植物生态学报 ›› 2019, Vol. 43 ›› Issue (11): 979-987.DOI: 10.17521/cjpe.2019.0149
所属专题: 植物功能性状
收稿日期:
2019-06-18
接受日期:
2019-11-15
出版日期:
2019-11-20
发布日期:
2020-03-26
通讯作者:
魏海霞
基金资助:
ZHANG Zhi-Guo1,WEI Hai-Xia1,2,3,*()
Received:
2019-06-18
Accepted:
2019-11-15
Online:
2019-11-20
Published:
2020-03-26
Contact:
WEI Hai-Xia
Supported by:
摘要:
干旱区植物在如何提高水分利用效率与降低叶建成成本之间可能存在一种权衡。我们假设: 与湿润区植物相比, 干旱区植物能通过调节叶功能性状之间的关系(如通过提高单位面积叶氮含量(Narea)), 实现在相同的叶建成成本下具有更高的水分利用效率。为了验证这一假设, 该研究以毛乌素沙地的广布物种油蒿(Artemisia ordosica)为研究对象, 分析了油蒿叶建成成本沿降水梯度的变化规律及其与比叶面积(SLA)、单位质量叶氮含量(Nmass)、Narea和叶碳稳定同位素比率(δ 13C)的关系。结果表明: 油蒿单位质量叶建成成本(CCm)在不同降水条件下差异不显著, 而单位面积叶建成成本(CCa)在不同降水条件下虽有显著差异, 但并未随降水减少而明显增加。油蒿CCm与SLA无显著相关性, 与叶δ 13C值呈显著正相关关系。油蒿叶建成成本与Narea呈显著正相关关系, 但这种关系格局在低降水量(264 mm)区与高降水量(310-370 mm)区之间存在策略位移现象——即在相同叶建成成本下, 低降水量区植物比高降水量区植物具有更高的Narea。以上结果表明, 尽管高水分利用效率与高叶建成成本相关, 但与高降水量区植物相比, 低降水量区植物具有较高的Narea并没有导致其叶建成成本增加。
张治国, 魏海霞. 毛乌素沙地油蒿叶建成成本及相关叶性状沿降水梯度的变化. 植物生态学报, 2019, 43(11): 979-987. DOI: 10.17521/cjpe.2019.0149
ZHANG Zhi-Guo, WEI Hai-Xia. Variations of leaf construction cost and leaf traits within the species of Artemisia ordosica along a precipitation gradient in the Mau Us sandy land. Chinese Journal of Plant Ecology, 2019, 43(11): 979-987. DOI: 10.17521/cjpe.2019.0149
经度 Longitude | 纬度 Latitude | 海拔 Altitude (m) | 年降水量 Annual precipitation (mm) | 年蒸发量 Annual pan-evaporation (mm) | 年平均气温 Annual mean temperature (℃) | 土壤全氮含量 Soil total N concentration (mg·g-1) | ||
---|---|---|---|---|---|---|---|---|
固定沙地 Fixed sandy land | 半固定沙地 Semi-fixed sandy land | |||||||
榆林 Yulin | 109.87° | 38.62° | 1 210 | 370 | 1 890 | 8.6 | 0.28 ± 0.049aBC | 0.18 ± 0.075bA |
乌审旗 Uxin Qi | 108.64° | 38.16° | 1 270 | 353 | 2 322 | 8.7 | 0.24 ± 0.012aC | 0.07 ± 0.016bB |
鄂托克前旗 Otog Qianqi | 108.46° | 37.70° | 1 320 | 310 | 2 133 | 8.8 | 0.32 ± 0.052aAB | 0.19 ± 0.038bA |
鄂托克旗 Otog Qi | 108.06° | 39.06° | 1 420 | 264 | 2 450 | 7.6 | 0.37 ± 0.039aA | 0.19 ± 0.018bA |
表1 毛乌素沙地研究点气候和土壤特征
Table 1 Climatic and soil characteristics of study sites in the Mau Us sandy land
经度 Longitude | 纬度 Latitude | 海拔 Altitude (m) | 年降水量 Annual precipitation (mm) | 年蒸发量 Annual pan-evaporation (mm) | 年平均气温 Annual mean temperature (℃) | 土壤全氮含量 Soil total N concentration (mg·g-1) | ||
---|---|---|---|---|---|---|---|---|
固定沙地 Fixed sandy land | 半固定沙地 Semi-fixed sandy land | |||||||
榆林 Yulin | 109.87° | 38.62° | 1 210 | 370 | 1 890 | 8.6 | 0.28 ± 0.049aBC | 0.18 ± 0.075bA |
乌审旗 Uxin Qi | 108.64° | 38.16° | 1 270 | 353 | 2 322 | 8.7 | 0.24 ± 0.012aC | 0.07 ± 0.016bB |
鄂托克前旗 Otog Qianqi | 108.46° | 37.70° | 1 320 | 310 | 2 133 | 8.8 | 0.32 ± 0.052aAB | 0.19 ± 0.038bA |
鄂托克旗 Otog Qi | 108.06° | 39.06° | 1 420 | 264 | 2 450 | 7.6 | 0.37 ± 0.039aA | 0.19 ± 0.018bA |
图1 沿降水梯度油蒿叶片单位质量建成成本与热值(A)、灰分含量(B)和单位质量叶氮含量(C)的关系。
Fig. 1 Relationships between mass-based leaf construction cost and heat of combustion (A), ash content (B) and mass-based leaf nitrogen concentration (C) of leaves within species of Artemisia ordosica along a precipitation gradient.
图2 不同沙地生境和降水条件下油蒿叶片单位质量建成成本(A)和单位面积建成成本(B)的比较(平均值+标准偏差)。不同大写字母表示建成成本在不同降水条件下差异显著(p < 0.05); 不同小写字母表示建成成本在沙地生境间差异显著(p < 0.05)。
Fig. 2 Comparisons of mass-based leaf construction cost (A) and area-based leaf construction cost (B) of Artemisia ordosica between two sandy land habitats and among different precipitation areas (mean + SD). Different uppercase letters indicate significant differences in leaf construction cost among different precipitation areas; different lowercase letters indicate significant differences in leaf construction cost between two sandy land habitats.
因变量 Dependent variables | 土壤全氮含量 Soil total nitrogen content (mg·g-1) | 年降水量 Annual precipitation (mm) |
---|---|---|
CCm | 0.28* | 0.03 |
CCa | 0.27* | 0.32* |
表2 沿降水梯度油蒿叶片单位质量建成成本(CCm)和单位面积建成成本(CCa)与降水和土壤全氮含量的偏相关分析
Table 2 Partial correlation coefficients for relationships of mass-based leaf construction cost (CCm) and area-based leaf construction cost (CCa) to annual precipitation and total soil nitrogen content within species of Artemisia ordosica along a precipitation gradient
因变量 Dependent variables | 土壤全氮含量 Soil total nitrogen content (mg·g-1) | 年降水量 Annual precipitation (mm) |
---|---|---|
CCm | 0.28* | 0.03 |
CCa | 0.27* | 0.32* |
图3 沿降水梯度油蒿叶片单位质量建成成本和单位面积建成成本与比叶面积(A、B)、单位面积叶氮含量(C、D)和叶碳稳定同位素比率(δ13C)(E、F)的关系。
Fig. 3 Relationships of mass-based leaf construction cost and area-based leaf construction cost to specific leaf area (A, B), area-based leaf nitrogen concentration (C, D) and leaf stable carbon isotopes ratio (δ13C) value (E, F) within species of Artemisia ordosica along a precipitation gradient.
图4 沿降水梯度青藏高原北部沙地油蒿叶片单位质量建成成本(A)和单位面积建成成本(B)与单位面积叶氮含量的关系。
Fig. 4 Relationships of mass-based leaf construction cost (A) and area-based leaf construction cost (B) to area-based leaf nitrogen concentration within species of Artemisia ordosica along a precipitation gradient in the sandy lands of the northern Qinghai-Xizang Plateau.
[1] | Amthor JS ( 1989). Respiration and Crop Productivity. Springer-Verlgag, New York. |
[2] | Atkin OK, Villar R, Cummins WR ( 1993). The ability of several high arctic plant species to utilize nitrate nitrogen under field conditions. Oecologia, 96, 239-245. |
[3] | Cavatte PC, Rodríguez-López NF, Martins SCV, Mattos MS, Sanglard LMVP, DaMatta FM ( 2012). Functional analysis of the relative growth rate, chemical composition, construction and maintenance costs, and the payback time of Coffea arabica L. leaves in response to light and water availability. Journal of Experimental Botany, 63, 3071-3082. |
[4] | Chen FY, Luo TX, Zhang L, Deng KM, Tian XY ( 2006). Comparison of leaf construction cost in dominant tree species of the evergreen broad-leaved forest in Jiulian Mountain, Jiangxi Province. Acta Ecologica Sinica, 26, 2485-2493. |
[ 陈飞宇, 罗天祥, 张林, 邓坤枚, 田晓娅 ( 2006). 江西九连山常绿阔叶林主要树种叶建成消耗的比较. 生态学报, 26, 2485-2493.] | |
[5] | Dong ZY, Bai XF, Hou YP, Bu QM ( 2015). Leaf calorific value of 8 tree species in the coastal areas of Jiaodong and cost of construction of leaf biomass and its adaptability. Scientia Silvae Sinicae, 51(3), 8-15. |
[ 董周焱, 柏新富, 侯玉平, 卜庆梅 ( 2015). 胶东滨海8种树木叶片热值、建成成本及其适应能力. 林业科学, 51(3), 8-15.] | |
[6] | Falcão HM, Medeiros CD, Almeida-Cortez J, Santos MG ( 2017). Leaf construction cost is related to water availability in three species of different growth forms in a Brazilian tropical dry forest. Theoretical and Experimental Plant Physiology, 29, 95-108. |
[7] | Fortunel C, Fine PVA, Baraloto C ( 2012). Leaf, stem and root tissue strategies across 758 neotropical tree species. Functional Ecology, 26, 1153-1161. |
[8] | Griffin KL ( 1994). Calorimetric estimates of construction cost and their use in ecological studies. Functional Ecology, 8, 551-562. |
[9] | Griffin KL, Thomas RB, Strain BR ( 1993). Effects of nitrogen supply and elevated carbon dioxide on construction cost in leaves of Pinus taeda ( L.) seedlings. Oecologia, 95, 575-580. |
[10] | Griffin KL, Winner WE, Strain BR ( 1996). Construction cost of loblolly and ponderosa pine leaves grown with varying carbon and nitrogen availability. Plant, Cell & Environment, 19, 729-738. |
[11] | Li FL, Yang L, Zan QJ, Shin PKS, Cheung SG, Wong YS, Tam NoraFY, Lei AP ( 2017). Does energetic cost for leaf construction in Sonneratia change after introduce to another mangrove wetland and differ from native mangrove plants in South China? Marine Pollution Bulletin, 124, 1071-1077. |
[12] | Li YH, Luo TX, Lu Q, Tian XY, Wu B, Yang HH ( 2005). Comparisons of leaf traits among 17 major plant species in shazhuyu sand control experimental station of Qinghai Province. Acta Ecologica Sinica, 25, 994-999. |
[ 李永华, 罗天祥, 卢琦, 田晓娅, 吴波, 杨恒华 ( 2005). 青海省沙珠玉治沙站17种主要植物叶性因子的比较. 生态学报, 25, 994-999.] | |
[13] | Martinez F, Lazo YO, Fernandez-Galiano RM, Merino JA ( 2002). Chemical composition and construction cost for roots of Mediterranean trees, shrub species and grassland communities. Plant, Cell & Environment, 25, 601-608. |
[14] | Matías L, Quero JL, Zamora R, Castro J ( 2012). Evidence for plant traits driving specific drought resistance. A community field experiment. Environmental and Experimental Botany, 81, 55-61. |
[15] | Nagel JM, Griffin KL ( 2001). Construction cost and invasive potential: Comparing Lythrum salicaria ( Lythraceae) with co-occurring native species along pond banks. American Journal of Botany, 88, 2252-2258. |
[16] | Nagel JM, Wang XZ, Lewis JD, Fung HA, Tissue DT, Griffin KL ( 2005). Atmospheric CO2 enrichment alters energy assimilation, investment and allocation in Xanthium strumarium. New Phytologist, 166, 513-523. |
[17] | Penning de Vries FWT, Brunsting AHM, van Laar HH ( 1974). Products, requirements and efficiency of biosynthesis: A quantitative approach. Journal of Theoretical Biology, 45, 339-377. |
[18] | Pitelka LF ( 1978). Variation in caloric values of annual and perennial lupines (Lupinus: Leguminosae). American Midland Naturalist, 99, 454-462. |
[19] | Poorter H ( 1994). Construction costs and payback time of biomass: A whole plant perspective. In: Roy J, Gariner E eds. A Whole Plant Perspective on Carbon-Nitrogen Interactions. SPB Academic Publishing, Hague, The Netherlands. 11-127. |
[20] | Poorter H, de Jong R ( 1999). A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytologist, 143, 163-176. |
[21] | Poorter H, Pepin S, Rijkers T, de Jong Y, Evans JR, Körner C ( 2006). Construction costs, chemical composition and payback time of high- and low-irradiance leaves. Journal of Experimental Botany, 57, 355-371. |
[22] | Poorter H, Villar R ( 1997). The fate of acquired carbon in plants: Chemical composition and construction costs. In: Bazzaz FA, Grace J eds. Plant Resource Allocation. Elsevier, New York. 39-72. |
[23] | Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ ( 2014). Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecology Letters, 17, 82-91. |
[24] | P'yankov VI, Ivanov LA, Lambers H ( 2001). Plant construction cost in the boreal species differing in their ecological strategies. Russian Journal of Plant Physiology, 48, 67-73. |
[25] | Ronzhina DA, Ivanov LA ( 2014). Construction costs and mesostructure of leaves in hydrophytes. Russian Journal of Plant Physiology, 61, 776-783. |
[26] | Shan BQ, He XL ( 2007). Leaf anatomic characteristics of 12 species of Artemisia in Mu Us desert. Journal of Northwest A & F University (Natural Science Edition), 35, 211-217. |
[ 山宝琴, 贺学礼 ( 2007). 毛乌素沙地12种蒿属植物叶的解剖特征. 西北农林科技大学学报(自然科学版), 35, 211-217.] | |
[27] | Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA ( 1997). Leaf form and photosynthesis. BioScience, 47, 785-793. |
[28] | Song LY, Peng CL, Peng SL ( 2009). Comparison of leaf construction costs between three invasive species and three native species in South China. Biodiversity Science, 17, 378-384. |
[ 宋莉英, 彭长连, 彭少麟 ( 2009). 华南地区3种入侵植物与本地植物叶片建成成本的比较. 生物多样性, 17, 378-384.] | |
[29] | Suárez N ( 2005). Leaf construction cost in Avicennia germinans as affected by salinity under field conditions. Biologia Plantarum, 49, 111-116. |
[30] | Tang SB, Zhang LL, Kuang YW, Yan JH, Chen FL ( 2017). Leaf construction costs of 34 dominant species in karst forest, Guizhou. Earth and Environment, 45, 18-24. |
[ 汤松波, 张玲玲, 旷远文, 闫俊华, 陈丰林 ( 2017). 贵州喀斯特森林34个优势种叶片构建成本特征. 地球与环境, 45, 18-24.] | |
[31] | Tu CY, Huangfu CH, Jiang N, Gao SB, Yang DL ( 2013). Comparison of leaf construction cost between invasive plant Flaveria bidentis and its five co-occuring plants. Chinese Journal of Ecology, 32, 2985-2991. |
[ 屠臣阳, 皇甫超河, 姜娜, 高尚宾, 杨殿林 ( 2013). 入侵植物黄顶菊与5种共生植物叶片建成成本的比较. 生态学杂志, 32, 2985-2991.] | |
[32] | Turner NC, Schulze ED, Nicolle D, Schumacher J, Kuhlmann I ( 2008). Annual rainfall does not directly determine the carbon isotope ratio of leaves of Eucalyptus species. Physiologia Plantarum, 132, 440-445. |
[33] | Villar R, Merino J ( 2001). Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytologist, 151, 213-226. |
[34] | Wei H, Wu B, Yang W, Luo T ( 2011). Low rainfall-induced shift in leaf trait relationship within species along a semi-arid sandy land transect in northern China. Plant Biology, 13, 85-92. |
[35] | Wei HX, Luo TX, Wu B ( 2016). Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China. Annals of Botany, 118, 541-553. |
[36] | Williams K, Percival F, Merino J, Mooney HA ( 1987). Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant, Cell & Environment, 10, 725-734. |
[37] | Wright IJ, Reich PB, Westoby M ( 2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434. |
[38] | Wright IJ, Reich PB, Westoby M ( 2003). Least-cost input mixtures of water and nitrogen for photosynthesis. The American Naturalist, 161, 98-111. |
[39] | Wright IJ, Westoby M ( 2002). Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytologist, 155, 403-416. |
[40] | Wu B, Ci LJ ( 2002). Landscape change and desertification development in the Mu Us sandy land, northern China. Journal of Arid Environments, 50, 429-444. |
[41] | Zhang J, Huang YM, Jiao HJ, Xia XD ( 2007). Ecophysiological characteristics of Artemisia ordosica community succession in Mu Us sandy grassland. Journal of Desert Research, 27, 977-983. |
[ 张军, 黄永梅, 焦会景, 夏显东 ( 2007). 毛乌素沙地油蒿群落演替的生理生态学机制. 中国沙漠, 27, 977-983.] | |
[42] | Zhang JZ, Bai XF, Hou YP, Dong ZY, Bu QM ( 2016). Comparison on the competitiveness of the invaded pokeweed with its accompanying species in the coastal protection forest of Shandong Peninsula. Scientia Silvae Sinicae, 52(3), 23-29. |
[ 张靖梓, 柏新富, 侯玉平, 董周焱, 卜庆梅 ( 2016). 山东半岛沿海防护林入侵植物美洲商陆及其伴生种生长竞争力的比较. 林业科学, 52(3), 23-29.] | |
[43] | Zhang L, Luo TX, Liu XS, Wang Y ( 2012). Altitudinal variation in leaf construction cost and energy content of Bergenia purpurascens. Acta Oecologica, 43, 72-79. |
[44] | Zhu SD, Li RH, Song J, He PC, Liu H, Berninger F, Ye Q ( 2016). Different leaf cost-benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests. Annals of Botany, 117, 497-506. |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[3] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[4] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[5] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[6] | 宋文琦, 朱良军, 张旭, 王晓春, 张远东. 青藏高原东北部不同降水梯度下高山林线祁连圆柏径向生长与气候关系的比较[J]. 植物生态学报, 2018, 42(1): 66-77. |
[7] | 周雅聃, 陈世苹, 宋维民, 卢琦, 林光辉. 不同降水条件下两种荒漠植物的水分利用策略[J]. 植物生态学报, 2011, 35(8): 789-800. |
[8] | 贺学礼, 侯晓飞. 荒漠植物油蒿根围AM真菌的时空分布[J]. 植物生态学报, 2008, 32(6): 1373-1377. |
[9] | 贺学礼, 张焕仕, 赵丽莉. 不同土壤中水分胁迫和AM真菌对油蒿抗旱性的影响[J]. 植物生态学报, 2008, 32(5): 994-1001. |
[10] | 王海涛, 何兴东, 高玉葆, 卢建国, 薛苹苹, 马迪. 油蒿演替群落密度对土壤湿度和有机质空间异质性的响应[J]. 植物生态学报, 2007, 31(6): 1145-1153. |
[11] | 杨洪晓, 张金屯, 吴波, 李晓松, 张友炎. 毛乌素沙地油蒿种群点格局分析[J]. 植物生态学报, 2006, 30(4): 563-570. |
[12] | 刘凤红, 叶学华, 于飞海, 董鸣. 毛乌素沙地游击型克隆半灌木羊柴对局部沙埋的反应[J]. 植物生态学报, 2006, 30(2): 278-285. |
[13] | 陈玉福, 董鸣. 毛乌素沙地群落动态中克隆和非克隆植物作用的比较[J]. 植物生态学报, 2002, 26(3): 377-380. |
[14] | 何维明. 为什么自然条件下沙地柏种群以无性更新为主[J]. 植物生态学报, 2002, 26(2): 235-238. |
[15] | 肖春旺, 周广胜, 马风云. 施水量变化对毛乌素沙地优势植物形态与生长的影响[J]. 植物生态学报, 2002, 26(1): 69-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19