植物生态学报 ›› 2023, Vol. 47 ›› Issue (2): 183-194.DOI: 10.17521/cjpe.2022.0156
所属专题: 全球变化与生态系统; 青藏高原植物生态学:生态系统生态学; 青藏高原植物生态学:种群生态学
夏璟钰1,2, 张扬建2, 郑周涛2, 赵广2, 赵然2,3, 朱艺旋2, 高洁2, 沈若楠2, 李文宇2, 郑家禾2, 张雨雪1, 朱军涛2,*(), 孙建新1
收稿日期:
2022-04-21
接受日期:
2022-10-18
出版日期:
2023-02-20
发布日期:
2023-02-28
通讯作者:
ORCID: *朱军涛: 0000-0002-3506-1247(zhujt@igsnrr.ac.cn)
基金资助:
XIA Jing-Yu1,2, ZHANG Yang-Jian2, ZHENG Zhou-Tao2, ZHAO Guang2, ZHAO Ran2,3, ZHU Yi-Xuan2, GAO Jie2, SHEN Ruo-Nan2, LI Wen-Yu2, ZHENG Jia-He2, ZHANG Yu-Xue1, ZHU Jun-Tao2,*(), SUN Osbert Jianxin1
Received:
2022-04-21
Accepted:
2022-10-18
Online:
2023-02-20
Published:
2023-02-28
Contact:
*(Supported by:
摘要:
植物物候对气候变暖的响应是全球气候变化研究的重要内容。目前, 高海拔生态系统植物物候对气候变暖响应的研究仍然较少。该研究依托西藏那曲高寒草地生态系统国家野外科学观测研究站布设的梯度增温实验, 分别于2015、2017、2018和2021年对模拟增温下优势物种高山嵩草(Kobresia pygmaea)和钉柱委陵菜(Potentilla saundersiana)返青期、现蕾期和开花期等表征植物物候的指标进行了观测, 以期揭示增温下藏北高寒草甸植物物候变化机制。结果表明: 随着温度升高, 高寒草甸中优势植物物候具有不同的变化趋势。高山嵩草返青、现蕾和开花物候期的推迟幅度与温度升高幅度呈正相关关系; 钉柱委陵菜返青、现蕾和开花时间随着温度上升表现为先提前后推迟; 这表明高寒草甸植物物候对增温产生异步响应。此外, 长期增温下的藏北高寒草甸优势种的物候变化均显示出了延迟效应。结构方程归因分析发现, 空气温度升高促使高山嵩草返青时间推迟; 低水平增温可以促进钉柱委陵菜物候提前, 而随着温度继续升高其物候响应发生逆转, 土壤水分在决定物候对气候变暖响应的幅度和方向上具有关键作用。该研究结果揭示了藏北高寒草甸优势植物物候响应气候变暖的异步性特征, 为预测未来高海拔生态系统对气候变化的响应提供了数据支撑。
夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应. 植物生态学报, 2023, 47(2): 183-194. DOI: 10.17521/cjpe.2022.0156
XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau. Chinese Journal of Plant Ecology, 2023, 47(2): 183-194. DOI: 10.17521/cjpe.2022.0156
图1 青藏高原高寒草甸2015、2017、2018、2021年植物生长季空气温度(A)、土壤温度(B)和土壤含水量(C)对增温的响应。CK, 对照(自然环境温度); W1、W2、W3和W4分别为4个增温处理(增温幅度分别约为2.18、2.66、3.21和3.68 ℃)。
Fig. 1 Responses of air temperature (A), soil temperature (B) and soil water content (C) to warming during the growing seasons of 2015, 2017, 2018, 2021 under multiple levels warming in an alpine meadow on Qingzang Plateau. CK, control (ambient temperature); W1, W2, W3 and W4 are the four level warming, respectively (the warming amplitudes are about 2.18, 2.66, 3.21 and 3.68 °C, respectively).
图2 青藏高原高寒草甸梯度增温处理对各监测物种4年平均返青、现蕾和开花时间的影响(平均值±标准误)。W1、W2、W3和W4分别为4个增温幅度(增温幅度分别约为2.18、2.66、3.21和3.68 ℃)。图中正值代表与对照相比推后的天数, 负值代表与对照相比提前的天数。采用单因素方差分析和Tukey检验进行两两比较, 不同小写字母表示增温处理间存在显著差异(p < 0.05)。
Fig. 2 Effects of gradient warming treatments on four-year mean green up, budding and flowering time of each monitored species in an alpine meadow on Qingzang Plateau (mean ± SE). W1, W2, W3 and W4 are the four level warming, respectively (the warming amplitudes are about 2.18, 2.66, 3.21 and 3.68 °C, respectively). A positive value indicates later green up, budding or flowering than the control; a negative value indicates earlier green up, budding or flowering than the control. One-way analysis of variance and Tukey test were used for pairwise comparison. Different lowercase letters indicate significant differences between warming treatments (p < 0.05).
物种 Species | 处理 Treatment | 返青时间 Green up date | 现蕾时间 Budding date | 开花时间 Flowering date | ||||||
---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | ||
高山嵩草 Kobresia pygmaea | W | 4 | 45.619 | <0.001 | 4 | 28.665 | <0.001 | 4 | 6.832 | <0.001 |
Y | 3 | 258.565 | <0.001 | 3 | 151.230 | <0.001 | 3 | 79.438 | <0.001 | |
W × Y | 12 | 10.445 | <0.001 | 12 | 1.970 | 0.032 | 12 | 18.260 | 0.699 | |
钉柱委陵菜 Potentilla saundersiana | W | 4 | 7.781 | <0.001 | 4 | 7.344 | <0.001 | 4 | 8.260 | <0.001 |
Y | 3 | 27.377 | <0.001 | 3 | 18.011 | <0.001 | 3 | 1.117 | 0.344 | |
W × Y | 12 | 2.912 | 0.001 | 12 | 4.560 | <0.001 | 12 | 3.423 | <0.001 |
表1 年份(Y)、增温(W)对高山嵩草和钉柱委陵菜返青、现蕾和开花时间的主效应和交互效应的重复测量方差分析
Table 1 Repeated measured analysis of variance for main and interactive effects of year (Y), warming (W) on Kobresia pygmaea and Potentilla saundersiana green-up, budding and flowering time
物种 Species | 处理 Treatment | 返青时间 Green up date | 现蕾时间 Budding date | 开花时间 Flowering date | ||||||
---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | ||
高山嵩草 Kobresia pygmaea | W | 4 | 45.619 | <0.001 | 4 | 28.665 | <0.001 | 4 | 6.832 | <0.001 |
Y | 3 | 258.565 | <0.001 | 3 | 151.230 | <0.001 | 3 | 79.438 | <0.001 | |
W × Y | 12 | 10.445 | <0.001 | 12 | 1.970 | 0.032 | 12 | 18.260 | 0.699 | |
钉柱委陵菜 Potentilla saundersiana | W | 4 | 7.781 | <0.001 | 4 | 7.344 | <0.001 | 4 | 8.260 | <0.001 |
Y | 3 | 27.377 | <0.001 | 3 | 18.011 | <0.001 | 3 | 1.117 | 0.344 | |
W × Y | 12 | 2.912 | 0.001 | 12 | 4.560 | <0.001 | 12 | 3.423 | <0.001 |
图3 梯度增温处理对高山嵩草、钉柱委陵菜平均返青、现蕾和开花时间的影响(平均值±标准误)。W1、W2、W3和W4分别为4个增温幅度(增温幅度分别约为2.18、2.66、3.21和3.68 ℃)。图中正值代表与对照相比推后的天数, 负值代表与对照相比提前的天数(d)。采用单因素方差分析和Tukey检验进行两两比较, 不同小写字母表示增温处理间存在显著差异(p < 0.05)。
Fig. 3 Effects of gradient warming treatments on Kobresia pygmaea and Potentilla saundersiana green up, budding and flowering time (mean ± SE) averaged on 2015, 2017, 2018, 2021. W1, W2, W3 and W4 are the four level warming treatments, respectively (the warming amplitudes are about 2.18, 2.66, 3.21 and 3.68 °C, respectively). A positive value indicates later green up, budding or flowering time than the control; a negative value indicates earlier green up, budding or flowering time than the control. One-way analysis of variance and Tukey test were used for pairwise comparison. Different lowercase letters indicate significant differences between warming treatments (p < 0.05).
图4 梯度增温处理对高山嵩草、钉柱委陵菜4年平均返青期、现蕾期和开花期温度敏感性的影响(平均值±标准误)。W1、W2、W3和W4分别为4个增温幅度(增温幅度分别约为2.18、2.66、3.21和3.68 ℃)。采用单因素方差分析和Tukey检验进行两两比较, 不同小写字母表示增温处理间存在显著差异(p < 0.05)。
Fig. 4 Effects of gradient warming treatment on four years mean temperature sensitivity of green up, budding and flowering time (mean ± SE) of Kobresia pygmaea and Potentilla saundersiana. W1, W2, W3 and W4 are four level warming, respectively (the warming amplitudes are about 2.18, 2.66, 3.21 and 3.68 °C). One-way analysis of variance and Tukey test were used for pairwise comparison. Different lowercase letters indicate significant differences between warming treatments (p < 0.05).
物种 Species | 物候时间 Phenological time | 回归方程 Regression equation | F | R2 | p |
---|---|---|---|---|---|
高山嵩草 Kobresia pygmaea | 返青时间 Green up time | y = -6.363 + 4.647x2 + 9.968x3 | 55.744 | 0.503 | <0.01 |
现蕾时间 Budding time | y = -4.787 + 3.308x2 + 7.640x3 | 33.781 | 0.381 | <0.01 | |
开花时间 Flowering time | y = 1.517 + 4.579x1 + 2.980x2 | 13.590 | 0.198 | <0.01 | |
钉柱委陵菜 Potentilla saundersiana | 返青时间 Green up time | y = 1.030 - 3.984x1 - 9.349x2 - 5.606x3 | 41.132 | 0.495 | <0.01 |
现蕾时间 Budding time | y = 0.672 - 3.346x1 - 8.092x2 - 4.654x3 | 31.390 | 0.428 | <0.01 | |
开花时间 Flowering time | y = -0.045 - 2.958x1 - 6.400x2 - 2.748x3 | 18.649 | 0.307 | <0.01 |
表2 青藏高原高寒草甸高山嵩草和钉柱委陵菜物候变化时间和环境因子的回归方程
Table 2 Regression equations linking Kobresia pygmaea and Potentilla saundersiana phenological change time and environmental factors in an alpine meadow on Qingzang Plateau
物种 Species | 物候时间 Phenological time | 回归方程 Regression equation | F | R2 | p |
---|---|---|---|---|---|
高山嵩草 Kobresia pygmaea | 返青时间 Green up time | y = -6.363 + 4.647x2 + 9.968x3 | 55.744 | 0.503 | <0.01 |
现蕾时间 Budding time | y = -4.787 + 3.308x2 + 7.640x3 | 33.781 | 0.381 | <0.01 | |
开花时间 Flowering time | y = 1.517 + 4.579x1 + 2.980x2 | 13.590 | 0.198 | <0.01 | |
钉柱委陵菜 Potentilla saundersiana | 返青时间 Green up time | y = 1.030 - 3.984x1 - 9.349x2 - 5.606x3 | 41.132 | 0.495 | <0.01 |
现蕾时间 Budding time | y = 0.672 - 3.346x1 - 8.092x2 - 4.654x3 | 31.390 | 0.428 | <0.01 | |
开花时间 Flowering time | y = -0.045 - 2.958x1 - 6.400x2 - 2.748x3 | 18.649 | 0.307 | <0.01 |
图5 空气温度、土壤温度和土壤水分对高山嵩草(A)和钉柱委陵菜(B)的返青、开花时间的影响。高山嵩草: χ2 = 0.198, p = 0.656, 比较拟合指数(CFI) = 1.000, 近似误差均方根(RMSE) = 0.000, 赤池信息量准则(AIC) = -127.449。钉柱委陵菜: χ2 = 0.019, p = 0.889, CFI = 1.000, RMSE = 0.000, AIC = -154.980。线条上的数字代表自变量对因变量直接作用的标准通径系数, 红线表示正相关, 蓝线表示负相关; 实线表示显著相关(p < 0.05)。
Fig. 5 Effects of air temperature, soil temperature and soil water content on green up, flowering time of Kobresia pygmaea (A) and Potentilla saundersiana (B). Kobresia pygmaea: χ2 = 0.198, p = 0.656, comparative fit index (CFI) = 1.000, root mean square error (RMSE) = 0.000, Akaike information criterion (AIC) = -127.449. Potentilla saundersiana: χ2 = 0.019, p = 0.889, CFI = 1.000, RMSE = 0.000, AIC = -154.980. Number on the lines are standardized direct path coefficients; the red lines indicated negative correlations; the blue lines indicated positive correlations. Solid lines indicate significant correlation (p < 0.05).
[1] |
Bai L, Lv SJ, Qu ZQ, Ren HY, Wu Q, Han GD, Li ZG (2022). Effects of a warming gradient on reproductive phenology of Stipa breviflora in a desert steppe. Ecological Indicators, 136, 108590. DOI: 10.1016/j.ecolind.2022.108590.
DOI |
[2] | Ben GY, Han F, Shi SB (1993). Studies of leaf conductance, transpiration and water potential of plants in alpine Kobresia humilis meadow. Acta Ecologica Sinica, 13, 369-372. |
[贲桂英, 韩发, 师生波 (1993). 高寒矮嵩草草甸植物温度叶扩散导度、蒸腾作用与水势. 生态学报, 13, 369-372.] | |
[3] |
Chen AP, Huang L, Liu Q, Piao SL (2021). Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Global Change Biology, 27, 1942-1951.
DOI PMID |
[4] | Ding MJ, Chen Q, Li LH, Zhang YL, Wang ZF, Liu LS, Sun XM (2016). Temperature dependence of variations in the end of the growing season from 1982 to 2012 on the Qinghai-Tibetan Plateau. GIScience & Remote Sensing, 53, 147-163. |
[5] |
Dorji T, Totland O, Moe SR, Hopping KA, Pan J, Klein JA (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 19, 459-472.
DOI PMID |
[6] |
Dunne JA, Harte J, Taylor KJ (2003). Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecological Monographs, 73, 69-86.
DOI URL |
[7] |
Estiarte M, Peñuelas J (2015). Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology, 21, 1005-1017.
DOI PMID |
[8] |
Ganjurjav H, Gornish ES, Hu G, Schwartz MW, Wan Y, Li Y, Gao Q (2020). Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 287, 107943. DOI: 10.1016/j.agrformet.2020.107943.
DOI |
[9] |
Ganjurjav H, Hu G, Zhang Y, Gornish ES, Yu T, Gao Q (2022). Warming tends to decrease ecosystem carbon and water use efficiency in dissimilar ways in an alpine meadow and a cultivated grassland in the Tibetan Plateau. Agricultural and Forest Meteorology, 323, 109079. DOI: 10.1016/j.agrformet.2022.109079.
DOI |
[10] |
Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009). The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Annals of Botany, 103, 1165-1172.
DOI PMID |
[11] | Gu SL, Hui DF, Bian AH (1998). The contraction-expansion algorithm and its use in fitting nonlinear equations. International Journal of Biomathematics, 13, 426-434. |
[12] | Guo MZ (2020). Response and Sensitivity Analysis of Phenology of Alpine Grassland to Climate Change in Qinghai-Tibet Plateau. Master degree dissertation, Chengdu University of Technology, Chengdu. |
[郭蒙珠 (2020). 青藏高原高寒草地物候对气候变化的响应与敏感性分析. 硕士学位论文, 成都理工大学, 成都.] | |
[13] |
Hassan T, Hamid M, Wani SA, Malik AH, Waza SA, Khuroo AA (2021). Substantial shifts in flowering phenology of Sternbergia vernalis in the Himalaya: supplementing decadal field records with historical and experimental evidences. Science of the Total Environment, 795, 148811. DOI: 10.1016/j.scitotenv.2021.148811.
DOI |
[14] |
Hoffmann AA, Camac JS, Williams RJ, Papst W, Jarrad FC, Wahren CH (2010). Phenological changes in six Australian subalpine plants in response to experimental warming and year-to-year variation. Journal of Ecology, 98, 927-937.
DOI URL |
[15] | Hu MX, Zhou GS, Lü XM, Wang SQ, Zhang SY (2021). Interactive effects of different warming and changing photoperiod on spring phenology of Quercus mongolicus seedlings. Acta Ecologica Sinica, 41, 2816-2825. |
[胡明新, 周广胜, 吕晓敏, 王思琪, 张世雅 (2021). 温度和光周期协同作用对蒙古栎幼苗春季物候的影响. 生态学报, 41, 2816-2825.] | |
[16] | IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[17] |
Jiang LL, Wang SP, Meng FD, Duan JC, Niu HS, Xu GP, Zhu XX, Zhang ZH, Luo CY, Cui SJ, Li YM, Li XE, Wang Q, Zhou Y, Bao XY, et al. (2016). Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology, 97, 1961-1969.
DOI PMID |
[18] | Li YH, Han GD, Wang Z, Zhao ML, Wang ZW, Zhao HB (2014). Influences of warming and nitrogen addition on plant reproductive phenology in Inner Mongolia desert steppe. Chinese Journal of Ecology, 33, 849-856. |
[李元恒, 韩国栋, 王珍, 赵萌莉, 王正文, 赵鸿彬 (2014). 增温和氮素添加对内蒙古荒漠草原植物生殖物候的影响. 生态学杂志, 33, 849-856.] | |
[19] | Lu PL, Yu Q, He QT (2006). Responses of plant phenology to climatic change. Acta Ecologica Sinica, 26, 923-929. |
[陆佩玲, 于强, 贺庆棠 (2006). 植物物候对气候变化的响应. 生态学报, 26, 923-929.] | |
[20] | Luo WR, Hu GZ, Ganjurjav H, Gao QZ, Li Y, Ge YQ, Li Y, He SC, Danjiu LB (2021). Effects of simulated drought on plant phenology and productivity in an alpine meadow in Northern Tibet. Acta Prataculturae Sinica, 30(2), 82-92. |
[罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布 (2021). 模拟干旱对藏北高寒草甸植物物候期和生产力的影响. 草业学报, 30(2), 82-92.]
DOI |
|
[21] |
McKeown M, Schubert M, Preston JC, Fjellheim S (2017). Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae. Molecular Phylogenetics and Evolution, 114, 111-121.
DOI PMID |
[22] |
Meng F, Jiang L, Zhang Z, Cui S, Duan J, Wang S, Luo C, Wang Q, Zhou Y, Li X, Zhang L, Li B, Dorji T, Li Y, Du M (2017). Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology, 98, 734-740.
DOI PMID |
[23] |
Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian L, Shen M, Zhu X (2019). Plant phenology and global climate change: current progresses and challenges. Global Change Biology, 25, 1922-1940.
DOI PMID |
[24] |
Prevéy J, Vellend M, Rüger N, Hollister RD, Bjorkman AD, Myers-Smith IH, Elmendorf SC, Clark K, Cooper EJ, Elberling B, Fosaa AM, Henry GHR, Høye TT, Jónsdóttir IS, Klanderud K, et al. (2017). Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Global Change Biology, 23, 2660-2671.
DOI PMID |
[25] |
Price MV, Waser NM (1998). Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology, 79, 1261-1271.
DOI URL |
[26] |
Richards FJ (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290-301.
DOI URL |
[27] | Samplonius JM, Atkinson A, Hassall C, Keogan K, Thackeray SJ, Assmann J, Burgess MD, Johansson J, Macphie KH, Pearce-Higgins JW, Simmonds EG, Varpe Ø, Weir JC, Childs DZ, Cole EF, et al. (2020). Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nature Ecology & Evolution, 5, 155-164. |
[28] |
Shen M, Piao S, Dorji T, Liu Q, Cong N, Chen X, An S, Wang S, Wang T, Zhang G (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2, 454-467.
DOI URL |
[29] |
Shen MG, Tang YH, Chen J, Zhu XL, Zheng YH (2011). Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 151, 1711-1722.
DOI URL |
[30] | Shen MG, Wang SP, Jiang N, Sun JP, Cao RY, Ling XF, Fang B, Zhang L, Zhang LH, Xu XY, Lv WW, Li BL, Sun QL, Meng FD, Jiang YH, et al. (2022). Plant phenology changes and drivers on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 3, 633-651. |
[31] |
Sherry RA, Zhou X, Gu S, Arnone III JA, Schimel DS, Verburg PS, Wallace LL, Luo Y (2007). Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America, 104, 198-202.
DOI PMID |
[32] |
Song CQ, You SC, Ke LH, Liu GH, Zhong XK (2011). Spatio-temporal variation of vegetation phenology in the Northern Tibetan Plateau as detected by MODIS remote sensing. Chinese Journal of Plant Ecology, 35, 853-863.
DOI URL |
[宋春桥, 游松财, 柯灵红, 刘高焕, 钟新科 (2011). 藏北高原植被物候时空动态变化的遥感监测研究. 植物生态学报, 35, 853-863.]
DOI |
|
[33] |
Sun QL, Li BL, Jiang YH, Chen XZ, Zhou GY (2021). Declined trend in herbaceous plant green-up dates on the Qinghai-Tibetan Plateau caused by spring warming slowdown. Science of the Total Environment, 772, 145039. DOI: 10.1016/j.scitotenv.2021.145039.
DOI |
[34] |
Wang L, Zhang Q (2018). Analysis of phytogeographic characteristics of typical alpine grassland steppe in Qinghai-Tibetan Plateau recently 20 years. Plateau Meteorology, 37, 1528-1534.
DOI |
[王力, 张强 (2018). 近20年青藏高原典型高寒草甸化草原植物物候变化特征. 高原气象, 37, 1528-1534.]
DOI |
|
[35] |
Wolf AA, Zavaleta ES, Selmants PC (2017). Flowering phenology shifts in response to biodiversity loss. Proceedings of the National Academy of Sciences of the United States of America, 114, 3463-3468.
DOI PMID |
[36] |
Xia JY, Wan SQ (2013). Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Annals of Botany, 111, 1207-1217.
DOI PMID |
[37] |
Yang L, Rudolf VHW (2010). Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecology Letters, 13, 1-10.
DOI PMID |
[38] | Yu H, Luedeling E, Xu J (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156. |
[39] |
Zhang W, Yi Y, Kimball JS, Kim Y, Song K (2015). Climatic controls on spring onset of the Tibetan Plateau grasslands from 1982 to 2008. Remote Sensing, 7, 16607-16622.
DOI URL |
[40] | Zhang XX, Ge QS, Zheng JY (2003). Application of remote sensing technology in plant phenology. Advances in Earth Science, 18(4), 534-544. |
[张学霞, 葛全胜, 郑景云 (2003). 遥感技术在植物物候研究中的应用综述. 地球科学进展, 18(4), 534-544.]
DOI |
|
[41] |
Zhao GS, Shi PL, Zong N, He YT, Zhang XZ, He HL, Zhang J (2017). Declining precipitation enhances the effect of warming on phenological variation in a semiarid Tibetan meadow steppe. Journal of Resources and Ecology, 8, 50-56.
DOI |
[42] |
Zheng ZT, Zhu WQ, Chen GS, Jiang N, Fan DQ, Zhang DH (2016). Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 223, 194-202.
DOI URL |
[43] | Zhou S, Zhang Y, Caylor KK, Luo Y, Xiao X, Ciais P, Huang Y, Wang G (2016). Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. Agricultural Agricult and Forest Meteorology, 226-227, 246-256. |
[44] |
Zhu JT (2016). Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow. Chinese Journal of Plant Ecology, 40, 1028-1036.
DOI URL |
[朱军涛 (2016). 实验增温对藏北高寒草甸植物繁殖物候的影响. 植物生态学报, 40, 1028-1036.]
DOI |
|
[45] |
Zhu JT, Zhang YJ, Wang WF (2016). Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biology Letters, 12, 20150749. DOI: 10.1098/rsbl.2015.0749.
DOI |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[3] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[4] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[5] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[6] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[7] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[8] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[9] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[10] | 陈哲, 汪浩, 王金洲, 石慧瑾, 刘慧颖, 贺金生. 基于物候相机归一化植被指数估算高寒草地植物地上生物量的季节动态[J]. 植物生态学报, 2021, 45(5): 487-495. |
[11] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[12] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[13] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[14] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[15] | 邢小艺, 郝培尧, 李冠衡, 李慧, 董丽. 北京植物物候的季节动态特征——以北京植物园为例[J]. 植物生态学报, 2018, 42(9): 906-916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19