植物生态学报 ›› 2021, Vol. 45 ›› Issue (10): 1112-1126.DOI: 10.17521/cjpe.2020.0074
所属专题: 全球变化与生态系统; 生态系统结构与功能; 根系生态学
收稿日期:
2020-03-18
接受日期:
2020-10-22
出版日期:
2021-10-20
发布日期:
2020-12-09
通讯作者:
王娓
作者简介:
(wangw@urban.pku.edu.cn)基金资助:
Received:
2020-03-18
Accepted:
2020-10-22
Online:
2021-10-20
Published:
2020-12-09
Contact:
WANG Wei
Supported by:
摘要:
全球变化所包含的土地利用和气候等因素的改变, 将对生产力、养分循环等生态系统功能产生重要的影响。以往研究大多只关注全球变化对单一功能的影响, 即使同时测定多种功能也是进行独立的分析。但由于不同功能间常常存在的权衡或协同关系, 导致基于单个功能的探讨难以反映全球变化对生态系统多功能性(EMF)的影响, 从而限制了人们对于全球变化影响的全面认识和评估。早在2007年, Hector和Bagchi首次量化EMF, 该领域才开始受到广泛关注。在此之后, EMF量化方法的不断完善, 极大地推动了该领域的发展。近年来, 全球变化对EMF的影响也被广泛关注。为系统梳理该领域的研究进展, 该文基于中国知网、ISI Web of Science等当前常用的学术期刊数据库, 检索2007-2020年的相关文献并进行计量分析, 系统归纳出该领域的发展现状。在此基础上, 详细阐述目前关注较多的土地利用变化、气温升高、降水改变以及氮沉降对EMF的影响, 并针对现有研究中存在的问题, 提出未来所需关注的6个方向: (1)规范EMF量化体系; (2)关注全球变化背景下多因子交互效应; (3)不同时间尺度下EMF对全球变化的响应; (4)全球变化背景下多维度、多尺度生物多样性与EMF; (5)全球变化背景下多营养级多样性与EMF; (6)全球变化背景下根系功能性状与EMF。
张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望. 植物生态学报, 2021, 45(10): 1112-1126. DOI: 10.17521/cjpe.2020.0074
ZHANG Hong-Jin, WANG Wei. Responses of ecosystem multifunctionality to global change: progress, problem and prospect. Chinese Journal of Plant Ecology, 2021, 45(10): 1112-1126. DOI: 10.17521/cjpe.2020.0074
图1 生态系统多功能性(EMF)文献计量分析。A, 不同年份全球发文量。B, 各大洲发文量。C, 不同生态系统类型的论文数量。D, 不同全球变化内容的研究所占比例。橘色柱代表涉及全球变化的EMF研究, 橘色+蓝色柱表示EMF总发文量。
Fig. 1 Bibliometric analysis of ecosystem multifunctionality (EMF). A, The number of global studies published during 2007-2020. B, The number of studies published by continents. C, The number of studies conducted by ecosystem types. D, The proportion of studies concerning different global change factors. The orange column represents EMF researches related to global change, and the combination of orange and blue columns represents the total number of EMF publications.
图2 生态系统多功能性对全球变化响应的总体模式(参考自Giling et al., 2019)。
Fig. 2 Conceptual framework of ecosystem multifunctionality responses to global change factors (Referenced from Giling et al., 2019).
图3 生态系统功能指标及使用情况。A, 碳循环, 文献使用比例大于10%的指标, 主图为不考虑期刊影响因子, 右上角小图为考虑影响因子。AGB, 地上生物量; BG, β-1,4-葡萄糖苷酶; BGB, 地下生物量; LD, 凋落物分解; SOC, 土壤有机碳。B, 碳循环, 不考虑期刊影响因子时文献使用比例在5%-10%的指标。AC, 芳香族化合物; AMF, 丛枝菌根真菌; BC, β-D-纤维二糖苷酶; DOC, 溶解有机碳; He, 己糖; MBC, 微生物生物量碳; Pe, 戊糖; Ph, 酚类化合物; SOM, 土壤有机质; SR, 土壤呼吸。C, 氮循环, 文献使用比例大于10%的指标, 主图为不考虑期刊影响因子, 右上角小图为考虑影响因子。AvN, 有效氮; NH4+, 铵根离子; NO3-, 硝酸根离子; PN, 植物氮含量; STN, 土壤总氮。D, 氮循环, 不考虑期刊影响因子时文献使用比例在5%-10%的指标。AA, 氨基酸; AR, 氨化速率; LAP, 亮氨酸氨基肽酶; NAG, β-1,4-N-乙酰葡糖胺糖苷酶; NMR, 氮矿化速率; NR, 硝化速率; SP, 土壤蛋白; Ur, 脲酶。E, 磷循环和水循环, 主图为不考虑期刊影响因子时文献使用比例大于5%的指标, 右上角小图为考虑影响因子时文献使用比例大于10%的与磷循环相关的指标。AvP, 有效磷; Ps, 磷酸酶; PP, 植物磷含量; SIP, 土壤无机磷; SM, 土壤含水量; STP, 土壤总磷; SWHC, 土壤持水能力。F, 涉及碳、氮、磷、水循环的所有指标所占比例。
Fig. 3 Indicators of ecosystem function and their applications in literature. A, Carbon cycle indicators with the proportion of literature appearance greater than 10%. The main panel displays values without considering journal impact factor, and the insert displays values considering the journal impact factor. AGB, aboveground biomass; BG, β-1,4-glucosidase; BGB, belowground biomass; LD, litter decomposition; SOC, soil organic carbon. B, Carbon cycle indicators with the proportion of literature appearance between 5% and 10%, without considering journal impact factor. AC, aromatic compounds; AMF, arbuscular mycorrhiza fungi; BC, β-D-cellobiosidase; DOC, dissolved organic carbon; He, hexose; MBC, microbial biomass carbon; Pe, pentose; Ph, phenolic compounds; SOM, soil organic matter; SR, soil respiration. C, Nitrogen cycle indicators with the proportion of literature appearance greater than 10%. The main panel displays values without considering journal impact factor, and the insert displays values considering journal impact factor. AvN, available nitrogen; NH4+, ammonium; NO3-, nitrate; PN, plant nitrogen content; STN, soil total nitrogen. D, Nitrogen cycle indicators with the proportion of literature appearance between 5% and 10%, without considering journal impact factor. AA, amino acid; AR, ammoniation rate; LAP, leucine aminopeptidase; NAG, β-1,4-N-acetylglucosaminidase; NMR, nitrogen mineralization rate; NR, nitrification rate; SP, soil protein; Ur, urease. E, Phosphorus cycle and water cycle indicators with the proportion of literature appearance greater than 5%. The insert displays values of the phosphorus cycle indicators with the proportion of literature appearance greater than 10%, considering journal impact factor. AvP, available phosphorus; PP, plant phosphorus content; Ps, phosphatase; SIP, soil inorganic phosphorus; SM, soil moisture; STP, soil total phosphorus; SWHC, soil water holding capacity. F, Percentage of all indicators related to carbon, nitrogen, phosphorus and water cycles.
图4 生态系统多功能性指标数量选择统计。饼图红色部分代表指标数量为5-8个的EMF研究占总研究的百分比。
Fig. 4 Statistics on the numbers of indicators selected in studies of ecosystem multifunctionality in literature. The red-colored portion of the pie chart represents the percentage of EMF studies that used 5-8 indicators.
图5 全球变化背景下多维度、多尺度生物多样性与生态系统多功能性的关系。
Fig. 5 Relationships between ecosystem multifunctionality and multi-dimensional or multi-scale biodiversity under the scenario of global change.
[1] |
Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner SC, et al. (2015). Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 18, 834-843.
DOI PMID |
[2] |
Alsterberg C, Roger F, Sundbäck K, Juhanson J, Hulth S, Hallin S, Gamfeldt L (2017). Habitat diversity and ecosystem multifunctionality-The importance of direct and indirect effects. Science Advances, 3, e1601475. DOI: 10.1126/sciadv.1601475.
DOI URL |
[3] |
Antiqueira PAP, Petchey OL, Romero GQ (2018). Warming and top predator loss drive ecosystem multifunctionality. Ecology Letters, 21, 72-82.
DOI PMID |
[4] |
Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699.
DOI URL |
[5] |
Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE,Emmett Duffy J (2014). Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution, 5, 111-124.
DOI URL |
[6] |
Canarini A, Kiær LP, Dijkstra FA (2017). Soil carbon loss regulated by drought intensity and available substrate: a meta-analysis. Soil Biology & Biochemistry, 112, 90-99.
DOI URL |
[7] |
Chen QL, Ding J, Zhu D, Hu HW, Delgado-Baquerizo M, Ma YB, He JZ, Zhu YG (2020). Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology & Biochemistry, 141, 107686. DOI: 10.1016/j.soilbio.2019.107686.
DOI URL |
[8] |
Chen W, Zeng H, Eissenstat DM, Guo D (2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology and Biogeography, 22, 846-856.
DOI URL |
[9] |
Chillo V, Vázquez DP, Amoroso MM, Bennett EM (2018). Land-use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest. Functional Ecology, 32, 1390-1399.
DOI URL |
[10] |
Choat B (2013). Predicting thresholds of drought-induced mortality in woody plant species. Tree Physiology, 33, 669-671.
DOI URL |
[11] |
Cui H, Sun W, Delgado-Baquerizo M, Song W, Ma J, Wang K, Ling X (2020). Phosphorus addition regulates the responses of soil multifunctionality to nitrogen over-fertilization in a temperate grassland. Plant and Soil, DOI: 10.1007/s11104-020-04620-2.
DOI |
[12] | Dacal M, Bradford MA, Plaza C, Maestre FT, García-Palacios P (2019). Soil microbial respiration adapts to ambient temperature in global drylands. Nature Ecology & Evolution, 3, 232-238. |
[13] | Dai YX, Wang L, Wan XC (2015). Progress on researches of drought-induced tree mortality mechanisms. Chinese Journal of Ecology, 34, 3228-3236. |
[ 代永欣, 王林, 万贤崇 (2015). 干旱导致树木死亡机制研究进展. 生态学杂志, 34, 3228-3236.] | |
[14] |
Delgado-Baquerizo M, Maestre FT, Eldridge DJ, Bowker MA, Ochoa V, Gozalo B, Berdugo M, Val J, Singh BK (2016). Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands. New Phytologist, 209, 1540-1552.
DOI PMID |
[15] |
Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, Singh BK (2017). Microbial richness and composition independently drive soil multifunctionality. Functional Ecology, 31, 2330-2343.
DOI URL |
[16] |
Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, et al. (2006). Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochemical Cycles, 20, GB4003. DOI: 10.1029/2005gb002672.
DOI |
[17] | Díaz S, Lavorel S de Bello F, Quétier F, Grigulis K, Robson TM (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104, 20684-20689. |
[18] |
Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z (2015). Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Global Change Biology, 21, 388-395.
DOI URL |
[19] |
Ding J, Chen L, Ji C, Hugelius G, Li Y, Liu L, Qin S, Zhang B, Yang G, Li F, Fang K, Chen Y, Peng Y, Zhao X, He H, et al. (2017). Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 10, 420-424.
DOI URL |
[20] |
Eisenhauer N, Hines J, Isbell F, van der Plas F, Hobbie SE, Kazanski CE, Lehmann A, Liu M, Lochner A, Rillig MC, Vogel A, Worm K, Reich PB (2018). Plant diversity maintains multiple soil functions in future environments. eLife, 7, e41228. DOI: 10.7554/eLife.41228.
DOI URL |
[21] |
Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Grétarsdóttir J, Harte J, Hermanutz L, et al. (2012). Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 15, 164-175.
DOI PMID |
[22] |
Fry EL, Savage J, Hall AL, Oakley S, Pritchard WJ, Ostle NJ, Pywell RF, Bullock JM, Bardgett RD (2018). Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology, 99, 2260-2271.
DOI URL |
[23] |
Fu W, Wu H, Zhao AH, Hao ZP, Chen BD (2020). Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects. Chinese Journal of Plant Ecology, 44, 475-493.
DOI URL |
[ 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬 (2020). 陆地生态系统氮沉降的生态效应: 研究进展与展望. 植物生态学报, 44, 475-493.]
DOI |
|
[24] |
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226.
DOI URL |
[25] |
Gamfeldt L, Hillebrand H, Jonsson PR (2008). Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223-1231.
PMID |
[26] |
Giling DP, Beaumelle L, Phillips HRP, Cesarz S, Eisenhauer N, Ferlian O, Gottschall F, Guerra C, Hines J, Sendek A, Siebert J, Thakur MP, Barnes AD (2019). A niche for ecosystem multifunctionality in global change research. Global Change Biology, 25, 763-774.
DOI URL |
[27] |
Hautier Y, Isbell F, Borer ET, Seabloom EW, Harpole WS, Lind EM, MacDougall AS, Stevens CJ, Adler PB, Alberti J, Bakker JD, Brudvig LA, Buckley YM, Cadotte M, Caldeira MC, et al. (2018). Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2, 50-56.
DOI PMID |
[28] |
Hector A, Bagchi R (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190.
DOI URL |
[29] |
Hoeppner SS, Dukes JS (2012). Interactive responses of old-field plant growth and composition to warming and precipitation. Global Change Biology, 18, 1754-1768.
DOI URL |
[30] |
Hufkens K, Keenan TF, Flanagan LB, Scott RL, Bernacchi CJ, Joo E, Brunsell NA, Verfaillie J, Richardson AD (2016). Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nature Climate Change, 6, 710-714.
DOI |
[31] | IPCC Intergovernmental Panel on Climate Change(2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[32] |
Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS (2015). The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6, 8159. DOI: 10.1038/ncomms9159.
DOI PMID |
[33] |
Klaus VH, Kleinebecker T, Busch V, Fischer M, Hölzel N, Nowak S, Prati D, Schäfer D, Schöning I, Schrumpf M, Hamer U (2018). Land use intensity, rather than plant species richness, affects the leaching risk of multiple nutrients from permanent grasslands. Global Change Biology, 24, 2828-2840.
DOI URL |
[34] |
Le Bagousse-Pinguet Y, Soliveres S, Gross N, Torices R, Berdugo M, Maestre FT (2019). Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 116, 8419-8424.
DOI PMID |
[35] |
Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, Hensel MJS, Hector A, Cardinale BJ, Duffy JE (2015). Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 6, 6936. DOI: 10.1038/ncomms7936.
DOI URL |
[36] |
Lei LJ, Kong DL, Li XM, Zhou ZX, Li GY (2016). Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives. Biodiversity Science, 24, 922-931.
DOI URL |
[ 雷羚洁, 孔德良, 李晓明, 周振兴, 李国勇 (2016). 植物功能性状、功能多样性与生态系统功能: 进展与展望. 生物多样性, 24, 922-931.]
DOI |
|
[37] |
Liu YR, Delgado-Baquerizo M, Trivedi P, He JZ, Wang JT, Singh BK (2017). Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biology & Biochemistry, 107, 208-217.
DOI URL |
[38] |
Luo G, Rensing C, Chen H, Liu M, Wang M, Guo S, Ling N, Shen Q (2018). Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management. Functional Ecology, 32, 1103-1116.
DOI URL |
[39] |
Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, García-Gómez M, Bowker MA, Soliveres S, Escolar C, García-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, et al. (2012). Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214-218.
DOI URL |
[40] | Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, Whittingham MJ, Fischer M (2018). Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2, 427-436. |
[41] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI PMID |
[42] |
Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101-105.
DOI PMID |
[43] |
Nie M, Lu M, Bell J, Raut S, Pendall E (2013). Altered root traits due to elevated CO2: a meta-analysis. Global Ecology and Biogeography, 22, 1095-1105.
DOI URL |
[44] |
Ochoa-Hueso R, Collins SL, Delgado-Baquerizo M, Hamonts K, Pockman WT, Sinsabaugh RL, Smith MD, Knapp AK, Power SA (2018). Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Global Change Biology, 24, 2818-2827.
DOI PMID |
[45] |
Peco B, Navarro E, Carmona CP, Medina NG, Marques MJ (2017). Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits. Agriculture, Ecosystems and Environment, 249, 215-225.
DOI URL |
[46] |
Perkins DM, Bailey RA, Dossena M, Gamfeldt L, Reiss J, Trimmer M, Woodward G (2015). Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Global Change Biology, 21, 396-406.
DOI PMID |
[47] |
Qin SQ, Chen LY, Fang K, Zhang QW, Wang J, Liu FT, Yu JC, Yang YH (2019). Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Science Advances, 5, eaau1218. DOI: 10.1126/sciadv.aau1218.
DOI URL |
[48] | Qu JS, Ge QS, Zhang XQ (2008). Development and comparison of the significations of global change and its correlated concepts. Advances in Earth Science, 23, 1277-1284. |
[ 曲建升, 葛全胜, 张雪芹 (2008). 全球变化及其相关概念的发展与比较. 地球科学进展, 23, 1277-1284.] | |
[49] |
Ren H, Eviner VT, Gui W, Wilson GWT, Cobb AB, Yang G, Zhang Y, Hu S, Bai Y (2018). Livestock grazing regulates ecosystem multifunctionality in semi-arid grassland. Functional Ecology, 32, 2790-2800.
DOI URL |
[50] | Renard D, Rhemtulla JM, Bennett EM (2015). Historical dynamics in ecosystem service bundles. Proceedings of the National Academy of Sciences of the United States of America, 112, 13411-13416. |
[51] |
Robroek BJM, Jassey VEJ, Beltman B, Hefting MM (2017). Diverse fen plant communities enhance carbon-related multifunctionality, but do not mitigate negative effects of drought. Royal Society Open Science, 4, 170449. DOI: 10.1098/rsos.170449.
DOI PMID |
[52] |
Sanderson MA, Skinner RH, Barker DJ, Edwards GR, Tracy BF, Wedin DA (2004). Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Science, 44, 1132-1144.
DOI URL |
[53] |
Schuldt A, Assmann T, Brezzi M, Buscot F, Eichenberg D, Gutknecht J, Härdtle W, He JS, Klein AM, Kühn P, Liu X, Ma K, Niklaus PA, Pietsch KA, Purahong W, et al. (2018). Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications, 9, 2989. DOI: 10.1038/s41467-018-05421-z.
DOI URL |
[54] | Shan LS, Li Y, Dong QL, Geng DM (2012). Ecological adaptation of Reaumuria soongorica root system architecture to arid environment. Journal of Desert Research, 32, 1283-1290. |
[ 单立山, 李毅, 董秋莲, 耿东梅 (2012). 红砂根系构型对干旱的生态适应. 中国沙漠, 32, 1283-1290.] | |
[55] |
Soliveres S, Manning P, Prati D, Gossner MM, Alt F, Arndt H, Baumgartner V, Binkenstein J, Birkhofer K, Blaser S, Blüthgen N, Boch S, Böhm S, Börschig C, Buscot F, et al. (2016). Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150269. DOI: 10.1098/rstb.2015.0269.
DOI URL |
[56] | Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia J, Liu Q, Ru J, Zhou Z, et al. (2019). A meta- analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309-1320. |
[57] |
Stocker BD, Zscheischler J, Keenan TF, Prentice IC, Seneviratne SI, Peñuelas J (2019). Drought impacts on terrestrial primary production underestimated by satellite monitoring. Nature Geoscience, 12, 264-270.
DOI URL |
[58] |
Tang YK, Wu YT, Wu K, Guo ZW, Liang CZ, Wang MJ, Chang PJ (2019). Changes in trade-offs of grassland ecosystem services and functions under different grazing intensities. Chinese Journal of Plant Ecology, 43, 408-417.
DOI URL |
[ 汤永康, 武艳涛, 武魁, 郭之伟, 梁存柱, 王敏杰, 常佩静 (2019). 放牧对草地生态系统服务和功能权衡关系的影响. 植物生态学报, 43, 408-417.]
DOI |
|
[59] |
Tresch S, Frey D, Bayon RCL, Mäder P, Stehle B, Fliessbach A, Moretti M (2019). Direct and indirect effects of urban gardening on aboveground and belowground diversity influencing soil multifunctionality. Scientific Reports, 9, 9769. DOI: 10.1038/s41598-019-46024-y.
DOI PMID |
[60] |
Valencia E, Gross N, Quero JL, Carmona CP, Ochoa V, Gozalo B, Delgado-Baquerizo M, Dumack K, Hamonts K, Singh BK, Bonkowski M, Maestre FT (2018). Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Global Change Biology, 24, 5642-5654.
DOI PMID |
[61] |
Valencia E, Maestre FT le Bagousse-Pinguet Y, Quero JL, Tamme R, Börger L, García-Gómez M, Gross N (2015). Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytologist, 206, 660-671.
DOI PMID |
[62] |
van der Heijden MGA, Bardgett RD, van Straalen NM (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310.
PMID |
[63] | van der Plas F (2019). Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews, 94, 1220-1245. |
[64] | van der Plas F, Manning P, Soliveres S, Allan E, Scherer- Lorenzen M, Verheyen K, Wirth C, Zavala MA, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Bonal D, et al. (2016). Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 113, 3557-3562. |
[65] | Wagg C, Bender SF, Widmer F,van der Heijden MGA (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111, 5266-5270. |
[66] |
Walther GR, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarošík V, Kenis M, et al. (2009). Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution, 24, 686-693.
DOI URL |
[67] | Wang L, Delgado-Baquerizo M, Wang D, Isbell F, Liu J, Feng C, Liu J, Zhong Z, Zhu H, Yuan X, Chang Q, Liu C (2019). Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proceedings of the National Academy of Sciences of the United States of America, 116, 6187-6192. |
[68] |
Wen Z, Zheng H, Zhao H, Xie S, Liu L, Ouyang Z (2020). Land-use intensity indirectly affects soil multifunctionality via a cascade effect of plant diversity on soil bacterial diversity. Global Ecology and Conservation, 23, e01061. DOI: 10.1016/j.gecco.2020.e01061.
DOI URL |
[69] |
Xu W, Jing X, Ma ZY, He JS (2016a). A review on the measurement of ecosystem multifunctionality. Biodiversity Science, 24, 72-84.
DOI URL |
[ 徐炜, 井新, 马志远, 贺金生 (2016b). 生态系统多功能性的测度方法. 生物多样性, 24, 72-84.] | |
[70] |
Xu W, Ma ZY, Jing X, He JS (2016b). Biodiversity and ecosystem multifunctionality: advances and perspectives. Biodiversity Science, 24, 55-71.
DOI URL |
[ 徐炜, 马志远, 井新, 贺金生 (2016a). 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 24, 55-71.] | |
[71] |
Yan Y, Zhang Q, Buyantuev A, Liu Q, Niu J (2020). Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality. Science of the Total Environment, 726, 138529. DOI: 10.1016/j.scitotenv.2020.138529.
DOI URL |
[72] |
Yang J, Chu PF, Chen DM, Wang MJ, Bai YF (2014). Mechanisms underlying the impacts of grazing on plant α, β and γ diversity in a typical steppe of the Inner Mongolia grassland. Chinese Journal of Plant Ecology, 38, 188-200.
DOI URL |
[ 杨婧, 褚鹏飞, 陈迪马, 王明玖, 白永飞 (2014). 放牧对内蒙古典型草原α、β和γ多样性的影响机制. 植物生态学报, 38, 188-200.]
DOI |
|
[73] |
Yin R, Eisenhauer N, Auge H, Purahong W, Schmidt A, Schädler M (2019). Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biology & Biochemistry, 131, 141-148.
DOI URL |
[74] | Zhu ZC, Liu YW, Liu Z, Piao SL (2018). Projection of changes in terrestrial ecosystem net primary productivity under future global warming scenarios based on CMIP5 models. Climate Change Research, 14, 31-39. |
[ 朱再春, 刘永稳, 刘祯, 朴世龙 (2018). CMIP5模式对未来升温情景下全球陆地生态系统净初级生产力变化的预估. 气候变化研究进展, 14, 31-39.] | |
[75] | Zou H, Gao GY, Fu BJ (2016). The relationship between grassland ecosystem and soil water in arid and semi-arid areas: a review. Acta Ecologica Sinica, 36, 3127-3136. |
[ 邹慧, 高光耀, 傅伯杰 (2016). 干旱半干旱草地生态系统与土壤水分关系研究进展. 生态学报, 36, 3127-3136.] |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[3] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[4] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[5] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[6] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[7] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[8] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[9] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[10] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[11] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[12] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[13] | 秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望[J]. 植物生态学报, 2021, 45(6): 573-582. |
[14] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[15] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19