植物生态学报 ›› 2023, Vol. 47 ›› Issue (5): 629-643.DOI: 10.17521/cjpe.2022.0063
仲琦1, 李曾燕2, 马炜1, 况雨潇1, 邱岭军1, 黎蕴洁1, 涂利华1,*()
收稿日期:
2022-02-16
接受日期:
2022-07-15
出版日期:
2023-05-20
发布日期:
2022-07-18
通讯作者:
* (tulhsicau@163.com )
基金资助:
ZHONG Qi1, LI Zeng-Yan2, MA Wei1, KUANG Yu-Xiao1, QIU Ling-Jun1, LI Yun-Jie1, TU Li-Hua1,*()
Received:
2022-02-16
Accepted:
2022-07-15
Online:
2023-05-20
Published:
2022-07-18
Supported by:
摘要:
为探究氮(N)沉降和凋落物输入量改变对凋落叶分解的影响, 该研究于2014年6月至2019年6月, 以华西雨屏区处于N饱和状态的常绿阔叶林为研究对象, 设置N添加和凋落物处理双因素实验, 其中N添加处理分别为对照(CK, 0 kg·hm-2·a-1)、低N (LN, 50 kg·hm-2·a-1)和高N (HN, 150 kg·hm-2·a-1), 凋落物处理分别为凋落物输入量不变(L0, 不改变凋落物输入), 减少(L−, 减少50%)以及增加(L+, 增加50%)。结果表明: 6年N添加处理对该森林生态系统地上凋落物产量影响不显著; N添加处理显著抑制凋落叶分解, 且N添加量越高, 凋落叶分解抑制作用越强; N添加显著降低分解后期凋落叶中锰(Mn)的残留率, 促进Mn的释放; 凋落物输入量的增减处理未显著改变凋落叶分解速率, 而凋落物增减处理升高了凋落叶中Mn的残留率, 减缓Mn的释放; N添加和凋落物处理交互作用不显著。该研究表明亚热带N饱和常绿阔叶林凋落叶分解受N沉降的直接影响显著, 凋落物处理主要影响凋落物分解过程中Mn的含量, 并且凋落物Mn含量在凋落物分解响应N输入的过程中可能起着关键作用。
仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响. 植物生态学报, 2023, 47(5): 629-643. DOI: 10.17521/cjpe.2022.0063
ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China. Chinese Journal of Plant Ecology, 2023, 47(5): 629-643. DOI: 10.17521/cjpe.2022.0063
土层深度 Soil depth (cm) | pH (KCl) | 全碳含量 TC content (g·kg-1) | 全氮含量 TN content (g·kg-1) | 硝酸氮含量 NO3--N content (mg·kg?1) | 铵态氮含量 NH4+-N content (mg·kg?1) | 碳氮比 C:N |
---|---|---|---|---|---|---|
0-10 | 3.52 ± 0.03 | 33.9 ± 1.4 | 2.1 ± 0.8 | 50.8 ± 4.5 | 19.0 ± 4.4 | 16.1 ± 0.41 |
10-35 | 3.90 ± 0.03 | 16.0 ± 0.9 | 1.1 ± 0.1 | 24.8 ± 3.8 | 15.0 ± 1.3 | 14.5 ± 0.37 |
表1 华西雨屏区常绿阔叶林土壤性质(0-35 cm) (平均值±标准误)
Table 1 Soil properties (0-35 cm) of the studied evergreen broadleaf forest in the western edge of the Sichuan Basin (mean ± SE)
土层深度 Soil depth (cm) | pH (KCl) | 全碳含量 TC content (g·kg-1) | 全氮含量 TN content (g·kg-1) | 硝酸氮含量 NO3--N content (mg·kg?1) | 铵态氮含量 NH4+-N content (mg·kg?1) | 碳氮比 C:N |
---|---|---|---|---|---|---|
0-10 | 3.52 ± 0.03 | 33.9 ± 1.4 | 2.1 ± 0.8 | 50.8 ± 4.5 | 19.0 ± 4.4 | 16.1 ± 0.41 |
10-35 | 3.90 ± 0.03 | 16.0 ± 0.9 | 1.1 ± 0.1 | 24.8 ± 3.8 | 15.0 ± 1.3 | 14.5 ± 0.37 |
图1 华西雨屏区常绿阔叶林凋落物量月动态(平均值±标准误)。N effect, 氮效应; Time effect, 时间效应; Time & N effect, 时间与氮处理交互效应。CK, 对照; HN, 高氮(150 kg·hm-2·a-1); LN, 低氮(50 kg·hm-2·a-1)。
Fig. 1 Monthly dynamics of litterfall in the evergreen broadleaf forest located in the western edge of the Sichuan Basin (mean ± SE). N effect, nitrogen (N) effect; Time & N effect, time and N treatment interaction effects. CK, control; HN, high nitrogen (150 kg·hm-2·a-1); LN, low nitrogen (50 kg·hm-2·a-1).
图2 氮添加和凋落物增减对华西雨屏区常绿阔叶林凋落物质量残留率(A-C)和碳残留率(D-F)的影响(平均值±标准误)。CK, 对照; HN, 高氮(150 kg·hm-2·a-1); LN, 低氮(50 kg·hm-2·a-1)。L+, 增加凋落物输入量; L0, 不改变凋落物输入量; L-, 减少凋落物输入量。*, p < 0.05; **, p < 0.01。
Fig. 2 Effects of nitrogen addition and litter manipulations on the litter mass loss (A-C) and carbon remaining (D-F) in the evergreen broadleaf forest located in the western edge of the Sichuan Basin (mean ± SE). CK, control; HN, high nitrogen (150 kg·hm-2·a-1); LN, low nitrogen (50 kg·hm-2·a-1). L+, litter addition; L0, intact litter input; L-, litter reduction. *, p < 0.05; **, p < 0.01.
处理 Treatment | 回归方程 Regression equation | R2 | p | 分解常数 Decay constant k (a-1) | t50% (a) | t95% (a) |
---|---|---|---|---|---|---|
CKL0 | y = 85.781e-0.482t | 0.912 | <0.001 | 0.49 ± 0.03a | 1.44 | 6.22 |
LNL0 | y = 79.736e-0.334t | 0.856 | <0.001 | 0.35 ± 0.03b | 2.08 | 8.97 |
HNL0 | y = 82.393e-0.375t | 0.903 | <0.001 | 0.38 ± 0.02b | 1.85 | 7.99 |
CKL- | y = 86.317e-0.517t | 0.892 | <0.001 | 0.53 ± 0.03a | 1.34 | 5.79 |
LNL- | y = 82.646e-0.480t | 0.909 | <0.001 | 0.49 ± 0.01a | 1.44 | 6.24 |
HNL- | y = 79.505e-0.312t | 0.817 | <0.001 | 0.32 ± 0.02b | 2.22 | 9.60 |
CKL+ | y = 93.328e-0.568t | 0.984 | <0.001 | 0.58 ± 0.04a | 1.22 | 5.27 |
LNL+ | y = 81.419e-0.404t | 0.871 | <0.001 | 0.41 ± 0.02b | 1.72 | 7.42 |
HNL+ | y = 78.799e-0.289t | 0.809 | <0.001 | 0.29 ± 0.04c | 2.40 | 10.37 |
表2 华西雨屏区常绿阔叶林凋落叶分解过程中质量残留率(y, %)与时间(t)的指数回归方程
Table 2 Exponential regression equation of mass remaining (y, %) as a function of leaf litter decomposition to time (t) in the evergreen broadleaf forest located in the western edge of the Sichuan Basin
处理 Treatment | 回归方程 Regression equation | R2 | p | 分解常数 Decay constant k (a-1) | t50% (a) | t95% (a) |
---|---|---|---|---|---|---|
CKL0 | y = 85.781e-0.482t | 0.912 | <0.001 | 0.49 ± 0.03a | 1.44 | 6.22 |
LNL0 | y = 79.736e-0.334t | 0.856 | <0.001 | 0.35 ± 0.03b | 2.08 | 8.97 |
HNL0 | y = 82.393e-0.375t | 0.903 | <0.001 | 0.38 ± 0.02b | 1.85 | 7.99 |
CKL- | y = 86.317e-0.517t | 0.892 | <0.001 | 0.53 ± 0.03a | 1.34 | 5.79 |
LNL- | y = 82.646e-0.480t | 0.909 | <0.001 | 0.49 ± 0.01a | 1.44 | 6.24 |
HNL- | y = 79.505e-0.312t | 0.817 | <0.001 | 0.32 ± 0.02b | 2.22 | 9.60 |
CKL+ | y = 93.328e-0.568t | 0.984 | <0.001 | 0.58 ± 0.04a | 1.22 | 5.27 |
LNL+ | y = 81.419e-0.404t | 0.871 | <0.001 | 0.41 ± 0.02b | 1.72 | 7.42 |
HNL+ | y = 78.799e-0.289t | 0.809 | <0.001 | 0.29 ± 0.04c | 2.40 | 10.37 |
图3 氮(N)添加和凋落物增减对华西雨屏区常绿阔叶林凋落物分解中N、磷(P)、钾(K)、锰(Mn)残留率的影响(平均值±标准误)。CKL0, 对照和不改变凋落物输入量; CKL-, 对照和减少凋落物输入量; CKL+, 对照和增加凋落物输入量; HNL0, 高N (150 kg·hm-2·a-1)和不改变凋落物输入量; HNL-, 高N和减少凋落物输入量; HNL+, 高N和增加凋落物输入量; LNL0, 低N (50 kg·hm-2·a-1)和不改变凋落物输入量; LNL-, 低N和减少凋落物输入量; LNL+, 低N和增加凋落物输入量。虚线左侧星号表示该次取样凋落物处理间差异显著, 虚线右侧星号表示该次取样施N处理间差异显著。*, p < 0.05; **, p < 0.01。
Fig. 3 Effects of nitrogen (N) addition and litter manipulations on N, phosphorus (P), kalium (K), manganese (Mn) remaining in leaf litter decomposition in the evergreen broadleaf forest located in the western edge of the Sichuan Basin (mean ± SE). CKL0, N control with intact litter input; CKL-, N control with litter reduction; CKL+, N control with litter addition; HNL0, high N (150 kg·hm-2·a-1) addition with intact litter input; HNL-, high N addition with litter reduction; HNL+, high N addition with litter addition; LNL0, low N (50 kg·hm-2·a-1) addition with intact litter input; LNL-, low N addition with litter reduction; LNL+, low N addition with litter addition. The left side of the dotted line with asterisk indicates that there is a significant difference between treatments of litters in this sampling, and the right side of the dotted line with asterisk indicates that there is a significant difference between treatments of nitrogen in this sampling. *, p < 0.05; **, p < 0.01.
图4 华西雨屏区常绿阔叶林凋落物质量残留率和锰(Mn)残留率的关系。CKL0, 对照和不改变凋落物输入量; CKL-, 对照和减少凋落物输入量; CKL+, 对照和增加凋落物输入量; HNL0, 高氮(150 kg·hm-2·a-1)和不改变凋落物输入量; HNL-, 高氮和减少凋落物输入量; HNL+, 高氮和增加凋落物输入量; LNL0, 低氮(50 kg·hm-2·a-1)和不改变凋落物输入量; LNL-, 低氮和减少凋落物输入量; LNL+, 低氮和增加凋落物输入量。
Fig. 4 Relationship between the litter mass remaining and manganese (Mn) remaining in the evergreen broadleaf forest located in the western edge of the Sichuan Basin. CKL0, nitrogen (N) control with intact litter input; CKL-, nitrogen control with litter reduction; CKL+, nitrogen control with litter addition; HNL0, high N (150 kg·hm-2·a-1) addition with intact litter input; HNL-, high N addition with litter reduction; HNL+, high N addition with litter addition; LNL0, low N (50 kg·hm-2·a-1) addition with intact litter input; LNL-, low N addition with litter reduction; LNL+, low N addition with litter addition.
图5 氮(N)添加和凋落物增减对华西雨屏区常绿阔叶林凋落物分解中N、磷(P)、钾(K)、锰(Mn)浓度的影响(平均值±标准误)。CKL0, 对照和不改变凋落物输入量; CKL-, 对照和减少凋落物输入量; CKL+, 对照和增加凋落物输入量; HNL0, 高N (150 kg·hm-2·a-1)和不改变凋落物输入量; HNL-, 高N和减少凋落物输入量; HNL+, 高N和增加凋落物输入量; LNL0, 低N (50 kg·hm-2·a-1)和不改变凋落物输入量; LNL-, 低N和减少凋落物输入量; LNL+, 低N和增加凋落物输入量。
Fig. 5 Effects of nitrogen (N) addition and litter manipulations on N, phosphorus (P), kalium (K) and manganese (Mn) concentration in leaf litter decomposition in the evergreen broadleaf forest located in the western edge of the Sichuan Basin (mean ± SE). CKL0, N control with intact litter input; CKL-, N control with litter reduction; CKL+, N control with litter addition; HNL0, high N (150 kg·hm-2·a-1) addition with intact litter input; HNL-, high N addition with litter reduction; HNL+, high N addition with litter addition; LNL0, low N (50 kg·hm-2·a-1) addition with intact litter input; LNL-, low N addition with litter reduction; LNL+, low N addition with litter addition.
处理 Treatment | 质量 Mass | 碳 Carbon | 氮 Nitrogen | 磷 Phosphorus | 钾 Kalium | 锰 Manganese |
---|---|---|---|---|---|---|
CKL0 | 27.31 ± 4.45abc | 25.90 ± 4.83bc | 83.11 ± 9.79ab | 49.69 ± 5.04 | 47.17 ± 3.34b | 16.57 ± 4.44ab |
LNL0 | 34.31 ± 5.07ab | 28.23 ± 4.78ab | 85.96 ± 15.76ab | 63.24 ± 12.57 | 123.39 ± 38.78a | 2.72 ± 0.81c |
HNL0 | 38.09 ± 7.63ab | 34.22 ± 5.71ab | 115.16 ± 31.22a | 63.86 ± 13.99 | 72.47 ± 16.41ab | 2.88 ± 0.57c |
CKL- | 25.43 ± 3.19bc | 24.32 ± 2.97bc | 74.68 ± 3.62ab | 45.78 ± 4.99 | 49.15 ± 6.36b | 20.81 ± 5.39a |
LNL- | 25.61 ± 2.43bc | 24.45 ± 2.04bc | 70.11 ± 8.53ab | 47.66 ± 8.01 | 46.38 ± 8.15b | 10.60 ± 4.06bc |
HNL- | 39.43 ± 1.27a | 35.73 ± 0.54ab | 101.13 ± 6.89ab | 56.32 ± 6.21 | 74.20 ± 11.11ab | 5.31 ± 0.84c |
CKL+ | 17.86 ± 1.86c | 16.97 ± 1.91c | 57.10 ± 1.57b | 32.18 ± 1.59 | 32.41 ± 1.12b | 8.20 ± 3.64bc |
LNL+ | 31.22 ± 3.44ab | 29.03 ± 3.68ab | 90.41 ± 9.55ab | 51.98 ± 5.73 | 53.96 ± 10.69b | 5.70 ± 3.78c |
HNL+ | 40.18 ± 3.78a | 37.75 ± 3.70a | 115.77 ± 17.70a | 63.13 ± 7.73 | 63.45 ± 10.55b | 2.39 ± 0.89c |
双因素方差分析 Two-way ANOVA (p) | ||||||
N | <0.001 | <0.001 | 0.005 | 0.025 | 0.062 | <0.001 |
L | 0.531 | 0.869 | 0.540 | 0.259 | 0.078 | 0.044 |
N & L | 0.407 | 0.369 | 0.686 | 0.681 | 0.091 | 0.392 |
表3 华西雨屏区常绿阔叶林凋落叶分解3年后质量、碳和养分残留率(%)对氮添加和凋落物增减处理的响应(平均值±标准误)
Table 3 Responses of mass, carbon, and nutrient remaining rate (%) to nitrogen addition and litter manipulations after litter decomposition for three years in the evergreen broadleaf forest located in the western edge of the Sichuan Basin (mean ± SE)
处理 Treatment | 质量 Mass | 碳 Carbon | 氮 Nitrogen | 磷 Phosphorus | 钾 Kalium | 锰 Manganese |
---|---|---|---|---|---|---|
CKL0 | 27.31 ± 4.45abc | 25.90 ± 4.83bc | 83.11 ± 9.79ab | 49.69 ± 5.04 | 47.17 ± 3.34b | 16.57 ± 4.44ab |
LNL0 | 34.31 ± 5.07ab | 28.23 ± 4.78ab | 85.96 ± 15.76ab | 63.24 ± 12.57 | 123.39 ± 38.78a | 2.72 ± 0.81c |
HNL0 | 38.09 ± 7.63ab | 34.22 ± 5.71ab | 115.16 ± 31.22a | 63.86 ± 13.99 | 72.47 ± 16.41ab | 2.88 ± 0.57c |
CKL- | 25.43 ± 3.19bc | 24.32 ± 2.97bc | 74.68 ± 3.62ab | 45.78 ± 4.99 | 49.15 ± 6.36b | 20.81 ± 5.39a |
LNL- | 25.61 ± 2.43bc | 24.45 ± 2.04bc | 70.11 ± 8.53ab | 47.66 ± 8.01 | 46.38 ± 8.15b | 10.60 ± 4.06bc |
HNL- | 39.43 ± 1.27a | 35.73 ± 0.54ab | 101.13 ± 6.89ab | 56.32 ± 6.21 | 74.20 ± 11.11ab | 5.31 ± 0.84c |
CKL+ | 17.86 ± 1.86c | 16.97 ± 1.91c | 57.10 ± 1.57b | 32.18 ± 1.59 | 32.41 ± 1.12b | 8.20 ± 3.64bc |
LNL+ | 31.22 ± 3.44ab | 29.03 ± 3.68ab | 90.41 ± 9.55ab | 51.98 ± 5.73 | 53.96 ± 10.69b | 5.70 ± 3.78c |
HNL+ | 40.18 ± 3.78a | 37.75 ± 3.70a | 115.77 ± 17.70a | 63.13 ± 7.73 | 63.45 ± 10.55b | 2.39 ± 0.89c |
双因素方差分析 Two-way ANOVA (p) | ||||||
N | <0.001 | <0.001 | 0.005 | 0.025 | 0.062 | <0.001 |
L | 0.531 | 0.869 | 0.540 | 0.259 | 0.078 | 0.044 |
N & L | 0.407 | 0.369 | 0.686 | 0.681 | 0.091 | 0.392 |
[1] |
Aponte C, García LV, Marañón T (2012). Tree species effect on litter decomposition and nutrient release in mediterranean oak forests changes over time. Ecosystems, 15, 1204-1218.
DOI URL |
[2] |
Arens SJT, Sullivan PF, Welker JM (2008). Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high arctic ecosystem. Journal of Geophysical Research, 113, G3S09. DOI: 10.1029/2007JG000508.
DOI |
[3] |
Averill C, Waring B (2018). Nitrogen limitation of decomposition and decay: How can it occur? Global Change Biology, 24, 1417-1427.
DOI PMID |
[4] |
Bell TH, Klironomos JN, Henry HAL (2010). Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition. Soil Science Society of America Journal, 74, 820-828.
DOI URL |
[5] |
Berg B (2000). Initial rates and limit values for decomposition of Scots pine and Norway spruce needle litter: a synthesis for N-fertilized forest stands. Canadian Journal of Forest Research, 30, 122-135.
DOI URL |
[6] |
Berg B (2018). Decomposing litter; limit values; humus accumulation, locally and regionally. Applied Soil Ecology, 123, 494-508.
DOI URL |
[7] |
Berg B, Davey MP, de Marco A, Emmett B, Faituri M, Hobbie SE, Johansson MB, Liu C, McClaugherty C, Norell L, Rutigliano FA, Vesterdal L, de Santo AV, (2010). Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry, 100, 57-73.
DOI URL |
[8] |
Berg B, Erhagen B, Johansson MB, Nilsson M, Stendahl J, Trum F, Vesterdal L (2015a). Manganese in the litter fall-forest floor continuum of boreal and temperate pine and spruce forest ecosystems—A review. Forest Ecology and Management, 358, 248-260.
DOI URL |
[9] |
Berg B, Kjønaas OJ, Johansson MB, Erhagen B, Åkerblom S (2015b). Late stage pine litter decomposition: relationship to litter N, Mn, and acid unhydrolyzable residue (AUR) concentrations and climatic factors. Forest Ecology and Management, 358, 41-47.
DOI URL |
[10] |
Braun S, Thomas VFD, Quiring R, Flückiger W (2010). Does nitrogen deposition increase forest production? The role of phosphorus. Environmental Pollution, 158, 2043-2052.
DOI PMID |
[11] |
Burns RG, Deforest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry, 58, 216-234.
DOI URL |
[12] |
Chen GT, Tu LH, Chen GS, Hu JY, Han ZL (2018). Effect of six years of nitrogen additions on soil chemistry in a subtropical Pleioblastus amarus forest, southwest China. Journal of Forestry Research, 29, 1657-1664.
DOI |
[13] |
Cusack DF, Macy J, McDowell WH (2016). Nitrogen additions mobilize soil base cations in two tropical forests. Biogeochemistry, 128, 67-88.
DOI URL |
[14] | Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007). Couplings between changes in the climate system and biogeochemistry//Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 499-587. |
[15] | Duan N, Li QH, Duo PZ, Wang J (2019). Plant response to atmospheric nitrogen deposition: a research review. World Forestry Research, 32(4), 6-11. |
[段娜, 李清河, 多普增, 汪季 (2019). 植物响应大气氮沉降研究进展. 世界林业研究, 32(4), 6-11.] | |
[16] | Fan HB, Liu WF, Qiu XQ, Xu L, Wang Q, Chen QF (2007). Responses of litterfall production in Chinese fir plantation to increased nitrogen deposition. Chinese Journal of Ecology, 26, 1335-1338. |
[樊后保, 刘文飞, 裘秀群, 徐雷, 王强, 陈秋凤 (2007). 杉木人工林凋落物量对氮沉降增加的初期响应. 生态学杂志, 26, 1335-1338.] | |
[17] |
Fang H, Mo JM, Peng SL, Li ZA, Wang H (2007). Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China. Plant and Soil, 297, 233-242.
DOI URL |
[18] |
Fang X, Zhao L, Zhou GY, Huang WJ, Liu JX (2015). Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests. Plant and Soil, 392, 139-153.
DOI URL |
[19] |
Feng X, Wang R, Yu Q, Cao Y, Zhang Y, Yang L, Dijkstra FA, Jiang Y (2019). Decoupling of plant and soil metal nutrients as affected by nitrogen addition in a meadow steppe. Plant and Soil, 443, 337-351.
DOI |
[20] |
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226.
DOI URL |
[21] | Gu FX, Huang M, Zhang YD, Li J, Yan HM, Guo R, Zhong XL (2016). Modeling the effect of nitrogen input on soil carbon storage in Northeast China. Acta Ecologica Sinica, 36, 5379-5390. |
[顾峰雪, 黄玫, 张远东, 李洁, 闫慧敏, 郭瑞, 钟秀丽 (2016). 氮输入对中国东北地区土壤碳蓄积的影响. 生态学报, 36, 5379-5390.] | |
[22] |
Gu FX, Zhang YD, Huang M, Tao B, Yan HM, Guo R, Li J (2015). Nitrogen deposition and its effect on carbon storage in Chinese forests during 1981-2010. Atmospheric Environment, 123, 171-179.
DOI URL |
[23] | Gu Y, Wang F, Chen PS, Zhang JH, Han SJ, Zhang X, Chen ZJ, Yue LY (2017). Effects of long-term nitrogen addition and precipitation decreasing on the litterfall production of broadleaved Korean pine forest in Changbai Mountains of northeastern China. Journal of Beijing Forestry University, 39(4), 29-37. |
[谷越, 王芳, 陈鹏狮, 张军辉, 韩士杰, 张雪, 陈志杰, 岳琳艳 (2017). 长期施氮和降水减少对长白山阔叶红松林凋落物量的影响. 北京林业大学学报, 39(4), 29-37.] | |
[24] | Guan LL, Zhou GY, Zhang DQ, Liu JX, Zhang QM (2004). Twenty years of litter fall dynamics in subtropical evergreen broad-leaved forests at the Dinghushan forest ecosystem research station. Acta Phytoecologica Sinica, 28, 449-456. |
[官丽莉, 周国逸, 张德强, 刘菊秀, 张倩媚 (2004). 鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究. 植物生态学报, 28, 449-456.]
DOI |
|
[25] |
Hedwall PO, Nordin A, Strengbom J, Brunet J, Olsson B (2013). Does background nitrogen deposition affect the response of boreal vegetation to fertilization? Oecologia, 173, 615-624.
DOI PMID |
[26] |
Hobbie SE (2005). Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems, 8, 644-656.
DOI URL |
[27] |
Hobbie SE (2015). Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends in Ecology & Evolution, 30, 357-363.
DOI URL |
[28] |
Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012). Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecological Monographs, 82, 389-405.
DOI URL |
[29] | Hong HB, Lin CF, Peng JQ, Chen YM, Wei CC, Yang YS (2017). Effects of phosphorus addition on fine root decomposition and enzyme activity of Castanopsis carlesii and Cunninghamia lanceolata in subtropical forest. Acta Ecologica Sinica, 37, 136-146. |
[洪慧滨, 林成芳, 彭建勤, 陈岳民, 魏翠翠, 杨玉盛 (2017). 磷添加对中亚热带米槠和杉木细根分解及其酶活性的影响. 生态学报, 37, 136-146.] | |
[30] |
Jia BR (2019). Litter decomposition and its underlying mechanisms. Chinese Journal of Plant Ecology, 43, 648-657.
DOI URL |
[贾丙瑞 (2019). 凋落物分解及其影响机制. 植物生态学报, 43, 648-657.]
DOI |
|
[31] |
Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008). Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters, 11, 35-43.
PMID |
[32] | Keiluweit M, Nico P, Harmon ME, Mao J, Pett-Ridge J, Kleber M (2015). Long-term litter decomposition controlled by manganese redox cycling. Proceedings of the National Academy of Sciences of the United States of America, 112, E5253-E5260. |
[33] |
Knorr M, Frey SD, Curtis PS (2005). Nitrogen additions and litter decomposition: a meta-analysis. Ecology, 86, 3252-3257.
DOI URL |
[34] |
Kou L, Chen WW, Jiang L, Dai XQ, Fu XL, Wang HM, Li SG (2018). Simulated nitrogen deposition affects stoichiometry of multiple elements in resource-acquiring plant organs in a seasonally dry subtropical forest. Science of the Total Environment, 624, 611-620.
DOI URL |
[35] | Kristensen HL, Gundersen P, Callesen I, Reinds GJ (2004). Throughfall nitrogen deposition has different impacts on soil solution nitrate concentration in European coniferous and deciduous forests. Ecosystems, 7, 180-192. |
[36] |
Li HC, Hu YL, Mao R, Zhao Q, Zeng DH (2015). Effects of nitrogen addition on litter decomposition and CO2release: considering changes in litter quantity. PLoS ONE, 10, e0144665. DOI: 10.1371/journal.pone.0144665.
DOI |
[37] | Li HS, Wang JS, Zhao XH, Kang FF, Zhang CY, Liu X, Wang N, Zhao B (2014). Effects of litter removal on soil respiration under simulated nitrogen deposition in a Pinus tabuliformis forest in Taiyue Mountain, China. Chinese Journal of Ecology, 33, 857-866. |
[李化山, 汪金松, 赵秀海, 康峰峰, 张春雨, 刘星, 王娜, 赵博 (2014). 模拟氮沉降下去除凋落物对太岳山油松林土壤呼吸的影响. 生态学杂志, 33, 857-866.] | |
[38] |
Li R, Chang RY (2015). Effects of external nitrogen additions on soil organic carbon dynamics and the mechanism. Chinese Journal of Plant Ecology, 39, 1012-1020.
DOI |
[李嵘, 常瑞英 (2015). 土壤有机碳对外源氮添加的响应及其机制. 植物生态学报, 39, 1012-1020.]
DOI |
|
[39] |
Liu L, Greaver TL (2010). A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 13, 819-828.
DOI PMID |
[40] |
Liu L, King JS, Booker FL, Giardina CP, Allen HL, Hu SJ (2009). Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: a microcosm study. Global Change Biology, 15, 441-453.
DOI URL |
[41] |
Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462.
DOI |
[42] | Lu GC, Shao YR, Xue L (2014). Research progress in the effect of nitrogen deposition on litter decomposition. World Forestry Research, 27(1), 35-42. |
[卢广超, 邵怡若, 薛立 (2014). 氮沉降对凋落物分解的影响研究进展. 世界林业研究, 27(1), 35-42.] | |
[43] |
Lu M, Zhou XH, Luo YQ, Yang YH, Fang CM, Chen JK, Li B (2011). Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agriculture Ecosystems & Environment, 140, 234-244.
DOI URL |
[44] | Lu XH, Jiang H, Zhang XY, Jin JX (2016). Relationship between nitrogen deposition and LUCC and its impaction terrestrial ecosystem carbon budgets in China. Scientia Sinica (Terrae), 46, 1482-1493. |
[卢学鹤, 江洪, 张秀英, 金佳鑫 (2016). 氮沉降与LUCC的关系及其对中国陆地生态系统碳收支的影响. 中国科学: 地球科学, 46, 1482-1493.] | |
[45] |
Ma CE, Kong DL, Chen ZX, Guo JF (2012). Root growth into litter layer and its impact on litter decomposition: a review. Chinese Journal of Plant Ecology, 36, 1197-1204.
DOI URL |
[马承恩, 孔德良, 陈正侠, 郭俊飞 (2012). 根系在凋落物层中的生长及其对凋落物分解的影响. 植物生态学报, 36, 1197-1204.]
DOI |
|
[46] | Ma HY, Chen GT, Wang Y, Chen HX, Li QH, Tu LH (2021). Effects of nitrogen addition on soil solution chemistry in a subtropical evergreen broad-leaved forest. Acta Ecologica Sinica, 41, 9354-9363. |
[马豪宇, 陈冠陶, 王宇, 陈蕙心, 李青桦, 涂利华 (2021). 氮添加对亚热带常绿阔叶林土壤溶液化学特性的影响. 生态学报, 41, 9354-9363.] | |
[47] |
Millaleo R, Reyes-Díaz M, Ivanov AG, Mora ML, Alberdi M (2010). Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition, 10, 470-481.
DOI URL |
[48] |
Minocha R, Turlapati SA, Long S, McDowell WH, Minocha SC (2015). Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA. Tree Physiology, 35, 894-909.
DOI PMID |
[49] | Mo JM, Xue JH, Fang YT (2004). Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China. Acta Ecologica Sinica, 24, 1413-1420. |
[莫江明, 薛璟花, 方运霆 (2004). 鼎湖山主要森林植物凋落物分解及其对N沉降的响应. 生态学报, 24, 1413-1420.] | |
[50] |
Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ (2009). Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Applied Soil Ecology, 42, 183-190.
DOI URL |
[51] |
Osono T, Iwamoto S, Trofymow JA (2008). Colonization and decomposition of salal (Gaultheria shallon) leaf litter by saprobic fungi in successional forests on coastal British Columbia. Canadian Journal of Microbiology, 54, 427-434.
DOI PMID |
[52] |
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364.
DOI PMID |
[53] |
Peng Y, Li YJ, Song SY, Chen YQ, Chen GT, Tu LH (2022). Nitrogen addition slows litter decomposition accompanied by accelerated manganese release: a five-year experiment in a subtropical evergreen broadleaf forest. Soil Biology & Biochemistry, 165, 108511. DOI: 10.1016/j.soilbio.2021.108511.
DOI |
[54] |
Peng Y, Song SY, Li ZY, Li S, Chen GT, Hu HL, Xie JL, Chen G, Xiao YL, Liu L, Tang Y, Tu LH (2020). Influences of nitrogen addition and aboveground litter-input manipulations on soil respiration and biochemical properties in a subtropical forest. Soil Biology & Biochemistry, 142, 107694. DOI: 10.1016/j.soilbio.2019.107694.
DOI |
[55] |
Peñuelas J, Sardans J, Rivas-Ubach A, Janssens IA (2012). The human-induced imbalance between C, N and P in Earth’s life system. Global Change Biology, 18, 3-6.
DOI URL |
[56] |
Posada RH, Madriñan S, Rivera EL (2012). Relationships between the litter colonization by saprotrophic and arbuscular mycorrhizal fungi with depth in a tropical forest. Fungal Biology, 116, 747-755.
DOI PMID |
[57] |
Prevost-Boure NC, Maron PA, Ranjard L, Nowak V, Dufrene E, Damesin C, Soudani K, Lata JC (2011). Seasonal dynamics of the bacterial community in forest soils under different quantities of leaf litter. Applied Soil Ecology, 47, 14-23.
DOI URL |
[58] |
Sayer EJ (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews, 81, 1-31.
DOI PMID |
[59] |
Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ (2011). Soil carbon release enhanced by increased tropical forest litterfall. Nature Climate Change, 1, 304-307.
DOI |
[60] |
Sayer EJ, Tanner EVJ, Lacey AL (2006). Effects of litter manipulation on early-stage decomposition and meso-arthropod abundance in a tropical moist forest. Forest Ecology and Management, 229, 285-293.
DOI URL |
[61] | Shen GR, Xiang QQ, Chen DM, Wu Y, Liu CJ (2017). Spatio-temporal distribution characteristics of forest litterfall in China. Chinese Journal of Applied Ecology, 28, 2452-2460. |
[申广荣, 项巧巧, 陈冬梅, 吴裕, 刘春江 (2017). 中国森林凋落量时空分布特征. 应用生态学报, 28, 2452-2460.]
DOI |
|
[62] |
Sun XL, Zhao J, You YM, Sun OJ (2016). Soil microbial responses to forest floor litter manipulation and nitrogen addition in a mixed-wood forest of northern China. Scientific Reports, 6, 19536. DOI: 10.1038/srep19536.
DOI |
[63] |
Tian DS, Niu SL (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. DOI: 10.1088/1748-9326/10/2/024019.
DOI |
[64] |
Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
[65] |
Tian Q, Liu N, Bai W, Li L, Chen J, Reich PB, Yu Q, Guo D, Smith MD, Knapp AK, Cheng W, Lu P, Gao Y, Yang A, Wang T, et al. (2016). A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65-74.
PMID |
[66] |
Trum F, Titeux H, Ponette Q, Berg B (2015). Influence of manganese on decomposition of common beech (Fagus sylvatica L.) leaf litter during field incubation. Biogeochemistry, 125, 349-358.
DOI URL |
[67] | Tu LH (2011). Effects of Simulated Nitrogen Deposition on Carbon Cycling Processes and Characteristics of Pleioblastus amarus Plantation Ecosystem in Rainy Area of West China. PhD dissertation, Sichuan Agricultural University, Ya’an, Sichuan. |
[涂利华 (2011). 模拟氮沉降对华西雨屏区苦竹人工林生态系统碳循环过程和特征的影响. 博士学位论文, 四川农业大学, 四川雅安.] | |
[68] |
Tu LH, Hu HL, Hu TX, Zhang J, Luo SH, Dai HZ (2012). Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the Rainy Area of West China. Chinese Journal of Plant Ecology, 36, 99-108.
DOI URL |
[涂利华, 胡红玲, 胡庭兴, 张健, 雒守华, 戴洪忠 (2012). 华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应. 植物生态学报, 36, 99-108.]
DOI |
|
[69] | Tu LH, Hu TX, Huang LH, Li RH, Dai HZ, Luo SH, Xiang Y B (2009). Response of soil respiration to simulated nitrogen deposition in Pleioblastus amarus forest, rain area of west China. Chinese Journal of Plant Ecology, 33, 728-738. |
[涂利华, 胡庭兴, 黄立华, 李仁洪, 戴洪忠, 雒守华, 向元彬 (2009). 华西雨屏区苦竹林土壤呼吸对模拟氮沉降的响应. 植物生态学报, 33, 728-738.]
DOI |
|
[70] |
Turlapati SA, Minocha R, Bhiravarasa PS, Tisa LS, Thomas WK, Minocha SC (2013). Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. FEMS Microbiology Ecology, 83, 478-493.
DOI PMID |
[71] |
Frey SD, Sthultz CM, Morrison EW, Minocha R, Pringle A (2015). Changes in litter quality caused by simulated nitrogen deposition reinforce the N- induced suppression of litter decay. Ecosphere, 6, art205. DOI: 10.1890/ES15-00262.1.
DOI |
[72] |
Wang JJ, Bowden RD, Lajtha K, Washko SE, Wurzbacher SJ, Simpson MJ (2019). Long-term nitrogen addition suppresses microbial degradation, enhances soil carbon storage, and alters the molecular composition of soil organic matter. Biogeochemistry, 142, 299-313.
DOI |
[73] |
Wang R, Goll D, Balkanski Y, Hauglustaine D, Boucher O, Ciais P, Janssens I, Penuelas J, Guenet B, Sardans J, Bopp L, Vuichard N, Zhou F, Li B, Piao S, et al. (2017a). Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Global Change Biology, 23, 4854-4872.
DOI URL |
[74] |
Wang X, Xu ZW, Lü XT, Wang RZ, Cai JP, Yang S, Li MH, Jiang Y (2017b). Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland. Plant and Soil, 418, 241-253.
DOI URL |
[75] | Wang ZH (2013). The Temporal and Spatial Distribution Characteristics of Litter Production in an Evergreen Broad-Leaved Forest in Tiantong, Zhejiang Province, Eastern China. Master degree dissertation, East China Normal University, Shanghai. |
[王樟华 (2013). 浙江天童常绿阔叶林凋落物量的时空分布特征. 硕士学位论文, 华东师范大学, 上海.] | |
[76] |
Waring BG, Weintraub SR, Sinsabaugh RL (2014). Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry, 117, 101-113.
DOI URL |
[77] |
Whalen ED, Smith RG, Grandy AS, Frey SD (2018). Manganese limitation as a mechanism for reduced decomposition in soils under atmospheric nitrogen deposition. Soil Biology & Biochemistry, 127, 252-263.
DOI URL |
[78] |
Wu JP, Liu WF, Zhang WX, Shao YH, Duan HL, Chen BD, Wei XH, Fan HB (2019). Long-term nitrogen addition changes soil microbial community and litter decomposition rate in a subtropical forest. Applied Soil Ecology, 142, 43-51.
DOI URL |
[79] |
Xia M, Talhelm AF, Pregitzer KS (2017). Chronic nitrogen deposition influences the chemical dynamics of leaf litter and fine roots during decomposition. Soil Biology & Biochemistry, 112, 24-34.
DOI URL |
[80] |
Xiao YL, Tu LH, Hu TX, Zhang J, Li XW, Hu HL (2013). Early effects of simulated nitrogen deposition on annual nutrient input from litterfall in a Pleioblastus amarus plantation in Rainy Area of West China. Acta Ecologica Sinica, 33, 7355-7363.
DOI URL |
[肖银龙, 涂利华, 胡庭兴, 张健, 李贤伟, 胡红玲 (2013). 模拟氮沉降对华西雨屏区苦竹林凋落物养分输入量的早期影响. 生态学报, 33, 7355-7363.] | |
[81] | Yang C, Huang L, Gao XY, Qi M, Zhou X, Yang YC (2016). The dynamics and composition of litter fall of evergreen broad-leaved forest on Mt. Jinyun. Forest Research, 29(1), 1-9. |
[杨超, 黄力, 高祥阳, 齐猛, 周侠, 杨永川 (2016). 缙云山常绿阔叶林凋落动态及组成. 林业科学研究, 29(1), 1-9.] | |
[82] | Yang L, Zhao B, Chen P, Zhao XH (2018). Effects of long-term nitrogen addition on litter production of Pinus tabuliformis forests in the Taiyue Mountain. Chinese Journal of Ecology, 37, 3516-3524. |
[杨璐, 赵博, 陈平, 赵秀海 (2018). 长期施氮对太岳山油松林凋落物量的影响. 生态学杂志, 37, 3516-3524.] | |
[83] |
Ye XM, Zhang Y, Chen FS, Wang GG, Fang XM, Lin XF, Wan SZ, He P (2019). The effects of simulated deposited nitrogen on nutrient dynamics in decomposing litters across a wide quality spectrum using a 15N tracing technique. Plant and Soil, 442, 141-156.
DOI |
[84] |
Yu G, Jia Y, He N, Zhu J, Chen Z, Wang Q, Piao S, Liu X, He H, Guo X, Wen Z, Li P, Ding G, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429.
DOI |
[85] | Yu ZP, Wan XH, Hu ZH, Wang MH, Liu RQ, Zheng LJ, He ZM, Huang ZQ (2014). Contrasting responses of soil respiration to litter manipulation in subtropical Mytilaria laosensis and Cunninghamia lanceolata plantations. Acta Ecologica Sinica, 34, 2529-2538. |
[余再鹏, 万晓华, 胡振宏, 王民煌, 刘瑞强, 郑璐嘉, 何宗明, 黄志群 (2014). 亚热带杉木和米老排人工林土壤呼吸对凋落物去除和交换的响应. 生态学报, 34, 2529-2538.] | |
[86] |
Yue K, Peng Y, Peng CH, Yang WQ, Peng X, Wu FZ (2016). Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Scientific Reports, 6, 19895. DOI: 10.1038/srep19895.
DOI |
[87] |
Zak DR, Argiroff WA, Freedman ZB, Upchurch RA, Entwistle EM, Romanowicz KJ (2019). Anthropogenic N deposition, fungal gene expression, and an increasing soil carbon sink in the Northern Hemisphere. Ecology, 100, e02804. DOI: 10.1002/ecy.2804.
DOI |
[88] |
Zhang TA, Chen HYH, Ruan HH (2018a). Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 12, 1817-1825.
DOI |
[89] |
Zhang TA, Luo YQ, Chen HYH, Ruan HH (2018b). Responses of litter decomposition and nutrient release to N addition: a meta-analysis of terrestrial ecosystems. Applied Soil Ecology, 128, 35-42.
DOI URL |
[90] |
Zhang X, Liu Z (2019). Responses of litter decomposition and nutrient release of Bothriochloa ischaemum to soil petroleum contamination and nitrogen fertilization. International Journal of Environmental Science and Technology, 16, 719-728.
DOI |
[91] | Zhang XX, Hu JW, Wang LJ, Mi HH, Hui HY, Li LP (2021). Response differences in decomposition and nutrient release of litter from Robinia pseudoacacia plantations with different stand ages to nitrogen deposition. Journal of Plant Resources and Environment, 30, 10-18. |
[张晓曦, 胡嘉伟, 王丽洁, 米皓皓, 回虹燕, 李利平 (2021). 不同林龄刺槐林地凋落物分解及养分释放对氮沉降的响应差异. 植物资源与环境学报, 30, 10-18.] | |
[92] | Zhao X, Zhang WJ, Shen HT, Ai ZP, Lian SQ, Liu CB (2014). Contributions of aboveground litter to soil respiration in coniferous and deciduous plantations. Chinese Journal of Eco-Agriculture, 22, 1318-1325. |
[赵昕, 张万军, 沈会涛, 艾治频, 廉诗启, 刘长柏 (2014). 针阔树种人工林地表凋落物对土壤呼吸的贡献. 中国生态农业学报, 22, 1318-1325.] | |
[93] | Zhou SX, Xiao YX, Xiang YB, Huang CD, Tang JD, Han BH, Luo C (2016). Effects of simulated nitrogen deposition on the substrate quality of foliar litter in a natural evergreen broad-leaved forest in the Rainy Area of Western China. Acta Ecologica Sinica, 36, 7428-7435. |
[周世兴, 肖永翔, 向元彬, 黄从德, 唐剑东, 韩博涵, 罗超 (2016). 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落叶分解过程中基质质量的影响. 生态学报, 36, 7428-7435.] | |
[94] |
Zhu XM, Chen H, Zhang W, Huang J, Fu SL, Liu ZF, Mo JM (2016). Effects of nitrogen addition on litter decomposition and nutrient release in two tropical plantations with N2-fixing vs. non-N2-fixing tree species. Plant and Soil, 399, 61-74.
DOI URL |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[3] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[4] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[5] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[6] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[7] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[8] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[9] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[10] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
[11] | 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493. |
[12] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[13] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[14] | 邹安龙,李修平,倪晓凤,吉成均. 模拟氮沉降对北京东灵山辽东栎林树木生长的影响[J]. 植物生态学报, 2019, 43(9): 783-792. |
[15] | 王攀, 朱湾湾, 牛玉斌, 樊瑾, 余海龙, 赖江山, 黄菊莹. 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响[J]. 植物生态学报, 2019, 43(5): 427-436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19