植物生态学报 ›› 2023, Vol. 47 ›› Issue (9): 1322-1332.DOI: 10.17521/cjpe.2023.0001
所属专题: 全球变化与生态系统; 生态系统碳水能量通量
• 数据论文 • 上一篇
韩聪1, 母艳梅1, 查天山1,2, 秦树高1,2, 刘鹏1,2, 田赟1,2, 贾昕1,2,*()
收稿日期:
2023-01-02
接受日期:
2023-03-06
出版日期:
2023-09-20
发布日期:
2023-09-28
通讯作者:
* 贾昕 ORCID:0000-0003-4800-4273 (作者简介:
ORCID:韩聪: 0000-0001-6865-3380
基金资助:
HAN Cong1, MU Yan-Mei1, ZHA Tian-Shan1,2, QIN Shu-Gao1,2, LIU Peng1,2, TIAN Yun1,2, JIA Xin1,2,*()
Received:
2023-01-02
Accepted:
2023-03-06
Online:
2023-09-20
Published:
2023-09-28
Contact:
* JIA Xin(Supported by:
摘要:
干旱、半干旱区分布广泛, 是陆地生态系统的重要组成部分, 半干旱生态系统对全球碳水循环的长期趋势和年际变异具有重要的调控作用。已有关于陆地生态系统碳水循环的机理研究和数据产品研制大多关注森林、草原和农田等生态系统类型, 针对沙地灌丛的研究仍相对较少, 数据可利用性较低, 制约着区域生态功能的准确评估和预测。自2011年起, 采用涡度协方差法对黑沙蒿(Artemisia ordosica)灌丛生态系统碳水热通量开展了长期连续观测。该研究通过对2012-2016年原始数据进行通量计算、质量控制、缺失值插补和碳通量拆分等处理步骤, 生成各时间尺度(半小时、日、月、年)生态系统碳水热通量观测数据集, 同时整理并生成相对应的微气象数据集。数据集包括生态系统净CO2交换(NEE)、总初级生产力(GPP)、生态系统呼吸(Re)、潜热通量(LE)和显热通量(Hs)以及相关微气象观测指标。数据集的有效数据占比和能量闭合程度分析表明: (1)质量控制后的有效NEE、LE和Hs半小时数据全年占比分别为56.23%-62.19%、79.40%-94.12%和77.56%-91.27%; (2)在年尺度和月尺度的能量平衡比率变化范围分别为0.78-0.83和0.59-1.19; (3)基于逐日数据, 采用最小二乘回归(LE + Hs vs. Rn - G; Rn为净辐射, G为土壤热通量)分析能量闭合程度, 不同年份间和不同季节间的回归斜率变化范围分别为0.73-0.79和0.73-0.92。上述结果表明, 本数据集有效数据占比高, 能量闭合程度处于合理范围, 能够为不同时空尺度生态系统过程与功能研究提供较好的数据支撑。
韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集. 植物生态学报, 2023, 47(9): 1322-1332. DOI: 10.17521/cjpe.2023.0001
HAN Cong, MU Yan-Mei, ZHA Tian-Shan, QIN Shu-Gao, LIU Peng, TIAN Yun, JIA Xin. A dataset of ecosystem fluxes in a shrubland ecosystem of Mau Us Sandy Land in Yanchi, Ningxia, China (2012-2016). Chinese Journal of Plant Ecology, 2023, 47(9): 1322-1332. DOI: 10.17521/cjpe.2023.0001
观测系统 Measurement system | 数据采集器 (制造商) Datalogger (manufacturer) | 观测指标 Measured variable | 仪器型号 (制造商) Instrument model (manufacturer) |
---|---|---|---|
通量观测系统 Flux measurement system | LI-7550 (LI-COR, Lincoln, USA) | 大气压 Atmospheric pressure | LI-7200 (LI-COR, Lincoln, USA) |
碳水通量 Carbon and water flux | LI-7200 (LI-COR, Lincoln, USA) | ||
潜热、显热通量 Latent heat and sensible heat flux | LI-7200 (LI-COR, Lincoln, USA) | ||
三维超声风速 3D sonic anemometer | CSAT-3 (Campbell, Logan, USA) | ||
气象观测系统 Meteorological measurement system | CR200X (Campbell, Logan, USA) | 降雨量 Rainfall | TR-525M (Texas Electronics, Dallas, USA) |
CR3000 (Campbell, Logan, USA) | 空气温度 Air temperature | HMP155A (Vaisala, Helsinki, Finland) | |
相对湿度 Relative humidity | HMP155A (Vaisala, Helsinki, Finland) | ||
饱和水汽压差 Vapor pressure deficit | HMP155A (Vaisala, Helsinki, Finland) | ||
风速 Wind speed | 034B (Met-One Instruments, Grants Pass, USA) | ||
风向 Wind direction | 034B (Met-One Instruments, Grants Pass, USA) | ||
太阳辐射 Solar radiation | CMP3 (Kipp & Zonen, Delft, The Netherlands) | ||
净辐射 Net radiation | CNR-4 (Kipp & Zonen, Delft, The Netherlands) | ||
光合有效辐射 Photosynthetically active radiation | PAR-LITE (Kipp & Zonen, Delft, The Netherlands) | ||
土壤热通量 Soil heat flux | HFP01 (Hukseflux Thermal Sensors, Delft, The Netherlands) | ||
土壤温度 Soil temperature | ECH2O-5TE (METER Environment, Pullman, USA) | ||
EM50 (METER Environment, Pullman, USA) | 土壤含水量 Soil water content | ECH2O-5TE (METER Environment, Pullman, USA) |
表1 宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量和气象观测指标、观测仪器和数据采集器信息
Table 1 Summary of measured variables, instruments, and dataloggers in a Artemisia ordosica shrubland ecosystem of Mau Us Sandy Land in Yanchi, Ningxia
观测系统 Measurement system | 数据采集器 (制造商) Datalogger (manufacturer) | 观测指标 Measured variable | 仪器型号 (制造商) Instrument model (manufacturer) |
---|---|---|---|
通量观测系统 Flux measurement system | LI-7550 (LI-COR, Lincoln, USA) | 大气压 Atmospheric pressure | LI-7200 (LI-COR, Lincoln, USA) |
碳水通量 Carbon and water flux | LI-7200 (LI-COR, Lincoln, USA) | ||
潜热、显热通量 Latent heat and sensible heat flux | LI-7200 (LI-COR, Lincoln, USA) | ||
三维超声风速 3D sonic anemometer | CSAT-3 (Campbell, Logan, USA) | ||
气象观测系统 Meteorological measurement system | CR200X (Campbell, Logan, USA) | 降雨量 Rainfall | TR-525M (Texas Electronics, Dallas, USA) |
CR3000 (Campbell, Logan, USA) | 空气温度 Air temperature | HMP155A (Vaisala, Helsinki, Finland) | |
相对湿度 Relative humidity | HMP155A (Vaisala, Helsinki, Finland) | ||
饱和水汽压差 Vapor pressure deficit | HMP155A (Vaisala, Helsinki, Finland) | ||
风速 Wind speed | 034B (Met-One Instruments, Grants Pass, USA) | ||
风向 Wind direction | 034B (Met-One Instruments, Grants Pass, USA) | ||
太阳辐射 Solar radiation | CMP3 (Kipp & Zonen, Delft, The Netherlands) | ||
净辐射 Net radiation | CNR-4 (Kipp & Zonen, Delft, The Netherlands) | ||
光合有效辐射 Photosynthetically active radiation | PAR-LITE (Kipp & Zonen, Delft, The Netherlands) | ||
土壤热通量 Soil heat flux | HFP01 (Hukseflux Thermal Sensors, Delft, The Netherlands) | ||
土壤温度 Soil temperature | ECH2O-5TE (METER Environment, Pullman, USA) | ||
EM50 (METER Environment, Pullman, USA) | 土壤含水量 Soil water content | ECH2O-5TE (METER Environment, Pullman, USA) |
数据项 Data item | 计量单位 Unit |
---|---|
年 Year | - |
月 Month | - |
日 Day | - |
时 Hour | - |
分 Minute | - |
潜热通量 Latent heat flux | W·m-2 |
显热通量 Sensible heat flux | W·m-2 |
总初级生产力 Gross primary productivity | mg C·m-2·s-1 |
生态系统呼吸 Ecosystem respiration | mg C·m-2·s-1 |
生态系统净CO2交换 Net ecosystem CO2 exchange | mg C·m-2·s-1 |
表2 盐池站半小时通量观测数据表单内容
Table 2 Summary of half-hourly ecosystem flux data at Yanchi Research Station
数据项 Data item | 计量单位 Unit |
---|---|
年 Year | - |
月 Month | - |
日 Day | - |
时 Hour | - |
分 Minute | - |
潜热通量 Latent heat flux | W·m-2 |
显热通量 Sensible heat flux | W·m-2 |
总初级生产力 Gross primary productivity | mg C·m-2·s-1 |
生态系统呼吸 Ecosystem respiration | mg C·m-2·s-1 |
生态系统净CO2交换 Net ecosystem CO2 exchange | mg C·m-2·s-1 |
数据项 Data item | 计量单位 Unit | 数据项说明 Description |
---|---|---|
年 Year | - | 年份 Year |
月 Month | - | 月份 Month |
日 Day | - | 日期 Day |
时 Hour | - | 小时 Hour |
分 Minute | - | 分钟 Minute |
空气温度 Air temperature | ℃ | 冠层上方平均空气温度 Mean air temperature above canopy |
相对湿度 Relative humidity | % | 冠层上方平均相对湿度 Mean relative humidity above canopy |
饱和水汽压差 Vapor pressure deficit | kPa | 冠层上方饱和水汽压差 Vapor pressure deficit above canopy |
大气压 Atmospheric pressure | kPa | 大气压强 Atmospheric pressure |
风速 Wind speed | m·s-1 | 冠层上方风速 Wind speed above canopy |
风向 Wind direction | ° | 冠层上方风向 Wind direction above canopy |
太阳辐射 Solar radiation | W·m-2 | 太阳总辐射 Total solar radiation |
净辐射 Net radiation | W·m-2 | 净辐射 Net radiation |
光合有效辐射 Photosynthetically active radiation | μmol·m-2·s-1 | 光合有效辐射 Photosynthetically active radiation |
土壤热通量 Soil heat flux | W·m-2 | 土壤热通量 Soil heat flux |
一层土壤(10 cm)温度 10 cm soil temperature | ℃ | 距地 |
二层土壤(30 cm)温度 30 cm soil temperature | ℃ | 距地 |
一层土壤(10 cm)含水量 10 cm soil water content | m3·m-3 | 距地 |
二层土壤(30 cm)含水量 30 cm soil water content | m3·m-3 | 距地 |
降雨量 Rainfall | mm | 降雨量 Rainfall |
表3 盐池站微气象半小时观测数据表单内容
Table 3 Summary of half-hourly micro-meteorological data at Yanchi Research Station
数据项 Data item | 计量单位 Unit | 数据项说明 Description |
---|---|---|
年 Year | - | 年份 Year |
月 Month | - | 月份 Month |
日 Day | - | 日期 Day |
时 Hour | - | 小时 Hour |
分 Minute | - | 分钟 Minute |
空气温度 Air temperature | ℃ | 冠层上方平均空气温度 Mean air temperature above canopy |
相对湿度 Relative humidity | % | 冠层上方平均相对湿度 Mean relative humidity above canopy |
饱和水汽压差 Vapor pressure deficit | kPa | 冠层上方饱和水汽压差 Vapor pressure deficit above canopy |
大气压 Atmospheric pressure | kPa | 大气压强 Atmospheric pressure |
风速 Wind speed | m·s-1 | 冠层上方风速 Wind speed above canopy |
风向 Wind direction | ° | 冠层上方风向 Wind direction above canopy |
太阳辐射 Solar radiation | W·m-2 | 太阳总辐射 Total solar radiation |
净辐射 Net radiation | W·m-2 | 净辐射 Net radiation |
光合有效辐射 Photosynthetically active radiation | μmol·m-2·s-1 | 光合有效辐射 Photosynthetically active radiation |
土壤热通量 Soil heat flux | W·m-2 | 土壤热通量 Soil heat flux |
一层土壤(10 cm)温度 10 cm soil temperature | ℃ | 距地 |
二层土壤(30 cm)温度 30 cm soil temperature | ℃ | 距地 |
一层土壤(10 cm)含水量 10 cm soil water content | m3·m-3 | 距地 |
二层土壤(30 cm)含水量 30 cm soil water content | m3·m-3 | 距地 |
降雨量 Rainfall | mm | 降雨量 Rainfall |
图1 盐池站碳通量和热通量逐日值在2012-2016年期间的变化动态。GPP, 总初级生产力; Hs, 显热通量; LE, 潜热通量; NEE, 净生态系统CO2交换; Re, 生态系统呼吸。
Fig. 1 Temporal variations in daily carbon and heat fluxes at Yanchi Research Station during 2012-2016. GPP, gross primary productivity; Hs, sensible heat flux; LE, latent heat flux; NEE, net ecosystem CO2 exchange; Re, ecosystem respiration.
图2 盐池站空气温度、降雨量、光合有效辐射逐日值在2012-2016年期间的变化动态。
Fig. 2 Temporal variations in daily mean air temperature, daily total rainfall and daily mean photosynthetically active radiation (PAR) at Yanchi Research Station during 2012-2016.
年份 Year | NEE (%) | LE (%) | Hs (%) |
---|---|---|---|
2012 | 59.89 | 91.23 | 90.84 |
2013 | 56.23 | 79.40 | 77.56 |
2014 | 61.53 | 90.03 | 88.33 |
2015 | 62.19 | 94.12 | 91.27 |
2016 | 60.56 | 87.78 | 84.86 |
平均 Mean | 60.08 | 88.51 | 86.57 |
表4 盐池站2012-2016年通量观测有效数据占比
Table 4 Proportion of valid flux data at Yanchi Research Station during 2012-2016
年份 Year | NEE (%) | LE (%) | Hs (%) |
---|---|---|---|
2012 | 59.89 | 91.23 | 90.84 |
2013 | 56.23 | 79.40 | 77.56 |
2014 | 61.53 | 90.03 | 88.33 |
2015 | 62.19 | 94.12 | 91.27 |
2016 | 60.56 | 87.78 | 84.86 |
平均 Mean | 60.08 | 88.51 | 86.57 |
年份 Year | 能量平衡比率 EBR |
---|---|
2012 | 0.83 |
2013 | 0.83 |
2014 | 0.78 |
2015 | 0.80 |
2016 | 0.80 |
平均 Mean | 0.81 |
表5 盐池站2012-2016年通量观测年尺度能量平衡比率
Table 5 Annual energy balance ratio (EBR) for flux measurements at Yanchi Research Station during 2012-2016
年份 Year | 能量平衡比率 EBR |
---|---|
2012 | 0.83 |
2013 | 0.83 |
2014 | 0.78 |
2015 | 0.80 |
2016 | 0.80 |
平均 Mean | 0.81 |
月份 Month | 年份 Year | 平均 Mean | ||||
---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | ||
1 | 1.10 | 1.19 | 1.08 | 0.86 | 0.90 | 1.03 |
2 | 0.96 | 1.06 | 0.82 | 0.92 | 0.96 | 0.94 |
3 | 0.90 | 0.99 | 0.95 | 0.93 | 0.90 | 0.93 |
4 | 0.97 | 0.96 | 0.80 | 0.82 | 0.83 | 0.87 |
5 | 0.82 | 0.85 | 0.82 | 0.81 | 0.69 | 0.80 |
6 | 0.81 | 0.79 | 0.79 | 0.79 | 0.82 | 0.80 |
7 | 0.72 | 0.64 | 0.68 | 0.77 | 0.77 | 0.72 |
8 | 0.72 | 0.78 | 0.63 | 0.77 | 0.71 | 0.72 |
9 | 0.72 | 0.65 | 0.59 | 0.62 | 0.79 | 0.67 |
10 | 0.86 | 0.88 | 0.79 | 0.82 | 0.75 | 0.82 |
11 | 0.88 | 0.88 | 0.91 | 0.68 | 1.00 | 0.87 |
12 | 1.01 | 1.12 | 1.04 | 1.13 | 0.98 | 1.06 |
平均 Mean | 0.87 | 0.90 | 0.83 | 0.83 | 0.84 | 0.85 |
表6 盐池站2012-2016年通量观测月尺度能量平衡比率
Table 6 Monthly energy balance ratio (EBR) for flux measurements at Yanchi Research Station during 2012-2016
月份 Month | 年份 Year | 平均 Mean | ||||
---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | ||
1 | 1.10 | 1.19 | 1.08 | 0.86 | 0.90 | 1.03 |
2 | 0.96 | 1.06 | 0.82 | 0.92 | 0.96 | 0.94 |
3 | 0.90 | 0.99 | 0.95 | 0.93 | 0.90 | 0.93 |
4 | 0.97 | 0.96 | 0.80 | 0.82 | 0.83 | 0.87 |
5 | 0.82 | 0.85 | 0.82 | 0.81 | 0.69 | 0.80 |
6 | 0.81 | 0.79 | 0.79 | 0.79 | 0.82 | 0.80 |
7 | 0.72 | 0.64 | 0.68 | 0.77 | 0.77 | 0.72 |
8 | 0.72 | 0.78 | 0.63 | 0.77 | 0.71 | 0.72 |
9 | 0.72 | 0.65 | 0.59 | 0.62 | 0.79 | 0.67 |
10 | 0.86 | 0.88 | 0.79 | 0.82 | 0.75 | 0.82 |
11 | 0.88 | 0.88 | 0.91 | 0.68 | 1.00 | 0.87 |
12 | 1.01 | 1.12 | 1.04 | 1.13 | 0.98 | 1.06 |
平均 Mean | 0.87 | 0.90 | 0.83 | 0.83 | 0.84 | 0.85 |
图3 盐池站2012-2016年间不同年份间通量逐日数据能量闭合回归分析。G, 土壤热通量; Hs, 显热通量; LE, 潜热通量; Rn, 净辐射。
Fig. 3 Regression analysis on the energy balance closure of daily flux values at Yanchi Research Station for different years during 2012-2016. G, soil heat flux; Hs, sensible heat flux; LE, latent heat flux; Rn, net radiation.
图4 盐池站2012-2016年间不同季节间通量逐日数据能量闭合回归分析。G, 土壤热通量; Hs, 显热通量; LE, 潜热通量; Rn, 净辐射。
Fig. 4 Regression analysis on the energy balance closure of daily flux values at Yanchi Research Station for different seasons during 2012-2016. G, soil heat flux; Hs, sensible heat flux; LE, latent heat flux; Rn, net radiation.
[1] |
Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell JG, Friedlingstein P, Jain AK, Kato E, Poulter B, Sitch S, Stocker BD, Viovy N, et al. (2015). Carbon cycle. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 348, 895-899.
DOI PMID |
[2] |
Barr AG, Black TA, Hogg EH, Griffis TJ, Morgenstern K, Kljun N, Theede A, Nesic Z (2007). Climatic controls on the carbon and water balances of a boreal aspen forest, 1994-2003. Global Change Biology, 13, 561-576.
DOI URL |
[3] |
Biederman JA, Scott RL, Arnone III JA, Jasoni RL, Litvak ME, Moreo MT, Papuga SA, Ponce-Campos GE, Schreiner-McGraw AP, Vivoni ER (2018). Shrubland carbon sink depends upon winter water availability in the warm deserts of North America. Agricultural and Forest Meteorology, 249, 407-419.
DOI URL |
[4] |
Chen SP, You CH, Hu ZM, Chen Z, Zhang LM, Wang QF (2020). Eddy covariance technique and its applications in flux observations of terrestrial ecosystems. Chinese Journal of Plant Ecology, 44, 291-304.
DOI URL |
[陈世苹, 游翠海, 胡中民, 陈智, 张雷明, 王秋凤 (2020). 涡度相关技术及其在陆地生态系统通量研究中的应用. 植物生态学报, 44, 291-304.]
DOI |
|
[5] | Fu TL, Li XR, Jia RL, Feng L (2021). A novel integrated method based on a machine learning model for estimating evapotranspiration in dryland. Journal of Hydrology, 603, 126881. DOI: 10.1016/j.jhydrol.2021.126881. |
[6] |
Gu Q, Wei J, Luo SC, Ma MG, Tang XG (2018). Potential and environmental control of carbon sequestration in major ecosystems across arid and semi-arid regions in China. Science of the Total Environment, 645, 796-805.
DOI URL |
[7] | Jia X, Mu Y, Zha TS, Wang B, Qin SG, Tian Y (2020). Seasonal and interannual variations in ecosystem respiration in relation to temperature, moisture, and productivity in a temperate semi-arid shrubland. Science of the Total Environment, 709, 136210. DOI: 10.1016/j.scitotenv.2019.136210. |
[8] | Jia X, Zha TS, Gong JN, Wang B, Zhang YQ, Wu B, Qin SG, Peltola H (2016). Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agricultural and Forest Meteorology, 228, 120-129. |
[9] |
Jia X, Zha TS, Gong JN, Zhang YQ, Wu B, Qin SG, Peltola H (2018). Multi-scale dynamics and environmental controls on net ecosystem CO2 exchange over a temperate semiarid shrubland. Agricultural and Forest Meteorology, 259, 250-259.
DOI URL |
[10] |
Jia X, Zha TS, Wu B, Zhang YQ, Gong JN, Qin SG, Chen GP, Qian D, Kellomäki S, Peltola H (2014). Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China. Biogeosciences, 11, 4679-4693.
DOI URL |
[11] | Jiang XY, Jia X, Gao SJ, Jiang Y, Wei NN, Han C, Zha TS, Liu P, Tian Y, Qin SG (2021) Plant nutrient contents rather than physical traits are coordinated between leaves and roots in a desert shrubland. Frontiers in Plant Science, 12, 734775. DOI: 10.3389/fpls.2021.734775. |
[12] | Li ZQ, Yu GR, Wen XF, Zhang LM, Ren CY, Fu YL (2005). Energy balance closure at ChinaFLUX sites. Science in China (Series D: Earth Sciences), 48, 51-62. |
[13] |
Liu P, Zha TS, Jia X, Black TA, Jassal RS, Ma JY, Bai YJ, Wu YJ (2019). Different effects of spring and summer droughts on ecosystem carbon and water exchanges in a semiarid shrubland ecosystem in northwest China. Ecosystems, 22, 1869-1885.
DOI |
[14] |
Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323.
DOI URL |
[15] |
McGloin R, Šigut L, Havránková K, Dušek J, Pavelka M, Sedlák P (2018). Energy balance closure at a variety of ecosystems in Central Europe with contrasting topographies. Agricultural and Forest Meteorology, 248, 418-431.
DOI URL |
[16] |
Miao L, Feng W, Zhang YQ, Bai YX, Sun YF, She WW, Mao HN, Lai ZR, Qin SG (2020). Chemoheterotrophic diazotrophs contribute to nitrogen incorporation in a semi-arid desert. Biology and Fertility of Soils, 56, 1165-1176.
DOI |
[17] | Mu YM, Yuan Y, Jia X, Zha TS, Qin SG, Ye ZQ, Liu P, Yang RZ, Tian Y (2022). Hydrological losses and soil moisture carryover affected the relationship between evapotranspiration and rainfall in a temperate semiarid shrubland. Agricultural and Forest Meteorology, 315, 108831. DOI: 10.1016/j.agrformet.2022.108831. |
[18] |
Ochsner TE, Sauer TJ, Horton R (2007). Soil heat storage measurements in energy balance studies. Agronomy Journal, 99, 311-319.
DOI URL |
[19] |
Papale D, Reichstein M, Aubinet M., Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006). Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3, 571-583.
DOI URL |
[20] |
Pastorello G, Trotta C, Canfora E, Chu HS, Christianson D, Cheah YW, Poindexter C, Chen JQ, Elbashandy A, Humphrey M, Isaac P, Polidori D, Reichstein M, Ribeca A, van Ingen C, et al. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7, 225. DOI: 10.1038/s41597-020-0534-3.
PMID |
[21] | Piao SL, Fang JY, Liu HY, Zhu B (2005). NDVI-indicated decline in desertification in China in the past two decades. Geophysical Research Letters, 32, L06402. DOI: 10.1029/2004GL021764. |
[22] |
Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, Running SW, Sitch S, van der Werf GR (2014). Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509, 600-603.
DOI |
[23] |
Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439.
DOI URL |
[24] |
Reynolds JF, Smith DMS, Lambin EF, Turner II BL, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, et al. (2007). Global desertification: building a science for dryland development. Science, 316, 847-851.
DOI PMID |
[25] |
Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, et al. (2002). Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223-243.
DOI URL |
[26] |
Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Šigut L, Menzer O, Reichstein M (2018). Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences, 15, 5015-5030.
DOI URL |
[27] |
Yu HY, Xu ZZ, Zhou GS, Shi YH (2020). Soil carbon release responses to long-term versus short-term climatic warming in an arid ecosystem. Biogeosciences, 17, 781-792.
DOI URL |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[3] | 王彦兵, 游翠海, 谭星儒, 陈波宇, 许梦真, 陈世苹. 中国北方干旱半干旱区草原生态系统能量平衡闭合的季节和年际变异[J]. 植物生态学报, 2022, 46(12): 1448-1460. |
[4] | 张治国, 魏海霞. 毛乌素沙地油蒿叶建成成本及相关叶性状沿降水梯度的变化[J]. 植物生态学报, 2019, 43(11): 979-987. |
[5] | 许皓, 李彦, 谢静霞, 程磊, 赵彦, 刘冉. 光合有效辐射与地下水位变化对柽柳属荒漠灌木群落碳平衡的影响[J]. 植物生态学报, 2010, 34(4): 375-386. |
[6] | 刘晨峰, 张志强, 孙阁, 查同刚, 朱金兆, 申李华, 陈军, 方显瑞, 陈吉泉. 基于涡度相关法和树干液流法评价杨树人工林 生态系统蒸发散及其环境响应[J]. 植物生态学报, 2009, 33(4): 706-718. |
[7] | 王文杰, 祖元刚, 王辉民, 杨逢建, 三枝信子, 小池孝良, 山本晋. 基于涡度协方差法和生理生态法对落叶松林CO2通量的初步研究[J]. 植物生态学报, 2007, 31(1): 118-128. |
[8] | 刘凤红, 叶学华, 于飞海, 董鸣. 毛乌素沙地游击型克隆半灌木羊柴对局部沙埋的反应[J]. 植物生态学报, 2006, 30(2): 278-285. |
[9] | 张强, 周毅. 敦煌绿洲夏季典型晴天地表辐射和能量平衡及小气候特征[J]. 植物生态学报, 2002, 26(6): 717-738. |
[10] | 陈玉福, 董鸣. 毛乌素沙地群落动态中克隆和非克隆植物作用的比较[J]. 植物生态学报, 2002, 26(3): 377-380. |
[11] | 何维明. 为什么自然条件下沙地柏种群以无性更新为主[J]. 植物生态学报, 2002, 26(2): 235-238. |
[12] | 肖春旺, 周广胜, 马风云. 施水量变化对毛乌素沙地优势植物形态与生长的影响[J]. 植物生态学报, 2002, 26(1): 69-76. |
[13] | 肖春旺, 周广胜. 不同浇水量对毛乌素沙地沙柳幼苗气体交换过程及其光化学效率的影响[J]. 植物生态学报, 2001, 25(4): 444-450. |
[14] | 陈玉福, 董鸣. 毛乌素沙地景观的植被与土壤特征空间格局及其相关分析[J]. 植物生态学报, 2001, 25(3): 265-269. |
[15] | 何维明. 切断匍匐茎对沙地柏子株生长和资源利用效率的影响[J]. 植物生态学报, 2000, 24(4): 391-395. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19