植物生态学报 ›› 2019, Vol. 43 ›› Issue (11): 969-978.DOI: 10.17521/cjpe.2019.0189
所属专题: 根系生态学
王雪1,陈光水1,*(),闫晓俊1,2,陈廷廷1,姜琦1,陈宇辉1,范爱连1,贾林巧1,熊德成1,黄锦学1
收稿日期:
2019-07-19
接受日期:
2019-10-22
出版日期:
2019-11-20
发布日期:
2020-03-26
通讯作者:
陈光水
基金资助:
WANG Xue1,CHEN Guang-Shui1,*(),YAN Xiao-Jun1,2,CHEN Ting-Ting1,JIANG Qi1,CHEN Yu-Hui1,FAN Ai-Lian1,JIA Lin-Qiao1,XIONG De-Cheng1,HUANG Jin-Xue1
Received:
2019-07-19
Accepted:
2019-10-22
Online:
2019-11-20
Published:
2020-03-26
Contact:
CHEN Guang-Shui
Supported by:
摘要:
细根直径变异是根系形态变化的常见形式, 对细根变异研究具有重要意义。为了揭示亚热带天然常绿阔叶林一级根直径变异特征, 该研究选取福建省建瓯市万木林自然保护区天然常绿阔叶林的89种木本植物进行研究。每个树种选取胸径或地径相近的3株, 用完整土块法进行根系取样, 用根序法对根系进行分级。采用单因素方差分析分别检验叶片习性(常绿、落叶树种)、生长型(乔木、小乔木或灌木、灌木)和主要科之间一级根直径的差异; 通过计算Blomberg’s K值以检验系统发育信号; 利用线性回归方法, 分析科水平的分化时间与一级根直径的相关性。结果显示: 1)亚热带常绿阔叶林一级根直径变异系数为23%; 2)常绿树种与落叶树种一级根直径没有显著差异, 但灌木一级根直径显著小于小乔木或灌木、乔木; 3)一级根直径系统发育信号不显著, 科水平分化时间与一级根直径呈正相关关系。研究结果表明, 亚热带天然常绿阔叶林木本植物一级根直径变异受系统发育影响较小, 但受生长型影响, 表现为一定的趋同适应。
王雪, 陈光水, 闫晓俊, 陈廷廷, 姜琦, 陈宇辉, 范爱连, 贾林巧, 熊德成, 黄锦学. 亚热带常绿阔叶林89种木本植物一级根直径的变异. 植物生态学报, 2019, 43(11): 969-978. DOI: 10.17521/cjpe.2019.0189
WANG Xue, CHEN Guang-Shui, YAN Xiao-Jun, CHEN Ting-Ting, JIANG Qi, CHEN Yu-Hui, FAN Ai-Lian, JIA Lin-Qiao, XIONG De-Cheng, HUANG Jin-Xue. Variations in the first-order root diameter in 89 woody species in a subtropical evergreen broadleaved forest. Chinese Journal of Plant Ecology, 2019, 43(11): 969-978. DOI: 10.17521/cjpe.2019.0189
图1 亚热带常绿阔叶林89种木本植物的系统发育树。颜色相同表示同一个科。
Fig. 1 Phylogenetic tree of 89 woody species in a subtropical evergreen broadleaved forest. Species of same family are indicated by same color.
图2 亚热带常绿阔叶林89种木本物种一级根直径分布(按升序排列)。1, 娥眉鼠刺; 2, 杜茎山; 3, 羊舌树; 4, 中华杜英; 5, 冬青; 6, 薄叶山矾; 7, 栓叶安息香; 8, 虎皮楠; 9, 短尾越桔; 10, 厚皮香; 11, 马尾松; 12, 黄毛润楠; 13, 刺毛杜鹃; 14, 青冈; 15, 杜英; 16, 茜树; 17, 铁冬青; 18, 杨桐; 19, 酸枣; 20, 桃叶石楠; 21, 猴欢喜; 22, 苦槠; 23, 枫香树; 24, 南烛; 25, 石梓; 26, 木荷; 27, 青灰叶下珠; 28, 罗浮冬青; 29, 高山榕; 30, 鹿角锥; 31, 赤杨叶; 32, 黄绒润楠; 33, 华幌伞枫; 34, 油桐; 35, 油柿; 36, 光叶山矾; 37, 毛冬青; 38, 三花冬青; 39, 罗浮锥; 40, 盐肤木; 41, 山矾; 42, 秀丽锥; 43, 细齿叶柃; 44, 赤楠; 45, 毡毛泡花树; 46, 狗骨柴; 47, 米槠; 48, 枳椇; 49, 新木姜子; 50, 尖叶假蚊母树; 51, 栲; 52, 庆元冬青; 53, 山茱萸; 54, 山杜英; 55, 五月茶; 56, 贵州石楠; 57, 闽楠; 58, 无患子; 59, 细枝柃; 60, 四照花; 61, 琼花; 62, 笔罗子; 63, 檵木; 64, 榕叶冬青; 65, 山鸡椒; 66, 福建山矾; 67, 矮小天仙果; 68, 倒披针叶山矾; 69, 香叶树; 70, 柏木; 71, 树参; 72, 桂北木姜子; 73, 野含笑; 74, 披针叶荚蒾; 75, 多穗柯; 76, 罗浮柿; 77, 细柄蕈树; 78, 野柿; 79, 厚壳桂; 80, 樟; 81, 日本杜英; 82, 沉水樟; 83,天竺桂; 84, 刨花润楠; 85, 观光木; 86, 华南桂; 87, 格药柃; 88, 八角枫; 89, 福建含笑。
Fig. 2 First-order root diameter of 89 woody species ranked in ascending order in a subtropical evergreen broadleaved forest. 1, Itea omeiensis; 2, Maesa japonica; 3, Symplocos glauca; 4, Elaeocarpus chinensis; 5, Ilex chinensis; 6, Symplocos anomala; 7, Styrax suberifolius; 8, Daphniphyllum oldhamii; 9, Vaccinium carlesii; 10, Ternstroemia gymnanthera; 11, Pinus massoniana; 12, Machilus chrysotricha; 13, Rhododendron championiae; 14, Cyclobalanopsis glauca; 15, Elaeocarpus decipiens; 16, Aidia cochinchinensis; 17, Ilex rotunda; 18, Adinandra millettii; 19, Ziziphus jujuba; 20, Photinia prunifolia; 21, Sloanea sinensis; 22, Castanopsis sclerophylla; 23, Liquidambar formosana; 24, Vaccinium bracteatum; 25, Gmelina chinensis; 26, Schima superba; 27, Phyllanthus glaucus; 28, Ilex tutcheri; 29, Ficus altissima; 30, Castanopsis lamontii; 31, Alniphyllum fortunei; 32, Machilus grijsii; 33, Heteropanax chinensis; 34, Vernicia fordii; 35, Diospyros oleifera; 36, Symplocos lancifolia; 37, Ilex pubescens; 38, Ilex triflora; 39, Castanopsis faberi; 40, Rhus chinensis; 41, Symplocos sumuntia; 42, Castanopsis jucunda; 43, Eurya nitida; 44, Syzygium buxifolium; 45, Meliosma rigida var. pannosa; 46, Diplospora dubia; 47, Castanopsis carlesii; 48, Hovenia acerba; 49, Neolitsea aurata; 50, Distyliopsis dunnii; 51, Castanopsis fargesii; 52, Ilex qingyuanensis; 53, Cornus officinalis; 54, Elaeocarpus sylvestris; 55, Antidesma bunius; 56, Photinia bodinieri; 57, Phoebe bournei; 58, Sapindus saponaria; 59, Eurya loquaiana; 60, Cornus kousa subsp. chinensis; 61, Viburnum macrocephalum f. keteleeri; 62, Meliosma rigida; 63, Loropetalum chinense; 64, Ilex ficoidea; 65, Litsea cubeba; 66, Symplocos fukienensis; 67, Ficus erecta; 68, Symplocos oblanceolata; 69, Lindera communis; 70, Cupressus funebris; 71, Dendropanax dentiger; 72, Litsea subcoriacea; 73, Michelia skinneriana; 74, Viburnum lancifolium; 75, Lithocarpus polystachyus; 76, Diospyros morrisiana; 77, Altingia gracilipes; 78, Diospyros kaki var. silvestris; 79, Cryptocarya chinensis; 80, Cinnamomum camphora; 81, Elaeocarpus japonicus; 82, Cinnamomum micranthum; 83, Cinnamomum japonicum; 84, Machilus pauhoi; 85, Michelia odora; 86, Cinnamomum austrosinense; 87, Eurya muricata; 88, Alangium chinense; 89, Michelia fujianensis.
分类指标 Classification indicator | 样本数 Number | 最小值 Minimum (mm) | 最大值 Maximum (mm) | 平均直径 Average diameter (± SE, mm) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 Coefficient of variation (%) | |
---|---|---|---|---|---|---|---|---|
木本物种 Woody species | 89 | 0.193 | 0.635 | 0.368 ± 0.01 | 0.37 | 0.22 | 23 | |
叶片习性 Leaf form | 常绿树种 Evergreen trees | 72 | 0.193 | 0.635 | 0.364 ± 0.01a | 0.39 | 0.05 | 25 |
落叶树种 Deciduous trees | 17 | 0.293 | 0.559 | 0.385 ± 0.02a | 1.09 | 2.16 | 17 | |
生长型 Growth form | 乔木 Tree | 68 | 0.224 | 0.635 | 0.376 ± 0.01a | 0.34 | 0.08 | 23 |
小乔木或灌木 Semi-tree or shrub | 11 | 0.289 | 0.553 | 0.377 ± 0.02a | 1.93 | 5.49 | 18 | |
灌木 Shrub | 10 | 0.193 | 0.438 | 0.303 ± 0.02b | 0.36 | -0.50 | 26 | |
主要科 Main family | 樟科 Lauraceae | 13 | 0.265 | 0.508 | 0.432 ± 0.02a | -0.99 | 0.57 | 17 |
壳斗科 Fagaceae | 8 | 0.267 | 0.444 | 0.352 ± 0.02ab | 0.11 | 0.68 | 15 | |
冬青科 Aquifoliaceae | 7 | 0.236 | 0.404 | 0.334 ± 0.02b | -0.68 | -0.20 | 18 | |
山矾科 Symplocaceae | 6 | 0.224 | 0.419 | 0.336 ± 0.03b | -0.54 | -1.70 | 25 | |
五列木科 Pentaphylacaceae | 5 | 0.264 | 0.553 | 0.373 ± 0.05ab | 1.15 | 1.32 | 31 | |
杜英科 Elaeocarpaceae | 5 | 0.225 | 0.489 | 0.336 ± 0.05b | 0.77 | -0.28 | 31 |
表1 89种木本物种叶片习性、生长型和主要科水平的一级根直径基本统计量
Table 1 Basic statistics of the first-order root diameter of 89 woody species comparing by leaf habits, growth forms and families
分类指标 Classification indicator | 样本数 Number | 最小值 Minimum (mm) | 最大值 Maximum (mm) | 平均直径 Average diameter (± SE, mm) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 Coefficient of variation (%) | |
---|---|---|---|---|---|---|---|---|
木本物种 Woody species | 89 | 0.193 | 0.635 | 0.368 ± 0.01 | 0.37 | 0.22 | 23 | |
叶片习性 Leaf form | 常绿树种 Evergreen trees | 72 | 0.193 | 0.635 | 0.364 ± 0.01a | 0.39 | 0.05 | 25 |
落叶树种 Deciduous trees | 17 | 0.293 | 0.559 | 0.385 ± 0.02a | 1.09 | 2.16 | 17 | |
生长型 Growth form | 乔木 Tree | 68 | 0.224 | 0.635 | 0.376 ± 0.01a | 0.34 | 0.08 | 23 |
小乔木或灌木 Semi-tree or shrub | 11 | 0.289 | 0.553 | 0.377 ± 0.02a | 1.93 | 5.49 | 18 | |
灌木 Shrub | 10 | 0.193 | 0.438 | 0.303 ± 0.02b | 0.36 | -0.50 | 26 | |
主要科 Main family | 樟科 Lauraceae | 13 | 0.265 | 0.508 | 0.432 ± 0.02a | -0.99 | 0.57 | 17 |
壳斗科 Fagaceae | 8 | 0.267 | 0.444 | 0.352 ± 0.02ab | 0.11 | 0.68 | 15 | |
冬青科 Aquifoliaceae | 7 | 0.236 | 0.404 | 0.334 ± 0.02b | -0.68 | -0.20 | 18 | |
山矾科 Symplocaceae | 6 | 0.224 | 0.419 | 0.336 ± 0.03b | -0.54 | -1.70 | 25 | |
五列木科 Pentaphylacaceae | 5 | 0.264 | 0.553 | 0.373 ± 0.05ab | 1.15 | 1.32 | 31 | |
杜英科 Elaeocarpaceae | 5 | 0.225 | 0.489 | 0.336 ± 0.05b | 0.77 | -0.28 | 31 |
气候带 Climatic zone | 林分(树种类型) Stand (Tree species group) | 群落个数 Community number | 样本数 Number | 平均直径 Average diameter (mm) | 直径范围 Diameter range (mm) | 变异系数 Coefficient of variation (%) | 参考文献 Reference |
---|---|---|---|---|---|---|---|
亚热带 Subtropical | 常绿阔叶林 Evergreen broadleaved forest | 1 | 89 | 0.368 | 0.193-0.635 | 23.0 | 本研究 This study |
热带 Tropical | 阔叶树种 Broadleaved trees | 2 | 27 | 0.420 | 0.140-1.110 | - | |
温带 Temperate | 阔叶树种 Broadleaved trees | 1 | 20 | 0.240 | - | - | |
亚热带 Subtropical | 针叶、落叶和常绿阔叶树种 Coniferous, deciduous and evergreen broadleaved species | 1 | 6 | 0.330 | 0.230-0.480 | 28.7 | |
全球 Global | 木本和草本物种 Woody and herbaceous species | - | 369 | 0.290 | 0.080-1.010 | 57.0 | |
热带、亚热带 Tropical and subtropical | 木本物种 Woody species | 6 | 96 | 0.343 | 0.073-1.010 | 58.4 | |
热带、亚热带 Tropical and subtropical | 被子植物 Angiosperms | 3 | 35 | 0.380 | - | 56.4 | |
温带 Temperate | 被子植物 Angiosperms | 3 | 24 | 0.250 | - | 41.0 | |
针叶物种 Coniferous species | 6 | 0.290 | - | 8.4 | |||
亚热带 Subtropical | 针叶、落叶和常绿阔叶树种 Coniferous, deciduous and evergreen broadleaved species | 2 | 21 | - | 0.040-0.740 | - | |
温带、亚热带、热带 Temperate, subtropical and tropical | - | 5 | 45 | 0.320 | 0.070-0.890 | 22.5 | |
温带 Temperate | 落叶阔叶林和落叶针叶林 Deciduous broadleaved and coniferous forests | 3 | 15 | 0.240 | 0.110-0.420 | - | |
亚热带 Subtropical | 常绿阔叶林 Evergreen broadleaved forest | 1 | 15 | 0.340 | 0.130-0.570 | - | |
热带 Tropical | 季雨林 Monsoon forest | 1 | 15 | 0.380 | 0.070-0.890 | - |
表2 不同研究中物种一级根直径的比较
Table 2 A comparison of first-order root diameter variations in different studies
气候带 Climatic zone | 林分(树种类型) Stand (Tree species group) | 群落个数 Community number | 样本数 Number | 平均直径 Average diameter (mm) | 直径范围 Diameter range (mm) | 变异系数 Coefficient of variation (%) | 参考文献 Reference |
---|---|---|---|---|---|---|---|
亚热带 Subtropical | 常绿阔叶林 Evergreen broadleaved forest | 1 | 89 | 0.368 | 0.193-0.635 | 23.0 | 本研究 This study |
热带 Tropical | 阔叶树种 Broadleaved trees | 2 | 27 | 0.420 | 0.140-1.110 | - | |
温带 Temperate | 阔叶树种 Broadleaved trees | 1 | 20 | 0.240 | - | - | |
亚热带 Subtropical | 针叶、落叶和常绿阔叶树种 Coniferous, deciduous and evergreen broadleaved species | 1 | 6 | 0.330 | 0.230-0.480 | 28.7 | |
全球 Global | 木本和草本物种 Woody and herbaceous species | - | 369 | 0.290 | 0.080-1.010 | 57.0 | |
热带、亚热带 Tropical and subtropical | 木本物种 Woody species | 6 | 96 | 0.343 | 0.073-1.010 | 58.4 | |
热带、亚热带 Tropical and subtropical | 被子植物 Angiosperms | 3 | 35 | 0.380 | - | 56.4 | |
温带 Temperate | 被子植物 Angiosperms | 3 | 24 | 0.250 | - | 41.0 | |
针叶物种 Coniferous species | 6 | 0.290 | - | 8.4 | |||
亚热带 Subtropical | 针叶、落叶和常绿阔叶树种 Coniferous, deciduous and evergreen broadleaved species | 2 | 21 | - | 0.040-0.740 | - | |
温带、亚热带、热带 Temperate, subtropical and tropical | - | 5 | 45 | 0.320 | 0.070-0.890 | 22.5 | |
温带 Temperate | 落叶阔叶林和落叶针叶林 Deciduous broadleaved and coniferous forests | 3 | 15 | 0.240 | 0.110-0.420 | - | |
亚热带 Subtropical | 常绿阔叶林 Evergreen broadleaved forest | 1 | 15 | 0.340 | 0.130-0.570 | - | |
热带 Tropical | 季雨林 Monsoon forest | 1 | 15 | 0.380 | 0.070-0.890 | - |
[1] | Blomberg SP, Garland T, Ives AR ( 2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745. |
[2] | Bremer B, Bremer K, Chase MW, Fay MF, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Moore MJ, Olmstead RG, Rudall PJ, Sytsma KJ, Tank DC, Wurdack K, Xiang QY, Zmarzty S ( 2009). An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121. |
[3] | Chang WJ, Guo DL ( 2008). Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forests in China. Journal of Plant Ecology (Chinese version), 32, 1248-1257. |
[ 常文静, 郭大立 ( 2008). 中国温带、亚热带和热带森林45个常见树种细根直径变异. 植物生态学报, 32, 1248-1257.] | |
[4] | Chen WL, Zeng H, Eissenstat DM, Guo DL ( 2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology and Biogeography, 22, 846-856. |
[5] | Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL ( 2000). Building roots in a changing environment: Implications for root longevity. New Phytologist, 147, 33-42. |
[6] | Fitter AH ( 1985). Functional significance of root morphology and root system architecture. Ecological Interactions in Soil, 4, 87-106. |
[7] | Geng ZZ ( 2018). The Variability of the First-order Root Functional Traits of Main Woody Plants in Three Plots in Northeast China. Master degree dissertation, Shenyang Agricultural University, Shenyang. |
[ 耿珍珍 ( 2018). 东北三地主要木本植物1级根功能性状变异特征. 硕士学位论文, 沈阳农业大学, 沈阳.] | |
[8] | Gill RA, Jackson RB ( 2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31. |
[9] | Gu JC, Xu Y, Dong XY, Wang HF, Wang ZQ ( 2014). Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiology, 34, 415-425. |
[10] | Guo DL, Mitchell RJ, Hendricks JJ ( 2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457. |
[11] | Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ ( 2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683. |
[12] | Hu RZ, Du ZQ, Liu S, Shi JW ( 2016). Fine root morphology characteristics of Larix principis-rupprechtii along an elevation gradient. Chinese Journal of Ecology, 35, 1248-1253. |
[ 胡瑞芝, 杜自强, 刘爽, 史建伟 ( 2016). 不同海拔华北落叶松细根形态特征. 生态学杂志, 35, 1248-1253.] | |
[13] | Huang D ( 2010). Comparation of Fine Root Morphology of Twenty-one Tree Species in Subtropical Forest in Hubei Province. Master degree dissertation, Huazhong Agricultural University, Wuhan. |
[ 黄冬 ( 2010). 湖北省21个典型树种细根形态结构比较研究. 硕士学位论文, 华中农业大学, 武汉.] | |
[14] | Jackson RB, Mooney HA, Schulze ED ( 1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366. |
[15] | Jia QQ, Liu QJ, Liang Y ( 2016). Fine root morphology of three common conifer tree species. Journal of Central South University of Forestry & Technology, 36(2), 33-39. |
[ 贾全全, 刘琪璟, 梁宇 ( 2016). 三种常见针叶树种的细根形态比较. 中南林业科技大学学报, 36(2), 33-39.] | |
[16] | Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL ( 2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872. |
[17] | Kong DL, Wu HF, Wang M, Simmons M, Lü XT, Yu Q, Han XG ( 2010). Structural and chemical differences between shoot- and root-derived roots of three perennial grasses in a typical steppe in Inner Mongolia China. Plant and Soil, 336, 209-217. |
[18] | Liu BT, Li HB, Zhu B, Koide RT, Eissenstat DM, Guo DL ( 2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136. |
[19] | Liu C, Xiang WH, Zou LM, Lei PF, Zeng YL, Ouyang S, Deng XW, Fang X, Liu ZL, Peng CH ( 2019). Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests. Plant and Soil, 436, 347-364. |
[20] | Long YQ, Kong DL, Chen ZX, Zeng H ( 2013). Variation of the linkage of root function with root branch order. PLOS ONE, e57153. DOI: 10.1371/journal.pone.0057153. |
[21] | Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO ( 2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97. |
[22] | Norby RJ, Jackson RB ( 2000). Root dynamics and global change: Seeking an ecosystem perspective. New Phytologist, 147, 3-12. |
[23] | Pregitzer KS ( 2002). Fine roots of trees—A new perspective. New Phytologist, 154, 267-270. |
[24] | Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL ( 2002). Fine root architecture of nine north American trees. Ecological Monographs, 72, 293-309. |
[25] | Shi W ( 2008). Comparison of Root Morphology and Leaf Morphology of Twenty Hardwood Species in Maoershan Natural Secondary Forest. Master degree dissertation, Northeast Forestry University, Harbin. |
[ 师伟 ( 2008). 帽儿山天然次生林20个阔叶树种细根形态与叶形态的比较研究. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[26] | St John TV ( 1980). Root size, root hairs and mycorrhizal infection: A re-examination of Baylis’s hypothesis with tropical trees. New Phytologist, 84, 483-487. |
[27] | Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB ( 2017). A worldview of root traits: The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist, 215, 1562-1573. |
[28] | Valverde-Barrantes OJ, Smemo KA, Blackwood CB ( 2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796-807. |
[29] | Wikström N, Savolainen V, Chase MW ( 2001). Evolution of the angiosperms: Calibrating the family tree. Proceedings of the Royal Society B: Biological Sciences, 268, 2211-2220. |
[30] | Xu Y ( 2011). Fine Root Morphology, Anatomy and Tissue Nitrogen and Carbon of the First Five Order Roots in Twenty-seven Chinese Tropical Hardwood Tree Species. Master degree dissertation, Northeast Forestry University, Harbin. |
[ 许旸 ( 2011). 中国热带27个阔叶树种不同根序细根的形态特征、解剖结构和碳氮研究. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[31] | Yu LZ, Ding GQ, Shi JW, Yu SQ, Zhu JJ, Zhao LF ( 2007). Effects of fertilization on fine root diameter, root length, and specific root length in Larix kaempferi plantation. Chinese Journal of Applied Ecology, 18, 957-962. |
[ 于立忠, 丁国泉, 史建伟, 于水强, 朱教君, 赵连富 ( 2007). 施肥对日本落叶松人工林细根直径、根长和比根长的影响. 应用生态学报, 18, 957-962.] | |
[32] | Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM ( 2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92. |
[33] | Zhou M, Bai WM, Zhang YS, Zhang WH ( 2018). Multi- dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes. Journal of Ecology, 106, 2320-2331. |
[34] | Zhu JM, Jiang ZL, Zheng QR, Jiang W ( 1997). A study on the species diversity in the forest community of Wanmulin Nature Reserve, Fujian Province. Journal of Nanjing Forestry University (Natural Sciences), 21, 11-16. |
[ 朱锦懋, 姜志林, 郑群瑞, 蒋伟 ( 1997). 福建万木林自然保护区森林群落物种多样性研究. 南京林业大学学报(自然科学版), 21, 11-16.] | |
[35] | Zhu WR, Wang QT, Liu ML, Wang HT, Wang YP, Zhang GC, Li CR ( 2015). Interactive effects of phenolic acid and nitrogen on morphological traits of poplar ( Populus × euramericana ‘Neva’) fine roots. Chinese Journal of Plant Ecology, 39, 1198-1208. |
[ 朱婉芮, 汪其同, 刘梦玲, 王华田, 王延平, 张光灿, 李传荣 ( 2015). 酚酸和氮素交互作用下欧美杨107细根形态特征. 植物生态学报, 39, 1198-1208.] | |
[36] | Zobel RW, Kinraide TB, Baligar VC ( 2007). Fine root diameters can change in response to changes in nutrient concentrations. Plant and Soil, 297, 243-254. |
[37] | Zou B, Cai F, Zheng JM, Dai W ( 2015). Biomass vertical distribution of fine root and its traits of four tree species in subtropical natural forest. Journal of Northeast Forestry University, 43(3), 18-22. |
[ 邹斌, 蔡飞, 郑景明, 戴伟 ( 2015). 亚热带天然林4种树木细根生物量垂直分布和主要功能性状的差异. 东北林业大学学报, 43(3), 18-22.] | |
[38] | Zou LM ( 2015). Root Identification and Variation in Architecture of Fine Roots of Subtropical Tree Species in Southern China. Master degree dissertation, Central South University of Forestry and Technology, Changsha. |
[ 邹丽梅 ( 2015). 亚热带6个树种细根形态比较与根序分级构型研究. 硕士学位论文, 中南林业科技大学, 长沙.] |
[1] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[2] | 项伟, 黄冬柳, 朱师丹. 热带亚热带26种蕨类植物的吸收根解剖特征[J]. 植物生态学报, 2022, 46(5): 593-601. |
[3] | 王春成, 张云玲, 马松梅, 黄刚, 张丹, 闫涵. 中国扁桃亚属四种野生扁桃的系统发育与物种分化[J]. 植物生态学报, 2021, 45(9): 987-995. |
[4] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[5] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[6] | 柴永福, 许金石, 刘鸿雁, 刘全儒, 郑成洋, 康慕谊, 梁存柱, 王仁卿, 高贤明, 张峰, 福臣, 刘晓, 岳明. 华北地区主要灌丛群落物种组成及系统发育结构特征[J]. 植物生态学报, 2019, 43(9): 793-805. |
[7] | 闫雅楠, 叶小齐, 吴明, 闫明, 张昕丽. 入侵植物加拿大一枝黄花根际解钾菌多样性及解钾活性[J]. 植物生态学报, 2019, 43(6): 543-556. |
[8] | 赵乐文, 陈梓熠, 邹滢, 付子钊, 吴桂林, 刘小容, 罗琦, 林忆雪, 李雄炬, 刘智通, 刘慧. 九种维管植物水力性状的演化趋势[J]. 植物生态学报, 2018, 42(2): 220-228. |
[9] | 车应弟, 刘旻霞, 李俐蓉, 焦骄, 肖卫. 基于功能性状及系统发育的亚高寒草甸群落构建[J]. 植物生态学报, 2017, 41(11): 1157-1167. |
[10] | 王乔姝怡, 郑成洋, 张歆阳, 曾发旭, 邢娟. 氮添加对武夷山亚热带常绿阔叶林植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2016, 40(11): 1124-1135. |
[11] | 路宁娜,赵志刚. 花对称性与植物花大小的变异性: 在高寒草甸植物群落检验Berg的假说[J]. 植物生态学报, 2014, 38(5): 460-467. |
[12] | 王璐,雷耘,张明理. 基于序列trnL-trnF和ITS的榉属系统发育与地理分布格局的初步分析[J]. 植物生态学报, 2013, 37(5): 407-414. |
[13] | 夏洋洁, 唐坚强, 张光富, 黄超, 蒙凤群, 孙书存. 浙江天童国家森林公园5种常绿阔叶植物的一次和二次抽枝进程[J]. 植物生态学报, 2013, 37(3): 220-229. |
[14] | 陈延松, 周守标, 欧祖兰, 徐忠东, 洪欣. 安徽万佛山自然保护区常见植物种子大小变异[J]. 植物生态学报, 2012, 36(8): 739-746. |
[15] | 李立, 陈建华, 任海保, 米湘成, 于明坚, 杨波. 古田山常绿阔叶林优势树种甜槠和木荷的空间格局分析[J]. 植物生态学报, 2010, 34(3): 241-252. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2716
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1535
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La