, 龚小杰, 刘欢, 袁兴中 (2020). 三峡库区消落带4种典型草本植物的生态化学计量特征. 生态学报, 40, 4493-4506.] | |
[13] |
Koyro HW, Eisa SS (2008). Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant and Soil, 302, 79-90.
DOI URL |
[14] |
Li H, Crabbe MJC, Xu F, Wang W, Niu R, Gao X, Zhang P, Chen H (2017). Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in the leaves of differently aged Larix principis-rupprechtii Mayr. plantations. Forests, 8, 373. DOI: 10.3390/f8100373.
DOI |
[15] | Liu MG, Wang SJ, Lu JY, Yang M, Yang HM (2018). Response of C, N and P stoichiometry of Chenopodium quinoa to phenological phase in the Hexi Corridor. Arid Zone Research, 35, 192-198. |
[刘敏国, 王士嘉, 陆姣云, 杨梅, 杨惠敏 (2018). 河西走廊藜麦C、N、P生态化学计量学特征对物候期的响应. 干旱区研究, 35, 192-198.] | |
[16] | Lu ZF, Lu JW, Pan YH, Lu PP, Li XK, Cong RH, Ren T (2016). Physiological mechanisms in potassium regulation of plant photosynthesis. Plant Physiology Journal, 52, 1773-1784. |
[陆志峰, 鲁剑巍, 潘勇辉, 鲁飘飘, 李小坤, 丛日环, 任涛 (2016). 钾素调控植物光合作用的生理机制. 植物生理学报, 52, 1773-1784.] | |
[17] |
Niu DC, Li Q, Jiang SG, Chang PJ, Fu H (2013). Seasonal variations of leaf C:N:P stoichiometry of six shrubs in desert of China’s Alxa Plateau. Chinese Journal of Plant Ecology, 37, 317-325.
DOI URL |
[牛得草, 李茜, 江世高, 常佩静, 傅华 (2013). 阿拉善荒漠区6种主要灌木植物叶片C:N:P化学计量比的季节变化. 植物生态学报, 37, 317-325.]
DOI |
|
[18] |
Olde Venterink H, Wassen MJ, Verkroost AWM, de Ruiter PC (2003). Species richness-productivity patterns differ between N-, P- and K-limited wetlands. Ecology, 84, 2191-2199.
DOI URL |
[19] |
Orgeas J, Ourcival JM, Bonin G (2003). Seasonal and spatial patterns of foliar nutrients in cork oak (Quercus suber L.) growing on siliceous soils in Provence (France). Plant Ecology, 164, 201-211.
DOI URL |
[20] | Qin H, Li JX, Gao SP, Li C, Li R, Shen XH (2010). Characteristics of leaf element contents for eight nutrients across 660 terrestrial plant species in China. Acta Ecologica Sinica, 30, 1247-1257. |
[秦海, 李俊祥, 高三平, 李铖, 李蓉, 沈兴华 (2010). 中国660种陆生植物叶片8种元素含量特征. 生态学报, 30, 1247-1257.] | |
[21] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI PMID |
[22] | Ren YF (2018). Characterization of the Growth and Development, Water and Fertilizer Utilization and Yield Formation of Quinoa in the Northern Yinshan Mountain of Inner Mongolia. PhD dissertation, China Agricultural University, Beijing. |
[任永峰 (2018). 内蒙古阴山北麓藜麦生长发育、水肥利用和产量形成特性研究. 博士学位论文, 中国农业大学, 北京.] | |
[23] |
Sadaqat SS, Shi LX, Li ZJ, Ren GX, Qin PY (2020). Yield, agronomic and forage quality traits of different quinoa (Chenopodium quinoa Willd.) genotypes in Northeast China. Agronomy, 10, 1908. DOI: 10.3390/ agronomy10121908.
DOI |
[24] | Sheng ZL, Huang XX, Cai XY, He KJ, Zhang LL (2016). Analysis of vegetation and soil characteristics alongside trails in Yak Meadow Park, Jade Dragon Mountain. Acta Prataculturae Sinica, 25(2), 1-9. |
[盛芝露, 黄晓霞, 蔡兴元, 和克俭, 张丽丽 (2016). 玉龙雪山牦牛坪景区路径沿线的植被及土壤特征分析. 草业学报, 25(2), 1-9.]
DOI |
|
[25] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[26] | Tan M, Temel S (2018). Performance of some quinoa (Chenopodium quinoa Willd.) genotypes grown in different climate conditions. Turkish Journal of Field Crops, 23, 180-186. |
[27] | Tang ZY, Xu WT, Zhou GY, Bai YF, Li JX, Tang XL, Chen DM, Liu Q, Ma WH, Xiong GM, He HL, He NP, Guo YP, Guo Q, Zhu JL, et al. (2018). Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in Chinaʼs terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 115, 4033-4038. |
[28] |
Tian D, Kattge J, Chen Y, Han W, Luo Y, He J, Hu H, Tang Z, Ma S, Yan Z, Lin Q, Schmid B, Fang J (2019). A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology, 100, e02812. DOI: 10.1002/ecy.2812.
DOI |
[29] |
Tian D, Yan ZB, Fang JY (2018). Plant stoichiometry: a research frontier in ecology. Chinese Journal of Nature, 40, 235-241.
DOI |
[田地, 严正兵, 方精云 (2018). 植物化学计量学: 一个方兴未艾的生态学研究方向. 自然杂志, 40, 235-241.]
DOI |
|
[30] |
Tian D, Yan ZB, Fang JY (2021). Review on the characteristics and main hypotheses of plant ecological stoichiometry. Chinese Journal of Plant Ecology, 45, 682-713.
DOI URL |
[田地, 严正兵, 方精云 (2021). 植物生态化学计量特征及其主要假说. 植物生态学报, 45, 682-713.]
DOI |
|
[31] | Wei YM, Yang FR, Liu WY, Huang J, Jin Q (2018). Regulation of nutrient accumulation and distribution in quinoa at different growth stages. Pratacultural Science, 35, 1720-1727. |
[魏玉明, 杨发荣, 刘文瑜, 黄杰, 金茜 (2018). 藜麦不同生育期营养物质积累与分配规律. 草业科学, 35, 1720-1727.] | |
[32] | Wu TG, Wu M, Liu L, Xiao JH (2010). Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China. Chinese Journal of Plant Ecology, 34, 23-28. |
[吴统贵, 吴明, 刘丽, 萧江华 (2010). 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化. 植物生态学报, 34, 23-28.]
DOI |
|
[33] |
Xiong XS, Cai HY, Li YQ, Ma WH, Niu KC, Chen DM, Liu NN, Su XY, Jing HY, Feng XJ, Zeng H, Wang ZH (2020). Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China. Chinese Journal of Plant Ecology, 44, 1138-1153.
DOI URL |
[熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒 (2020). 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态. 植物生态学报, 44, 1138-1153.] | |
[34] | Yan BG, He GX, Li JC, Qian KJ, Kui JR, Pan ZX, Shi LT, Ji ZH (2013). Changes of plant leaf N, P, and K concentrations and species dominance in an arid-hot valley after ecosystem restoration. Chinese Journal of Applied Ecology, 24, 956-960. |
[闫帮国, 何光熊, 李纪潮, 钱坤建, 奎建蕊, 潘志贤, 史亮涛, 纪中华 (2013). 生态系统恢复后干热河谷植物叶片N、P、K含量及物种优势度的变化. 应用生态学报, 24, 956-960.] | |
[35] | Yang FR, Huang J, Wei YM, Li MQ, He XG, Zheng J (2017). A review of biological characteristics, applications, and culture of Chenopodium quinoa. Pratacultural Science, 34, 607-613. |
[杨发荣, 黄杰, 魏玉明, 李敏权, 何学功, 郑健 (2017). 藜麦生物学特性及应用. 草业科学, 34, 607-613.] | |
[36] | Yang SF, Pang CH, Zhang YQ, Hua YH, He X, Yang Y (2017). Growth and physiological characteristics of Quinoa inoculated with arbuscular mycorrhizal fungi under different nitrogen levels. Acta Botanica Boreali-Occidentalia Sinica, 37, 1323-1330. |
[杨世芳, 庞春花, 张永清, 华艳宏, 贺笑, 杨洋 (2017). 不同施氮水平下丛枝菌根真菌对藜麦生长和根系生理特征的影响. 西北植物学报, 37, 1323-1330.] | |
[37] |
Yang WG, Zi HB, Chen KY, Ade LJ, Hu L, Wang X, Wang GX, Wang CT (2019). Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China. Chinese Journal of Plant Ecology, 43, 352-364.
DOI URL |
[杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭 (2019). 青海森林生态系统中灌木层和土壤生态化学计量特征. 植物生态学报, 43, 352-364.]
DOI |
|
[38] |
Yu Q, Chen QS, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 13, 1390-1399.
DOI PMID |
[39] | Zeng DH, Chen GS (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologica Sinica, 29, 1007-1019. |
[曾德慧, 陈广生 (2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.]
DOI |
|
[40] |
Zhang JH, He NP, Liu CC, Xu L, Yu Q, Yu GR (2018). Allocation strategies for nitrogen and phosphorus in forest plants. Oikos, 127, 1506-1514.
DOI URL |
[41] |
Zhang W, Liu WC, Xu MP, Deng J, Han XH, Yang GH, Feng YZ, Ren GX (2019). Response of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma, 337, 280-289.
DOI |
[42] | Zhao H, Jia YL, Wang QF (2014). Statistical characteristics of C-N-P stoichiometry in Chinese zonal forest and farmland ecosystems. Quaternary Sciences, 34, 803-814. |
[赵航, 贾彦龙, 王秋凤 (2014). 中国地带性森林和农田生态系统C-N-P化学计量统计特征. 第四纪研究, 34, 803-814.] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[4] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[5] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[6] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[7] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[8] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[9] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[10] | 杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭. 青海森林生态系统中灌木层和土壤生态化学计量特征[J]. 植物生态学报, 2019, 43(4): 352-364. |
[11] | 汤丹丹, 吴毅, 刘文耀, 胡涛, 黄俊彪, 张婷婷. 云南哀牢山两种常见半寄生植物的生态化学计量特征及其与寄主的关系[J]. 植物生态学报, 2019, 43(3): 245-257. |
[12] | 宁志英, 李玉霖, 杨红玲, 孙殿超, 毕京东. 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(10): 1069-1080. |
[13] | 贺合亮, 阳小成, 李丹丹, 尹春英, 黎云祥, 周国英, 张林, 刘庆. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(1): 126-135. |
[14] | 杨清培, 欧阳明, 杨光耀, 宋庆妮, 郭春兰, 方向民, 陈昕, 黄兰, 陈伏生. 竹子生态化学计量学研究: 从生物学基础到竹林培育学应用[J]. 植物生态学报, 2016, 40(3): 264-278. |
[15] | 黄菊莹, 余海龙. 四种荒漠草原植物的生长对不同氮添加水平的响应[J]. 植物生态学报, 2016, 40(2): 165-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19