植物生态学报 ›› 2024, Vol. 48 ›› Issue (5): 590-600.DOI: 10.17521/cjpe.2022.0458 cstr: 32100.14.cjpe.2022.0458
所属专题: 生态化学计量
张文瑾1, 佘维维1,2, 秦树高1,2, 乔艳桂1, 张宇清1,2,*()
收稿日期:
2022-11-14
接受日期:
2023-04-19
出版日期:
2024-05-20
发布日期:
2023-06-01
通讯作者:
(基金资助:
ZHANG Wen-Jin1, SHE Wei-Wei1,2, QIN Shu-Gao1,2, QIAO Yan-Gui1, ZHANG Yu-Qing1,2,*()
Received:
2022-11-14
Accepted:
2023-04-19
Online:
2024-05-20
Published:
2023-06-01
Contact:
(Supported by:
摘要:
为了解典型沙生半灌木群落植物在氮(N)沉降和降水增加下的响应机制和适应策略, 以毛乌素沙地黑沙蒿(别名油蒿, Artemisia ordosica)群落为对象, 研究了N、水分添加及其交互作用下土壤与优势植物黑沙蒿和赖草(Leymus secalinus)叶片N含量、磷(P)含量、N:P及相应的内稳性指数。结果显示: (1)土壤速效N、P养分供应状况和植物养分吸收的内在属性共同影响黑沙蒿和赖草叶片N含量、P含量、N:P对N和水分添加的响应, 黑沙蒿和赖草叶片N含量对N和水分添加的响应存在种间差异; (2)黑沙蒿和赖草叶片P内稳性均强于叶片N内稳性, 与黑沙蒿和赖草生长均受N限制密切关联; (3)黑沙蒿叶片N、P化学计量内稳性相对较高且养分利用策略较为保守, 赖草叶片N、P化学计量内稳性相对较低且养分利用策略较为灵活。结果表明, 黑沙蒿在干旱贫瘠的环境中更具竞争力和生长优势。在N沉降和降水持续增加的情景下, 黑沙蒿群落物种组成可能因优势植物黑沙蒿和赖草竞争力和养分利用策略的不同而发生变化。
张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响. 植物生态学报, 2024, 48(5): 590-600. DOI: 10.17521/cjpe.2022.0458
ZHANG Wen-Jin, SHE Wei-Wei, QIN Shu-Gao, QIAO Yan-Gui, ZHANG Yu-Qing. Effects of nitrogen and water addition on leaf nitrogen and phosphorus stoichiometry of the dominant species in an Artemisia ordosica community. Chinese Journal of Plant Ecology, 2024, 48(5): 590-600. DOI: 10.17521/cjpe.2022.0458
图1 不同氮(N)和水分添加处理下土壤含水量的变化(平均值±标准误)。**, p < 0.01; ***, p < 0.001; ns, p > 0.05。不同小写字母表示同一水分处理下不同氮添加处理间差异显著(p < 0.05), 不同大写字母表示不同水分处理间差异显著(p < 0.05)。N, 氮添加效应; W, 水分添加效应; N × W, 氮和水分添加交互效应。N0、N05、N10、N20、N30、N60分别表示氮添加量为0、0.5、1.0、2.0、3.0、6.0 g·m-2·a-1。W0, 自然降水; W20, 增水20%; W40, 增水40%。
Fig. 1 Changes of soil moisture under nitrogen (N) and water addition treatments (mean ± SE). **, p < 0.01; ***, p < 0.001; ns, p > 0.05. Different lowercase letters indicate significant differences among different N addition treatments of the same water addition treatment (p < 0.05), and different uppercase letters indicate significant differences among different water addition treatments (p < 0.05). N, effects of N addition; W, effects of water addition; N × W, interactive effects of N and water addition. N0, N05, N10, N20, N30, and N60 represent nitrogen addition amounts of 0, 0.5, 1.0, 2.0, 3.0, and 6.0 g·m-2·a-1, respectively. W0, ambient precipitation; W20, increased precipitation by 20%; W40, increased precipitation by 40%.
图2 不同氮(N)和水分添加处理下土壤速效N、速效磷(P)含量和速效N:P的变化(平均值±标准误)。*, p < 0.05; ***, p < 0.001; ns, p > 0.05。不同小写字母表示同一水分处理下不同氮添加处理间差异显著(p < 0.05), 不同大写字母表示不同水分处理间差异显著(p < 0.05)。N, 氮添加效应; W, 水分添加效应; N × W, 氮和水分添加交互效应。N0、N05、N10、N20、N30、N60分别表示氮添加量为0、0.5、1.0、2.0、3.0、6.0 g·m-2·a-1。W0, 自然降水; W20, 增水20%; W40, 增水40%。
Fig. 2 Changes of soil available nitrogen (N) concentrations, available phosphorus (P) concentrations, and available N:P under N and water addition treatments (mean ± SE). *, p < 0.05; ***, p < 0.001; ns, p > 0.05. Different lowercase letters indicate significant differences among different N addition treatments of the same water addition treatment (p < 0.05), and different uppercase letters indicate significant differences among different water addition treatments (p < 0.05). N, effects of N addition; W, effects of water addition; N × W, interactive effects of N and water addition. N0, N05, N10, N20, N30, and N60 represent nitrogen addition amounts of 0, 0.5, 1.0, 2.0, 3.0, and 6.0 g·m-2·a-1, respectively. W0, ambient precipitation; W20, increased precipitation by 20%; W40, increased precipitation by 40%.
图3 不同氮(N)和水分添加处理下植物叶片N、磷(P)化学计量特征的变化(平均值±标准误)。*, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05。不同小写字母表示同一水分处理下不同氮添加处理间差异显著(p < 0.05), 不同大写字母表示不同水分处理间差异显著(p < 0.05)。N, 氮添加效应; W, 水分添加效应; N × W, 氮和水分添加交互效应。N0、N05、N10、N20、N30、N60分别表示氮添加量为0、0.5、1.0、2.0、3.0、6.0 g·m-2·a-1。W0, 自然降水; W20, 增水20%; W40, 增水40%。
Fig. 3 Changes of leaf nitrogen (N) and phosphorus (P) stoichiometry of Artemisia ordosica and Leymus secalinus under N and water addition treatments (mean ± SE). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05. Different lowercase letters indicate significant differences among different N addition treatments of the same water addition treatment (p < 0.05), and different uppercase letters indicate significant differences among different water addition treatments (p < 0.05). N, effects of N addition; W, effects of water addition; N × W, interactive effects of N and water addition. N0, N05, N10, N20, N30, and N60 represent nitrogen addition amounts of 0, 0.5, 1.0, 2.0, 3.0, and 6.0 g·m-2·a-1, respectively. W0, ambient precipitation; W20, increased precipitation by 20%; W40, increased precipitation by 40%.
图4 两种优势植物黑沙蒿与赖草之间叶片氮(N)、磷(P)化学计量特征的比较(平均值±标准误)。不同小写字母表示植物间差异显著(p < 0.05)。CV, 变异系数。
Fig. 4 Comparisons of leaf nitrogen (N) and phosphorus (P) stoichiometry between two dominant species Artemisia ordosica and Leymus secalinus (mean ± SE). Different lowercase letters indicate significant differences between species (p < 0.05). CV, coefficient of variation.
图5 植物叶片氮(N)、磷(P)含量及比值与土壤速效N、P含量及比值的关系。HN、HP和HN:P分别代表植物叶片N、P含量和N:P的内稳性指数。
Fig. 5 Relationships of leaf nitrogen (N) concentration, leaf phosphorus (P) concentration, and leaf N:P with soil available N concentration, soil available P concentration, and soil available N:P. HN, HP, and HN:P represent the homeostasis indices of leaf N concentration, leaf P concentration, and leaf N:P, respectively.
图6 不同氮(N)和水分添加处理下两种优势植物盖度的变化(平均值±标准误)。**, p < 0.01; ***, p < 0.001; ns, p > 0.05。不同小写字母表示同一水分处理下不同氮添加处理间差异显著(p < 0.05), 不同大写字母表示不同水分处理间差异显著(p < 0.05)。N, 氮添加效应; W, 水分添加效应; N × W, 氮和水分添加交互效应。N0、N05、N10、N20、N30、N60分别表示氮添加量为0、0.5、1.0、2.0、3.0、6.0 g·m-2·a-1。W0, 自然降水; W20, 增水20%; W40, 增水40%。
Fig. 6 Changes in the coverage of dominant species Artemisia ordosica and Leymus secalinus under nitrogen (N) and water addition treatments (mean ± SE). **, p < 0.01; ***, p < 0.001; ns, p > 0.05. Different lowercase letters indicate significant differences among different N addition treatments of the same water addition treatment (p < 0.05), and different uppercase letters indicate significant differences among different water addition treatments (p < 0.05). N, effects of N addition; W, effects of water addition; N × W, interactive effects of N and water addition. N0, N05, N10, N20, N30, and N60 represent nitrogen addition amounts of 0, 0.5, 1.0, 2.0, 3.0, and 6.0 g·m-2·a-1, respectively. W0, ambient precipitation; W20, increased precipitation by 20%; W40, increased precipitation by 40%.
叶片N含量 Leaf N concentration | 叶片P含量 Leaf P concentration | |||
---|---|---|---|---|
黑沙蒿 A. ordosica | 赖草 L. secalinus | 黑沙蒿 A. ordosica | 赖草 L. secalinus | |
土壤速效N含量 Soil available N concentration | 0.507*** | 0.419** | - | - |
土壤速效P含量 Soil available P concentration | - | - | -0.074 | 0.030 |
表1 土壤速效氮(N)、磷(P)含量与植物叶片N、P含量的相关系数
Table 1 Correlation coefficients between soil available nitrogen (N), soil available phosphorus (P) concentrations and leaf N, leaf P concentrations of Artemisia ordosica and Leymus secalinus
叶片N含量 Leaf N concentration | 叶片P含量 Leaf P concentration | |||
---|---|---|---|---|
黑沙蒿 A. ordosica | 赖草 L. secalinus | 黑沙蒿 A. ordosica | 赖草 L. secalinus | |
土壤速效N含量 Soil available N concentration | 0.507*** | 0.419** | - | - |
土壤速效P含量 Soil available P concentration | - | - | -0.074 | 0.030 |
[1] | Chen CD (2009). Towards Macroecology: an Anthology of Chen Changdu’s Papers. Science Press, Beijing. |
[陈昌笃 (2009). 走向宏观生态学: 陈昌笃论文选集. 科学出版社, 北京.] | |
[2] | Chen Y, Li YQ, Wang XY, Niu YY (2021). Advances in ecological stoichiometry in typically and ecologically vulnerable regions of China. Acta Ecologica Sinica, 41, 4213-4225. |
[陈云, 李玉强, 王旭洋, 牛亚毅 (2021). 中国典型生态脆弱区生态化学计量学研究进展. 生态学报, 41, 4213-4225.] | |
[3] | Cross AF, Schlesinger WH (2001). Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry, 52, 155-172. |
[4] | Deng Q, Hui D, Dennis S, Reddy KC (2017). Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Global Ecology and Biogeography, 26, 713-728. |
[5] |
Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follett RF, Williams DG (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 196, 807-815.
DOI PMID |
[6] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI PMID |
[7] |
Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 186, 593-608.
DOI PMID |
[8] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226. |
[9] | Garnier E (1998). Interspecific variation in plasticity of grasses in response to nitrogen supply//Cheplick GP. Population Biology of Grasses. Cambridge University Press, Cambridge, UK. 155-182. |
[10] | Huang G, Liu Y, Huang RH (2011). The interannual variability of summer rainfall in the arid and semiarid regions of Northern China and its association with the Northern Hemisphere circumglobal teleconnection. Advances in Atmospheric Sciences, 28, 257-268. |
[11] | Huang JY, Yu HL, Liu JL, Ma F, Han L (2018). Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China. Acta Ecologica Sinica, 38, 5362-5373. |
[黄菊莹, 余海龙, 刘吉利, 马飞, 韩磊 (2018). 控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响. 生态学报, 38, 5362-5373.] | |
[12] | Jiang LL, Zeng CS, Shao JJ, Zhou XH (2017). Plant nutrient dynamics and stoichiometric homeostasis of invasive species Spartina alterniflora and native Cyperus malaccensis var. brevifolius in the Minjiang River estuarine wetlands. Chinese Journal of Plant Ecology, 41, 450-460. |
[蒋利玲, 曾从盛, 邵钧炯, 周旭辉 (2017). 闽江河口入侵种互花米草和本地种短叶茳芏的养分动态及植物化学计量内稳性特征. 植物生态学报, 41, 450-460.]
DOI |
|
[13] | Lai ZR, Zhang YQ, Liu JB, Wu B, Qin SG, Fa KY (2016). Fine-root distribution, production, decomposition, and effect on soil organic carbon of three revegetation shrub species in northwest China. Forest Ecology and Management, 359, 381-388. |
[14] | Li YL, Mao W, Zhao XY, Zhang TH (2010). Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China. Environmental Science, 31, 1716-1725. |
[李玉霖, 毛伟, 赵学勇, 张铜会 (2010). 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究. 环境科学, 31, 1716-1725.] | |
[15] | Liu JB, Fa KY, Zhang YQ, Wu B, Qin SG, Jia X (2015). Abiotic CO2 uptake from the atmosphere by semiarid desert soil and its partitioning into soil phases. Geophysical Research Letters, 42, 5779-5785. |
[16] | Liu L, Bai YX, Qiao YG, Miao C, She WW, Qin SG, Zhang YQ (2023). Water-use characteristics of two dominant plant species in different community types in the Mu Us Desert. Catena, 221, 106803. DOI: 10.1016/j.catena.2022. 106803. |
[17] | Lü XT, Dijkstra FA, Kong DL, Wang ZW, Han XG (2014). Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland. Scientific Reports, 4, 4817. DOI: 10.1038/srep04817. |
[18] | Lü XT, Han XG (2010). Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant and Soil, 327, 481-491. |
[19] | Lü XT, Hu YY, Zhang HY, Wei HW, Hou SL, Yang GJ, Liu ZY, Wang XB (2018). Intraspecific variation drives community-level stoichiometric responses to nitrogen and water enrichment in a temperate steppe. Plant and Soil, 423, 307-315. |
[20] | Lü X, Kong D, Pan Q, Simmons ME, Han X (2012). Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. Oecologia, 168, 301-310. |
[21] | Lü XT, Reed S, Hou SL, Hu YY, Wei HW, Lü FM, Cui Q, Han XG (2017). Temporal variability of foliar nutrients: responses to nitrogen deposition and prescribed fire in a temperate steppe. Biogeochemistry, 133, 295-305. |
[22] | Luo X, Wang YT, Zhang J, Li JP (2022). Responses of dominant species and rhizosphere soil stoichiometry to rainfall in typical steppe of the Loess Plateau. Acta Ecologica Sinica, 42, 1002-1014. |
[罗叙, 王誉陶, 张娟, 李建平 (2022). 黄土高原典型草原优势种植物及其根际土壤化学计量对降雨变化的响应. 生态学报, 42, 1002-1014.] | |
[23] |
Ma Y, Xu ZH, Zeng QH, Meng JL, Hu YH, Su JQ (2021). Impact of nitrogen addition on stoichiometric characteristics of herbaceous species in desert steppe. Acta Prataculturae Sinica, 30, 64-72.
DOI |
[马英, 许志豪, 曾巧红, 孟建龙, 胡亚虎, 苏洁琼 (2021). 氮素添加对荒漠化草原草本植物养分化学计量特征的影响. 草业学报, 30, 64-72.]
DOI |
|
[24] | Mariotte P, Canarini A, Dijkstra FA (2017). Stoichiometric N: P flexibility and mycorrhizal symbiosis favour plant resistance against drought. Journal of Ecology, 105, 958-967. |
[25] |
Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193, 696-704.
DOI PMID |
[26] | Ning ZY, Li YL, Yang HL, Zhang ZQ (2019). Nitrogen and phosphorus stoichiometric homoeostasis in leaves of dominant sand-fixing shrubs in Horqin Sandy Land, China. Chinese Journal of Plant Ecology, 43, 46-54. |
[宁志英, 李玉霖, 杨红玲, 张子谦 (2019). 科尔沁沙地优势固沙灌木叶片氮磷化学计量内稳性. 植物生态学报, 43, 46-54.]
DOI |
|
[27] |
Perring MP, Hedin LO, Levin SA, McGroddy M, de Mazancourt C (2008). Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 105, 1971-1976.
DOI PMID |
[28] | Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010). To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 119, 741-751. |
[29] | Ren HY, Kang J, Yuan ZY, Xu ZW, Han GD (2018). Responses of nutrient resorption to warming and nitrogen fertilization in contrasting wet and dry years in a desert grassland. Plant and Soil, 432, 65-73. |
[30] | Ren HY, Xu ZW, Huang JH, Lü XT, Zeng DH, Yuan ZY, Han XG, Fang YT (2015). Increased precipitation induces a positive plant-soil feedback in a semi-arid grassland. Plant and Soil, 389, 211-223. |
[31] |
Sardans J, Grau O, Chen HYH, Janssens IA, Ciais P, Piao S, Peñuelas J (2017). Changes in nutrient concentrations of leaves and roots in response to global change factors. Global Change Biology, 23, 3849-3856.
DOI PMID |
[32] | She WW, Bai YX, Zhang YQ, Qin SG, Feng W, Lai ZR, Qiao YG, Liu L, Zhang WJ, Miao C (2021). Nitrogen-enhanced herbaceous competition threatens woody species persistence in a desert ecosystem. Plant and Soil, 460, 333-345. |
[33] | She WW, Bai YX, Zhang YQ, Qin SG, Jia X, Feng W, Lai ZR, Fu J, Qiao YG (2020). Nitrogen enrichment suppresses revegetated shrub growth under increased precipitation via herb-induced topsoil water limitation in a desert ecosystem in Northern China. Plant and Soil, 446, 97-110. |
[34] | Song YF, Lu YJ, Liu TJ, Liu HW, Yan ZY, Wang HQ (2020). Soil-plant-microbial C, N, P and their stoichiometric characteristics in different rainfall zones of desert steppe. Acta Ecologica Sinica, 40, 4011-4023. |
[宋一凡, 卢亚静, 刘铁军, 刘慧文, 闫泽宇, 王慧琪 (2020). 荒漠草原不同雨量带土壤-植物-微生物C、N、P及其化学计量特征. 生态学报, 40, 4011-4023.] | |
[35] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry—The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[36] | Tang ZY, Xu WT, Zhou GY, Bai YF, Li JX, Tang XL, Chen DM, Liu Q, Ma WH, Xiong GM, He HL, He NP, Guo YP, Guo Q, Zhu JL, et al. (2018). Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 115, 4033-4038. |
[37] |
Tian D, Yan ZB, Fang JY (2021). Review on characteristics and main hypotheses of plant ecological stoichiometry. Chinese Journal of Plant Ecology, 45, 682-713.
DOI |
[田地, 严正兵, 方精云 (2021). 植物生态化学计量特征及其主要假说. 植物生态学报, 45, 682-713.]
DOI |
|
[38] |
Tian D, Reich PB, Chen HYH, Xiang Y, Luo Y, Shen Y, Meng C, Han W, Niu S (2019). Global changes alter plant multi-element stoichiometric coupling. New Phytologist, 221, 807-817.
DOI PMID |
[39] | Trenberth KE (2011). Changes in precipitation with climate change. Climate Research, 47, 123-138. |
[40] |
Wang B, Huang G, Ma J, Li Y (2016). Responses of nutrients resorption of five desert ephemeral plants to water and nitrogen additions. Journal of Desert Research, 36, 415-422.
DOI |
[王斌, 黄刚, 马健, 李彦 (2016). 5种荒漠短命植物养分再吸收对水氮添加的响应. 中国沙漠, 36, 415-422.]
DOI |
|
[41] | Wang R, Creamer CA, Wang X, He P, Xu Z, Jiang Y (2016). The effects of a 9-year nitrogen and water addition on soil aggregate phosphorus and sulfur availability in a semi-arid grassland. Ecological Indicators, 61, 806-814. |
[42] | Xu W, Luo XS, Pan YP, Zhang L, Tang AH, Shen JL, Zhang Y, Li KH, Wu QH, Yang DW, Zhang YY, Xue J, Li WQ, Li QQ, Tang L, et al. (2015). Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmospheric Chemistry and Physics, 15, 12345-12360. |
[43] |
Yan ZB, Tian D, Han WX, Tang ZY, Fang JY (2017). An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Annals of Botany, 120, 937-942.
DOI PMID |
[44] |
Yu Q, Chen Q, Elser JJ, He N, Wu H, Zhang G, Wu J, Bai Y, Han X (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 13, 1390-1399.
DOI PMID |
[45] |
Yu Q, Elser JJ, He N, Wu H, Chen Q, Zhang G, Han X (2011). Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166, 1-10.
DOI PMID |
[46] |
Yu Q, Wilcox K, La Pierre K, Knapp AK, Han X, Smith MD (2015). Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change. Ecology, 96, 2328-2335.
PMID |
[47] | Zhang RY, Shi XM, Li WJ, Guo R, Wang G (2015). Response of species homeostasis and biomass on a sub-alpine grassland. Pratacultural Science, 32, 1539-1547. |
[张仁懿, 史小明, 李文金, 郭睿, 王刚 (2015). 亚高寒草甸物种内稳性与生物量变化模式. 草业科学, 32, 1539-1547.] | |
[48] | Zhang WJ, Zhang YQ, She WW, Qin SG, Feng W (2016). Effects of nitrogen addition on foliar ecological stoichiometric characteristics of Artemisia ordosica community. Research of Environmental Sciences, 29, 52-58. |
[张文瑾, 张宇清, 佘维维, 秦树高, 冯薇 (2016). 氮添加对油蒿群落植物叶片生态化学计量特征的影响. 环境科学研究, 29, 52-58.] | |
[49] | Zhang ZS, Yang GS, Lü XY, Hu R, Huang L (2022). Research progresses in ecological stoichiometry of C, N and P in desert ecosystems. Journal of Desert Research, 42, 48-56. |
[张志山, 杨贵森, 吕星宇, 虎瑞, 黄磊 (2022). 荒漠生态系统C、N、P生态化学计量研究进展. 中国沙漠, 42, 48-56.]
DOI |
|
[50] | Zhu WW, Xu YX, Wang P, Yu HL, Huang JY (2020). Effects of precipitation and N addition on plant and microbial C:N:P ecological stoichiometry in a desert steppe of northwestern China. Acta Botanica Boreali-Occidentalia Sinica, 40, 676-687. |
[朱湾湾, 许艺馨, 王攀, 余海龙, 黄菊莹 (2020). 降水量及N添加对荒漠草原植物和土壤微生物C:N:P生态化学计量特征的影响. 西北植物学报, 40, 676-687.] |
[1] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[2] | 张富崇, 于明含, 张建玲, 王平, 丁国栋, 何莹莹, 孙慧媛. 黑沙蒿应对降水变化的木质部与韧皮部协同响应机制[J]. 植物生态学报, 2024, 48(7): 903-914. |
[3] | 俞庆水, 倪晓凤, 吉成均, 朱江玲, 唐志尧, 方精云. 10年氮磷添加对海南尖峰岭热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(6): 690-700. |
[4] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[5] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[6] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[7] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[8] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[9] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[10] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[11] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[12] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[13] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[14] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[15] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19