植物生态学报 ›› 2021, Vol. 45 ›› Issue (5): 496-506.DOI: 10.17521/cjpe.2020.0180
所属专题: 全球变化与生态系统; 青藏高原植物生态学:生态系统生态学; 碳循环; 碳储量
收稿日期:
2020-06-05
接受日期:
2020-08-10
出版日期:
2021-05-20
发布日期:
2020-10-16
通讯作者:
孙建
作者简介:
*孙建:ORCID: 0000-0001-8765-5015(Email:sunjian@itpcas.ac.cn)基金资助:
SUN Jian1,*(), WANG Yi1,2, LIU Guo-Hua3
Received:
2020-06-05
Accepted:
2020-08-10
Online:
2021-05-20
Published:
2020-10-16
Contact:
SUN Jian
摘要:
在全球气候变暖的背景下, 草地作为陆地生态系统碳库的重要组成部分, 其较小幅度的波动, 会影响整个陆地生态系统碳循环和生态系统多功能性(EMF)。地上植物碳积累速率(CAR)表示从生长季初始到生长季生物量峰值的群落地上部分碳累积速率, 能够很好地表征固碳功能、固碳潜力和效率。因此, 植物CAR的变化会改变地上和地下群落维持EMF的能力。目前EMF的相关报道多探讨地上群落多样性和EMF的关系, 而缺乏高寒草地生态系统植被地上CAR对EMF的影响机制研究。该研究目的是探究高寒草地群落CAR对EMF的调控作用、机理和过程, 这将对草地生态系统管理提供理论支持, 并推进对生态系统多功能性维持机制的理解。2015年7-8月, 在青藏高原地区进行草地样带调查, 共计取115个样点。综合土壤有机碳、全氮、全磷、地上和地下生物量以及微生物生物量碳等13种生态系统参数计算生态系统多功能性指数(M)。利用归一化植被指数(NDVI, 1982-2013年)计算并提取2015年物候数据, 最终获得CAR。采用薄盘光滑样条插值法插值气象数据, 提取样点2011-2015年年降水量和年平均气温, 以供分析CAR对EMF的调控机理。主要结果: 地下生物量、土壤有机碳、全磷和微生物生物量碳含量对CAR和M有较高的权重(0.58、0.80、0.83和0.79; 1.05、0.98、1.02和0.97), CAR和M呈显著线性正相关关系(R2 = 0.45, p < 0.01)。在降水和气温要素的影响下, 植物地上群落和地下土壤要素的协同作用, 影响植被CAR, 进一步调控EMF。
孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制. 植物生态学报, 2021, 45(5): 496-506. DOI: 10.17521/cjpe.2020.0180
SUN Jian, WANG Yi, LIU Guo-Hua. Linkages of aboveground plant carbon accumulation rate with ecosystem multifunctionality in alpine grassland, Qingzang Plateau. Chinese Journal of Plant Ecology, 2021, 45(5): 496-506. DOI: 10.17521/cjpe.2020.0180
图1 青藏高原研究区样点示意图(A), 从生长季初始时间(SOS)到生长季高峰时间(POS)的碳积累速率(CAR)定义(B), 生态系统多功能性指数(M)频率分布图(C), 以及CAR频率分布图(D)。
Fig. 1 Sample sites in the study area (A), definition of carbon accumulation rate (CAR): the biomass production of plants from the timing of start of growing season (SOS) to the timing of the peak of growing season (POS)(B), frequency distribution of ecosystem multifunctionality index (M)(C), and frequency distribution of CAR (D).
图2 生态系统多功能性指数(M)(A)和碳积累速率(CAR)(B)与地上生物量(AGB)、地下生物量(BGB)、叶片碳(LC)、叶片氮(LN)、叶片磷(LP)、土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)、速效氮(SAN)、速效磷(SAP)、有机碳(SOC)、全氮(STN)、全磷(STP)含量和含水量(SWC)的混合效应模型的二元关系(平均值±标准差)。以上除M外, 其余因子均进行归一化标准处理。
Fig. 2 Bivariate plots using linear mixed-effect models depicting the relationships of ecosystem multifunctionality index (M)(A) and carbon accumulation rate (CAR)(B) with ecosystem parameters of aboveground biomass (AGB), belowground biomass (BGB), leaf carbon (LC), leaf nitrogen (LN), leaf phosphorus (LP), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), soil available nitrogen (SAN), soil available phosphorus (SAP), soil organic carbon (SOC), soil total nitrogen (STN), soil total phosphorus (STP) content and soil water content (SWC)(mean ± SD). Except for EMF, other data were normalized.
图3 生态系统多功能性指数(M)和碳积累速率(CAR)的关系。其中, CAR使用ln变换数据。
Fig. 3 Relationship between ecosystem multifunctionality index (M) and carbon accumulation rate (CAR). CAR is ln-transformed data.
图4 生态系统多功能性指数(M)和碳积累速率(CAR)与关键生态系统参数的关系。其中, 地下生物量(BGB)、有机碳(SOC)、全磷(STP)和土壤微生物生物量碳(MBC)含量使用ln变换数据。阴影部分表示95%的置信区间。
Fig. 4 Relationships between ecosystem multifunctionality index (M), carbon accumulation rate (CAR) and different ecosystem parameters. Belowground biomass (BGB), soil organic carbon (SOC), soil total phosphorus (STP) and microbial biomass carbon (MBC) content are ln-transformed data. The shade part indicates the 95% confidence interval.
图5 年降水量(ATP)和年平均气温(AMT)对生态系统多功能性指数(M)和碳积累速率(CAR)的影响。其中, ATP使用ln变换数据, AMT使用ln (AMT + 12 ℃)变换数据。阴影部分表示95%的置信区间。
Fig. 5 Influence of annual total precipitation (ATP) and annual mean temperature (AMT) to ecosystem multifunctionality index (M) and carbon accumulation rate (CAR). ATP is ln-transformed data and AMT is (AMT + 12 °C) ln-transformed data. The shaded part indicates the 95% confidence interval.
图6 关键因子对生态系统多功能性指数(M)和碳积累速率(CAR)的直接和间接效应。图上表示的均为显著影响的路径(p < 0.05), 实线表示直接效应, 虚线表示间接效应; 黑色箭头表示正效应, 红色箭头表示负效应。AMT, 年平均气温; ATP, 年降水量; BGB, 地下生物量; MBC, 土壤微生物生物量碳含量; SOC, 土壤有机碳含量; STP, 土壤全磷含量。
Fig. 6 Direct and indirect impacts of climatic and key factors on ecosystem multifunctionality index (M) and carbon accumulation rate (CAR). Path with significant effect is shown in the figure (p < 0.05), solid line represents direct effect and dotted line represents indirect effect; black arrow indicates positive effect and red arrow indicates negative effect. AMT, annual mean temperature; ATP, annual total precipitation; BGB, belowground biomass; MBC, microbial biomass carbon content; SOC, soil organic carbon content; STP, soil total nitrogen content.
[1] | Bai JH,Deng W,Zhang YX(2002).Spatial distribution of soil organic matter and nitrogen in soil of circular-zonary vegetation areas in Wulanpao Wetland, Inner Mongolia.Journal of Lake Science,14, 145-151. |
[白军红,邓伟,张玉霞(2002).内蒙古乌兰泡湿地环带状植被区土壤有机质及全氮空间分异规律.湖泊科学,14, 145-151.] | |
[2] |
Bai Y,Wu J,Clark CM,Naeem S,Pan Q,Huang J,Zhang L,Han X(2010).Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands.Global Change Biology,16, 358-372.
DOI URL |
[3] |
Balachowski JA,Volaire FA(2018).Implications of plant functional traits and drought survival strategies for ecological restoration.Journal of Applied Ecology,55, 631-640.
DOI URL |
[4] | Bao SD(2000).Soil and Agricultural Chemistry Analysis.China Agriculture Press,Beijing. |
[鲍士旦(2000).土壤农化分析.中国农业出版社,北京.] | |
[5] |
Baumann F,He JS,Schmidt K,Kühn P,Scholten T(2009).Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau.Global Change Biology,15, 3001-3017.
DOI URL |
[6] |
Behera N,Sahani U(2003).Soil microbial biomass and activity in response to Eucalyptus plantation and natural regeneration on tropical soil.Forest Ecology and Management,174, 1-11.
DOI URL |
[7] |
Byrnes JEK,Gamfeldt L,Isbell F,Lefcheck JS,Griffin JN,Hector A,Cardinale BJ,Hooper DU,Dee LE,Emmett Duffy J(2014).Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions.Methods in Ecology and Evolution,5, 111-124.
DOI URL |
[8] | Chapin III FS,Matson PA,Mooney HA(2012).Principles of Terrestrial Ecosystem Ecology.Springer, San Francisco, USA. |
[9] | Chen ZQ,Shao QQ,Liu JY,Wang JB(2012).Analysis of net primary productivity of terrestrial vegetation on the Qinghai- Tibetan Plateau based on MODIS remote sensing data.Science China: Earth Scienses,42, 402-410. |
[陈卓奇,邵全琴,刘纪远,王军邦(2012).基于MODIS的青藏高原植被净初级生产力研究.中国科学: 地球科学,42, 402-410.] | |
[10] |
Fu YH,Piao S,Op de Beeck M,Cong N,Zhao HF,Zhang Y,Menzel A,Janssens IA(2014).Recent spring phenology shifts in western Central Europe based on multiscale observations.Global Ecology and Biogeography,23, 1255-1263.
DOI URL |
[11] |
Gonsamo A,Chen JM,Ooi YW(2018).Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems.Global Change Biology,24, 2117-2128.
DOI PMID |
[12] |
Heimann M,Reichstein M(2008).Terrestrial ecosystem carbon dynamics and climate feedbacks.Nature,451, 289-292.
DOI URL |
[13] | Huang CY(2000).Pedology.China Agriculture Press,Beijing. |
[黄昌勇(2000).土壤学.中国农业出版社,北京.] | |
[14] |
Huxman TE,Smith MD,Fay PA,Knapp AK,Shaw MR,Loik ME,Smith SD,Tissue DT,Zak JC,Weltzin JF,Pockman WT,Sala OE,Haddad BM,Harte J,Koch GW,Schwinning S,Small EE,Williams DG(2004).Convergence across biomes to a common rain-use efficiency.Nature,429, 651-654.
DOI URL |
[15] |
Jing X,Sanders NJ,Shi Y,Chu H,Classen AT,Zhao K,Chen L,Shi Y,Jiang Y,He JS(2015).The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate.Nature Communications,6, 8159. DOI:10.1038/ncomms9159.
DOI PMID |
[16] |
Keeling HC,Phillips OL(2007).The global relationship between forest productivity and biomass.Global Ecology and Biogeography,16, 618-631.
DOI URL |
[17] |
Klein JA,Harte J,Zhao XQ(2004).Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau.Ecology Letters,7, 1170-1179.
DOI URL |
[18] |
Lambers H,Raven JA,Shaver GR,Smith SE(2008).Plant nutrient-acquisition strategies change with soil age.Trends in Ecology & Evolution,23, 95-103.
DOI URL |
[19] |
Lefcheck JS,Byrnes JEK,Isbell F,Gamfeldt L,Griffin JN,Eisenhauer N,Hensel MJS,Hector A,Cardinale BJ,Duffy JE(2015).Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats.Nature Communications,6, 6936. DOI:10.1038/ncomms7936.
DOI URL |
[20] | Li CB,Peng YF,Zhao DZ,Ning Y,Zhou GY(2016).Effects of precipitation change and nitrogen addition on community structure and plant diversity in an alpine steppe on the Qinghai-Tibetan Plateau.Research of Soil and Water Conservation,23, 185-191. |
[李长斌,彭云峰,赵殿智,宁祎,周国英(2016).降水变化和氮素添加对青藏高原高寒草原群落结构和物种多样性的影响.水土保持研究,23, 185-191.] | |
[21] |
Li D,Kang S,Zhao MY,Zhang Q,Ren HJ,Ren J,Zhou JM,Wang Z,Wu RJ,Niu JM(2016).Relationships between soil nutrients and plant functional traits in different degradation stages of Leymus chinensis steppe in Nei Mongol, China.Chinese Journal of Plant Ecology,40, 991-1002.
DOI URL |
[李丹,康萨如拉,赵梦颖,张庆,任海娟,任婧,周俊梅,王珍,吴仁吉,牛建明(2016).内蒙古羊草草原不同退化阶段土壤养分与植物功能性状的关系.植物生态学报,40, 991-1002.] | |
[22] | Li L,Gao JQ,Lei GC,Lü C,Suo L(2011).Distribution patterns of soil organic carbon and total nitrogen in Zoige peat land with different ground water table.Chinese Journal of Ecology,30, 2449-2455. |
[李丽,高俊琴,雷光春,吕偲,索郎夺尔基(2011).若尔盖不同地下水位泥炭湿地土壤有机碳和全氮分布规律.生态学杂志,30, 2449-2455.] | |
[23] | Li XD,Li FX,Zhou BR,Xiao HB,Yang XG,Zhou WF(2012).Study of the hydrothermal condition and aboveground biomass in typical alpine grassland in Tibetan Plateau.Plateau Meteorology,31, 1053-1058. |
[李晓东,李凤霞,周秉荣,肖宏斌,杨鑫光,周万福(2012).青藏高原典型高寒草地水热条件及地上生物量变化研究.高原气象,31, 1053-1058.] | |
[24] | Liu LL,Jin ZX,Li JH(2010).Plant species diversity in Sinocalycanthus chinensis community and its correlation with soil factors in Dalei Mountain of Zhejiang Province.Bulletin of Botanical Research,30, 57-64. |
[刘丽丽,金则新,李建辉(2010).浙江大雷山夏蜡梅群落植物物种多样性及其与土壤因子相关性.植物研究,30, 57-64.] | |
[25] |
Maestre FT,Quero JL,Gotelli NJ,Escudero A,Ochoa V,Delgado-Baquerizo M,García-Gómez M,Bowker MA,Soliveres S,Escolar C,García-Palacios P,Berdugo M,Valencia E,Gozalo B,Gallardo A,et al.(2012).Plant species richness and ecosystem multifunctionality in global drylands.Science,335, 214-218.
DOI URL |
[26] |
Mi N,Wang S,Liu J,Yu G,Zhang W,Jobbágy EG(2008).Soil inorganic carbon storage pattern in China.Global Change Biology,14, 2380-2387.
DOI URL |
[27] |
Piao S,Ciais P,Friedlingstein P,Peylin P,Reichstein M,Luyssaert S,Margolis H,Fang J,Barr A,Chen A,Grelle A,Hollinger DY,Laurila T,Lindroth A,Richardson AD,Vesala T(2008).Net carbon dioxide losses of northern ecosystems in response to autumn warming.Nature,451, 49-52.
DOI URL |
[28] |
Soliveres S,Maestre FT,Eldridge DJ,Delgado-Baquerizo M,Quero JL,Bowker MA,Gallardo A(2014).Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands.Global Ecology and Biogeography,23, 1408-1416.
PMID |
[29] | Sun HL,Zheng D,Yao TD,Zhang YL(2012).Protection and construction of the national ecological security shelter zone on Tibetan Plateau.Acta Geographica Sinica,67, 3-12. |
[孙鸿烈,郑度,姚檀栋,张镱锂(2012).青藏高原国家生态安全屏障保护与建设.地理学报,67, 3-12.] | |
[30] |
Sun J,Cheng GW,Li WP,Sha YK,Yang YC(2013).On the variation of NDVI with the principal climatic elements in the Tibetan Plateau.Remote Sensing,5, 1894-1911.
DOI URL |
[31] |
Sun J,Ma B,Lu X(2018).Grazing enhances soil nutrient effects: trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau.Land Degradation & Development,29, 337-348.
DOI URL |
[32] | Sun J,Zhang ZC,Dong SK(2019).Adaptive management of alpine grassland ecosystems over Tibetan Plateau.Pratacultural Science,36, 933-938. |
[孙建,张振超,董世魁(2019).青藏高原高寒草地生态系统的适应性管理.草业科学,36, 933-938.] | |
[33] |
Sun J,Zhou TC,Liu M,Chen YC,Liu GH,Xu M,Shi PL,Peng F,Tsunekawa A,Liu Y,Wang XD,Dong SK,Zhang YJ,Li YN(2020).Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau.Global Ecology and Biogeography,29, 50-64.
DOI URL |
[34] |
Thompson K,Parkinson JA,Band SR,Spencer RE(1997).A comparative study of leaf nutrient concentrations in a regional herbaceous flora.New Phytologist,136, 679-689.
DOI URL |
[35] |
van der Heijden MGA,Klironomos JN,Ursic M,Moutoglis P,Streitwolf-Engel R,Boller T,Wiemken A,Sanders IR(1998).Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity.Nature,396, 69-72.
DOI URL |
[36] |
Wang J,Zhou TC,Peng PH(2018).Phenology response to climatic dynamic across China’s grasslands from 1985 to 2010.ISPRS International Journal of Geo-Information,7, 290. DOI:10.3390/ijgi7080290.
DOI URL |
[37] | Wang Y,Liu BY,Liu M,Sun J,Zeng T(2019).Synergistic and inhibitory effects of soil enzymes along desertified gradients of the Zoige alpine meadow.Pratacultural Science,36, 939-951. |
[王毅,刘碧颖,刘苗,孙建,曾涛(2019).若尔盖地区沙化草地土壤酶协同和抑制效应.草业科学,36, 939-951.] | |
[38] | Wang YH,Song XH,Wang ZW,Kang J,Han GD,Wang ZW(2018).Responses of plant above and underground productivity of Stipa breviflora desert steppe to stocking rates and precipitation.Acta Botanica Boreali-Occidentalia Sinica,38, 1526-1533. |
[王悦骅,宋晓辉,王占文,康静,韩国栋,王忠武(2018).短花针茅荒漠草原植物地上地下生物量对载畜率和降水的响应.西北植物学报,38, 1526-1533.] | |
[39] |
Wu J,Shen Z,Zhang X(2014).Precipitation and species composition primarily determine the diversity-productivity relationship of alpine grasslands on the Northern Tibetan Plateau.Alpine Botany,124, 13-25.
DOI URL |
[40] | Xia J,Niu S,Ciais P,Janssens IA,Chen J,Ammann C,Arain A,Blanken PD,Cescatti A,Bonal D,Buchmann N,Curtis PS,Chen SP,Dong JW,Flanagan LB,et al.(2015).Joint control of terrestrial gross primary productivity by plant phenology and physiology.Proceedings of the National Academy of Sciences of the United States of America,112, 2788-2793. |
[41] | Xiong DP,Zhao GS,Wu JS,Shi PL,Zhang XZ(2016).The relationship between species diversity and ecosystem multifunctionality in alpine grasslands on the Tibetan Changtang Plateau.Acta Ecologica Sinica,36, 3362-3371. |
[熊定鹏,赵广帅,武建双,石培礼,张宪洲(2016).羌塘高寒草地物种多样性与生态系统多功能关系格局.生态学报,36, 3362-3371.] | |
[42] | Yan ZQ,Qi YC,Peng Q,Dong YS,He YL,Li ZL(2017).Advances in the effects of simulated precipitation and nitrogen deposition on grassland biomass.Acta Agrestia Sinica,25, 1165-1170. |
[闫钟清,齐玉春,彭琴,董云社,贺云龙,李兆林(2017).模拟降水和氮沉降增加对草地生物量影响的研究进展.草地学报,25, 1165-1170.] | |
[43] |
Yang H,LI Y,WU M,Zhang Z,LI L,Wan S(2011).Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits.Global Change Biology,17, 2936-2944.
DOI URL |
[44] | Yang K,Huang JH,Dong D,Ma WH,He JS(2010).Canopy leaf N and P stoichiometry in grassland communities of Qinghai-Tibetan Plateau, China.Chinese Journal of Plant Ecology,34, 17-22. |
[杨阔,黄建辉,董丹,马文红,贺金生(2010).青藏高原草地植物群落冠层叶片氮磷化学计量学分析.植物生态学报,34, 17-22.] | |
[45] | Yang YH,Piao SL(2006).Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau.Acta Phytoecologica Sinica,30, 1-8. |
[杨元合,朴世龙(2006).青藏高原草地植被覆盖变化及其与气候因子的关系.植物生态学报,30, 1-8.] | |
[46] | Yu H,Luedeling E,Xu J(2010).Winter and spring warming result in delayed spring phenology on the Tibetan Plateau.Proceedings of the National Academy of Sciences of the United States of America,107, 22151-22156. |
[47] |
Yuan ZY,Chen HYH(2015).Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes.Nature Climate Change,5, 465-469.
DOI URL |
[48] | Zavaleta ES,Pasari JR,Hulvey KB,Tilman GD(2010).Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity.Proceedings of the National Academy of Sciences of the United States of America,107, 1443-1446. |
[49] |
Zhang BB,Liu F,Ding JZ,Fang K,Yang GB,Liu L,Chen YL,Li F,Yang YH(2016).Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: an updated evaluation using deep cores.Chinese Journal of Plant Ecology,40, 93-101.
DOI URL |
[张蓓蓓,刘芳,丁金枝,房凯,杨贵彪,刘莉,陈永亮,李飞,杨元合(2016).青藏高原高寒草地3米深度土壤无机碳库及分布特征.植物生态学报,40, 93-101.] | |
[50] | Zhang G,Zhang Y,Dong J,Xiao X(2013).Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011.Proceedings of the National Academy of Sciences of the United States of America,110, 4309-4314. |
[51] |
Zhang L,Hao BT,Qi LX,Li YL,Xu HM,Yang LN,Bao Y(2018).Dynamic responses of aboveground biomass and soil organic matter content to grassland restoration.Chinese Journal of Plant Ecology,42, 317-326.
DOI URL |
[张璐,郝匕台,齐丽雪,李艳龙,徐慧敏,杨丽娜,宝音陶格涛(2018).草原群落生物量和土壤有机质含量对改良措施的动态响应.植物生态学报,42, 317-326.] | |
[52] | Zhang X,Mei L,Song LH,Liu LC,Zhao ZY(2019).Effects of simulated nitrogen deposition on microbial community and greenhouse gases emission of Pinus massoniana soil.Acta Ecologica Sinica,39, 1917-1925. |
[张雪,梅莉,宋利豪,刘力诚,赵泽尧(2019).模拟氮沉降对马尾松土壤微生物群落结构及温室气体释放的影响.生态学报,39, 1917-1925.] | |
[53] |
Zhao DD,Ma HY,Li Y,Wei JP,Wang ZC(2019).Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis.Chinese Journal of Plant Ecology,43, 501-511.
DOI URL |
[赵丹丹,马红媛,李阳,魏继平,王志春(2019).水分和养分添加对羊草功能性状和地上生物量的影响.植物生态学报,43, 501-511.] | |
[54] |
Zhao XF,Xu HL,Zhang P,Tu WX,Zhang QQ(2014).Effects of nutrient and water additions on plant community structure and species diversity in desert grasslands.Chinese Journal of Plant Ecology,38, 167-177.
DOI URL |
[赵新风,徐海量,张鹏,涂文霞,张青青(2014).养分与水分添加对荒漠草地植物群落结构和物种多样性的影响.植物生态学报,38, 167-177.] |
[1] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[2] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[3] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[4] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[5] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[6] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[7] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[8] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[9] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[10] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[11] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[12] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[13] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[14] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[15] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19