植物生态学报 ›› 2020, Vol. 44 ›› Issue (6): 687-698.DOI: 10.17521/cjpe.2019.0300
所属专题: 全球变化与生态系统; 生态系统碳水能量通量; 土壤呼吸
• 研究论文 • 上一篇
郑甲佳1,2, 黄松宇1,2, 贾昕1,2,3,*(), 田赟1,3, 牟钰1,2, 刘鹏1,2, 查天山1,2,3
收稿日期:
2019-11-04
接受日期:
2020-02-02
出版日期:
2020-06-20
发布日期:
2020-03-26
通讯作者:
贾昕
基金资助:
ZHENG Jia-Jia1,2, HUANG Song-Yu1,2, JIA Xin1,2,3,*(), TIAN Yun1,3, MU Yu1,2, LIU Peng1,2, ZHA Tian-Shan1,2,3
Received:
2019-11-04
Accepted:
2020-02-02
Online:
2020-06-20
Published:
2020-03-26
Contact:
JIA Xin
Supported by:
摘要:
土壤呼吸的温度敏感性(Q10)是陆地碳循环与气候系统间相互作用的关键参数。尽管已有大量关于不同类型森林Q10季节和年际变化规律的研究, 但是对Q10在区域尺度的空间变异特征及其影响因素仍认识不足, 已有结果缺乏一致结论。该研究通过整合已发表论文, 构建了中国森林生态系统年尺度Q10数据集, 共包含399条记录、5种森林类型(落叶阔叶林(DBF)、落叶针叶林(DNF)、常绿阔叶林(EBF)、常绿针叶林(ENF)、混交林(MF))。分析了不同森林类型Q10的空间变异特征及其与地理、气候和土壤因素的关系。结果显示, 1) Q10介于1.09到6.24之间, 平均值(±标准误差)为2.37 (± 0.04), 且在不同森林类型之间无显著差异; 2)当考虑所有森林类型时, Q10随纬度、海拔、土壤有机碳含量(SOC)和土壤全氮含量(TN)的增加而增大, 随经度、年平均气温(MAT)、平均年降水量(MAP)的增加而减小。气候(MAT、MAP)和土壤(SOC、TN)因素间存在相互作用, 共同解释了33%的Q10空间变异, 其中MAT和SOC是Q10空间变异的主要驱动因素; 3)不同类型森林Q10对气候和土壤因素的响应存在差异。在DNF中Q10随MAP的增加而减小, 而其他类型森林中Q10与MAP无显著相关性; 在EBF、DBF、ENF中Q10随TN的增加而增大, 但Q10对TN的敏感性在EBF中最高, 在ENF中最低。这些结果表明, 尽管Q10有一定的集中分布趋势, 但仍有较大范围的空间变异, 在进行碳收支估算时应注意尺度问题。Q10的主要驱动因素和Q10对环境因素的响应随森林类型而变化, 在气候变化情景下, 不同森林类型间Q10可能发生分异。因此, 未来的碳循环-气候模型还应考虑不同类型森林碳循环关键参数对气候变化的响应差异。
郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素. 植物生态学报, 2020, 44(6): 687-698. DOI: 10.17521/cjpe.2019.0300
ZHENG Jia-Jia, HUANG Song-Yu, JIA Xin, TIAN Yun, MU Yu, LIU Peng, ZHA Tian-Shan. Spatial variation and controlling factors of temperature sensitivity of soil respiration in forest ecosystems across China. Chinese Journal of Plant Ecology, 2020, 44(6): 687-698. DOI: 10.17521/cjpe.2019.0300
变量所属类型 Type of variable | 变量 Variable |
---|---|
地理位置 Site | 纬度(° N)、经度(° E)、海拔(m) Latitude (° N), Longitude (° E), Altitude (m) |
气象因素 Climate factor | 年平均气温(℃), 年降水量(mm), 年蒸发散(mm), 干燥指数(mm·mm-1), 试验地当年平均气温(℃), 试验地当年降水量(mm) Mean annual temperature (℃), mean annual precipitation (mm), annual evapotranspiration (mm), aridity index (mm·mm-1), mean annual temperature of study sites (℃), mean annual precipitation of study sites (mm) |
植被因素 Vegetation factor | 林分类型, 林龄(a), 叶面积指数(m2·m-2) Stand type, stand age (a), leaf area index (m2·m-2) |
土壤温湿度 Soil temperature and moisture | 测量期间平均土壤温度(℃), 测量期间土壤温度振幅(℃), 测量期间土壤体积含水率(m3·m-3), 测量期间土壤质量含水率(%) Mean soil temperature during measurement (℃), soil temperature amplitude during measurement (℃), Soil volumetric water content during measurement (m3·m-3), soil mass water content during measurement (%) |
土壤理化性质 Soil physicochemical property | 土壤有机碳含量(g·kg-1), 土壤全氮含量(g·kg-1), 土壤碳氮比, 土壤容重(g·cm-3), 土壤酸碱度 Soil organic carbon content (g·kg-1), soil total nitrogen content (g·kg-1), soil carbon-nitrogen ratio, soil bulk density (g·cm-3), soil pH |
土壤呼吸温度敏感性 Temperature sensitivity of soil respiration | 土壤呼吸温度敏感性(Q10), Van’t Hoff方程的决定系数(R2) Temperature sensitivity of soil respiration (Q10), the determination coefficient of Van’t Hoff equation (R2) |
观测方法信息 Measurement method information | 开始测量日期, 结束测量日期, CO2测定方法(碱溶液吸收法, 气象色谱法, 红外法), 气室方法(静态密闭气室法, 动态密闭气室法、自动开闭气室法) Start date of measurement, end date of measurement, CO2 measurement method (Alkali solution absorption, Gas chromatography, Infrared method), chamber method (Static closed chamber, Dynamic closed chamber, Automatic opening and closing chamber) |
文献信息 Literature information | 参考文献 References |
表1 中国森林生态系统年尺度土壤呼吸温度敏感性(Q10)数据集的相关信息
Table 1 Supporting information of the dataset of annual temperature sensitivity of soil respiration (Q10) in forest ecosystems across China
变量所属类型 Type of variable | 变量 Variable |
---|---|
地理位置 Site | 纬度(° N)、经度(° E)、海拔(m) Latitude (° N), Longitude (° E), Altitude (m) |
气象因素 Climate factor | 年平均气温(℃), 年降水量(mm), 年蒸发散(mm), 干燥指数(mm·mm-1), 试验地当年平均气温(℃), 试验地当年降水量(mm) Mean annual temperature (℃), mean annual precipitation (mm), annual evapotranspiration (mm), aridity index (mm·mm-1), mean annual temperature of study sites (℃), mean annual precipitation of study sites (mm) |
植被因素 Vegetation factor | 林分类型, 林龄(a), 叶面积指数(m2·m-2) Stand type, stand age (a), leaf area index (m2·m-2) |
土壤温湿度 Soil temperature and moisture | 测量期间平均土壤温度(℃), 测量期间土壤温度振幅(℃), 测量期间土壤体积含水率(m3·m-3), 测量期间土壤质量含水率(%) Mean soil temperature during measurement (℃), soil temperature amplitude during measurement (℃), Soil volumetric water content during measurement (m3·m-3), soil mass water content during measurement (%) |
土壤理化性质 Soil physicochemical property | 土壤有机碳含量(g·kg-1), 土壤全氮含量(g·kg-1), 土壤碳氮比, 土壤容重(g·cm-3), 土壤酸碱度 Soil organic carbon content (g·kg-1), soil total nitrogen content (g·kg-1), soil carbon-nitrogen ratio, soil bulk density (g·cm-3), soil pH |
土壤呼吸温度敏感性 Temperature sensitivity of soil respiration | 土壤呼吸温度敏感性(Q10), Van’t Hoff方程的决定系数(R2) Temperature sensitivity of soil respiration (Q10), the determination coefficient of Van’t Hoff equation (R2) |
观测方法信息 Measurement method information | 开始测量日期, 结束测量日期, CO2测定方法(碱溶液吸收法, 气象色谱法, 红外法), 气室方法(静态密闭气室法, 动态密闭气室法、自动开闭气室法) Start date of measurement, end date of measurement, CO2 measurement method (Alkali solution absorption, Gas chromatography, Infrared method), chamber method (Static closed chamber, Dynamic closed chamber, Automatic opening and closing chamber) |
文献信息 Literature information | 参考文献 References |
图1 中国森林生态系统年尺度土壤呼吸温度敏感性(Q10)数据集中研究站点的空间分布。
Fig. 1 Spatial distribution of study sites included in the dataset of annual temperature sensitivity of soil respiration (Q10) in forest ecosystems across China. DBF, deciduous broadleaf forest; DNF, deciduous needleleaf forest; EBF, evergreen broadleaf forest; ENF, evergreen needleleaf forest; MF, mixed forest.
图2 土壤呼吸温度敏感性(Q10)(A)和Van’t Hoff方程决定系数(R2)的频率分布(B)。 实线表示平均值, 虚线表示中位数, 红色曲线为分布曲线。
Fig. 2 Frequency distributions of the temperature sensitivity of soil respiration (Q10)(A) and coefficient of determination of Van’t Hoff equation (R2)(B). The solid line represents the mean value, the dashed line represents the median value, and the red curve is the distribution curve.
图3 不同森林类型的土壤呼吸温度敏感性(Q10)(平均值±标准误差)。 n为样本量, 相同的字母表示组间均值无显著差异(α = 0.05)。
Fig. 3 Temperature sensitivity of soil respiration (Q10)(mean ± SE) in different forest types. n, the sample size; the same letter represents no significant difference in mean values between groups (α = 0.05). DBF, deciduous broadleaf forest; DNF, deciduous needleleaf forest; EBF, evergreen broadleaf forest; ENF, evergreen needleleaf forest; MF, mixed forest.
图4 土壤呼吸温度敏感性(Q10)与纬度(A)、经度(B)、海拔(C)、年平均气温(D)、年降水量(E)、干燥指数(F)、土壤有机碳含量(G)、土壤全氮含量(H)、土壤碳氮比(I)的关系。
Fig. 4 Relationships between the temperature sensitivity of soil respiration (Q10) with latitude (Lat)(A), longitude (Lon)(B), altitude (Alt)(C), mean annual temperature (MAT)(D), mean annual precipitation (MAP)(E), aridity index (AI)(F), soil organic carbon content (SOC)(G), soil total nitrogen content (TN)(H) and soil C:N (I). DBF, deciduous broadleaf forest; DNF, deciduous needleleaf forest; EBF, evergreen broadleaf forest; ENF, evergreen needleleaf forest; MF, mixed forest.
图5 气候因素和土壤因素对土壤呼吸温度敏感性(Q10)空间变异影响的结构方程模型(A)和标准化总效应(B)。 箭头旁边的数字是标准化路径系数γ, 实线箭头和虚线箭头分别代表模型中的正负效应。模型中所有路径均是显著的(p < 0.01), R2 (粗体数字)表示有关变量的共同解释度, χ2 = 1.39, df = 1, p = 0.24, RMSEA = 0.032。
Fig. 5 Structural equation model (A) and standardized total effect (B) of the effect of climatic and soil factors on spatial variation in the temperature sensitivity of soil respiration (Q10). Numbers beside arrows are standardized path coefficients (γ), the solid and dashed arrows represent the positive and negative effects in a fitted structural equation model, respectively. All paths in this model are significant (p < 0.01). R2 (bold number) values represent the proportion of variance explainable by each variable in the model, χ2 = 1.39, df = 1, p = 0.24, RMSEA = 0.032. MAP, mean annual precipitation; MAT, mean annual temperature; SOC, soil organic carbon content; TN, soil total nitrogen content.
森林类型 Forest type | 回归方程 Regression equation | R2 | F | p | n |
---|---|---|---|---|---|
DBF | Q10 = -0.027MAT + 0.334TN + 2.00 | 0.38 | 13.06 | <0.01 | 46 |
DNF | Q10 = -0.099MAT + 0.066SOC + 2.81 | 0.99 | 99.86 | <0.01 | 6 |
EBF | Q10 = -0.001MAP + 0.451TN + 2.92 | 0.50 | 28.38 | <0.01 | 61 |
ENF | Q10 = -0.060MAT + 0.006SOC + 3.11 | 0.44 | 22.97 | <0.01 | 61 |
MF | Q10 = -0.041MAT + 0.014SOC + 2.72 | 0.33 | 6.30 | <0.01 | 29 |
All | Q10 = -0.047MAT + 0.012SOC + 2.83 | 0.33 | 49.55 | <0.01 | 208 |
表2 土壤呼吸温度敏感性(Q10)与气候(MAT、MAP)和土壤因素(SOC、TN)的多元线性回归
Table 2 Multiple linear regression of the temperature sensitivity of soil respiration (Q10) with climate (MAT, MAP) and soil factors (SOC, TN)
森林类型 Forest type | 回归方程 Regression equation | R2 | F | p | n |
---|---|---|---|---|---|
DBF | Q10 = -0.027MAT + 0.334TN + 2.00 | 0.38 | 13.06 | <0.01 | 46 |
DNF | Q10 = -0.099MAT + 0.066SOC + 2.81 | 0.99 | 99.86 | <0.01 | 6 |
EBF | Q10 = -0.001MAP + 0.451TN + 2.92 | 0.50 | 28.38 | <0.01 | 61 |
ENF | Q10 = -0.060MAT + 0.006SOC + 3.11 | 0.44 | 22.97 | <0.01 | 61 |
MF | Q10 = -0.041MAT + 0.014SOC + 2.72 | 0.33 | 6.30 | <0.01 | 29 |
All | Q10 = -0.047MAT + 0.012SOC + 2.83 | 0.33 | 49.55 | <0.01 | 208 |
[1] | Aronson EL, McNulty SG (2009). Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology, 149, 1791-1799. |
[2] | Bao SD (2000). Soil Agro-Chemistrical Analysis. 3rd ed. Chinese Agriculture Press, Beijing. |
[ 鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[3] |
Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560, 80-83.
DOI URL PMID |
[4] |
Bond-Lamberty B, Thomson A (2010). Temperature-associated increases in the global soil respiration record. Nature, 464, 579-582.
DOI URL PMID |
[5] |
Canadell JG, Raupach MR (2008). Managing forests for climate change mitigation. Science, 320, 1456-1457.
DOI URL PMID |
[6] | CDIAC (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory) (2016). Updated fossil fuel CO2 emissions estimates. http://cdiac.essdive.lbl.gov/. Cited: 2017-02-12. |
[7] |
Chen H, Tian HQ (2005). Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale? Journal of Integrative Plant Biology, 47, 1288-1302.
DOI URL |
[8] | Curiel Yuste J, Janssens IA, Carrara A, Ceulemans R (2004). Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology, 10, 161-169. |
[9] | Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[10] | Davidson EA, Janssens IA, Luo YQ (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154-164. |
[11] | Davidson EA, Savage K, Verchot LV, Navarro R (2002). Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology, 113, 21-37. |
[12] |
Fang C, Smith P, Moncrieff JB, Smith JU (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57-59.
DOI URL PMID |
[13] | Feng JG, Wang JS, Song YJ, Zhu B (2018). Patterns of soil respiration and its temperature sensitivity in grassland ecosystems across China. Biogeosciences, 15, 5329-5341. |
[14] | Fierer N, Colman BP, Schimel JP, Jackson RB (2006). Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Global Biogeochemical Cycles, 20, GB3026. DOI: 10.1029/2005GB002644. |
[15] | Foereid B, Ward DS, Mahowald N, Paterson E, Lehmann J (2014). The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes. Earth System Dynamics, 5, 211-221. |
[16] | Gärdenäs AI, Ågren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Kätterer T, Knicker H, Nilsson SI, Näsholm T, Oglej S, Paustian K, Persson T, Stendahl J (2011). Knowledge gaps in soil carbon and nitrogen interactions: from molecular to global scale. Soil Biology & Biochemistry, 43, 702-717. |
[17] |
Geng Y, Wang YH, Yang K, Wang SP, Zeng H, Baumann F, Kuehn P, Scholten T, He JS (2012). Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns. PLOS ONE, 7, e34968. DOI: 10.1371/journal.pone.0031968.
DOI URL PMID |
[18] |
Giardina CP, Ryan MG (2000). Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 404, 858-861.
DOI URL PMID |
[19] | Jia X, Zha XT, Wu B, Zhang YQ, Chen WJ, Wang XP, Yu HQ, He GM (2013). Temperature response of soil respiration in a Chinese pine plantation: hysteresis and seasonal vs. diel Q10. PLOS ONE, 8, e57858. DOI: 10.1371/journal.pone.0057858. |
[20] | Klimek B, Choczyński Μ, Juszkiewicz A (2009). Scots pine (Pinus sylvestris L.) roots and soil moisture did not affect soil thermal sensitivity. European Journal of Soil Biology, 45, 442-447. |
[21] |
Knapp AK, Hoover DL, Wilcox KR, Avolio ML, Koerner SE, La Pierre KJ, Loik ME, Luo Y, Sala OE, Smith MD (2015). Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biology, 21, 2624-2633.
DOI URL PMID |
[22] | Lellei-Kovács E, Kovács-Láng E, Botta-Dukát Z, Kalapos T, Emmett B, Beier C (2011). Thresholds and interactive effects of soil moisture on the temperature response of soil respiration. European Journal of Soil Biology, 47, 247-255. |
[23] | Lenton TM, Huntingford C (2003). Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Global Change Biology, 9, 1333-1352. |
[24] |
Li JQ, Nie M, Pendall E, Reich PB, Pei JM, Noh NJ, Zhu T, Li B, Fang CM (2019). Biogeographic variation in temperature sensitivity of decomposition in forest soils. Global Change Biology, 26, 1873-1885.
URL PMID |
[25] |
Li JQ, Pei JM, Pendall E, Fang CM, Nie M (2020). Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations. Soil Biology & Biochemistry, 141, 107675. DOI: 10.1016/j.soilbio.2019.107675.
DOI URL |
[26] |
Liu Y, He NP, Zhu JX, Li X, Yu GR, Niu SL, Sun XM, Wen XF (2017). Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23, 3393-3402.
DOI URL PMID |
[27] |
Liu YC, Liu SR, Wan SQ, Wang JX, Luan JW, Wang H (2016). Differential responses of soil respiration to soil warming and experimental throughfall reduction in a transitional oak forest in central China. Agricultural and Forest Meteorology, 226-227, 186-198.
DOI URL |
[28] | Lu F, Hu HF, Sun WJ, Lu F, Hu H, Sun W, Zhu J, Liu G, Zou W, Zhang Q, Shi P, Liu X, Wu X, Zhang L, Wei X, Dai L, Zhang K, Sun Y, Xue S, Zhang W, Xiong D, Deng L, Liu B, Zhou L, Zhang C, Zheng X, Cao J, Huang Y, He N, Zhou G, Bai Y, Xie Z, Tang Z, Wu B, Fang J, Liu G, Yu G (2018). Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proceeding of the National Academy of Science of the United States of America, 115, 4039-4044. |
[29] |
Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne S, Vargas R, Ammann C, Arain MA, Cescatti A, Janssens IA, Migliavacca M, Montagnani L, Richardson AD (2010). Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329, 838-840.
DOI URL PMID |
[30] | Moinet GYK, Hunt JE, Kirschbaum MUF, Morcom CP, Midwood AJ, Millard P (2018). The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biology & Biochemistry, 116, 333-339. |
[31] | Olsson BA, Hansson K, Persson T, Beuker E, Helmisaari HS (2012). Heterotrophic respiration and nitrogen mineralisation in soils of Norway spruce, scots pine and silver birch stands in contrasting climates. Forest Ecology & Management, 269, 197-205. |
[32] | Peng SS, Piao SL, Wang T, Sun JY, Shen ZH (2009). Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biology & Biochemistry, 41, 1008-1014. |
[33] |
Peterson ME, Daniel RM, Danson MJ, Eisenthal R (2007). The dependence of enzyme activity on temperature: determination and validation of parameters. Biochemical Journal, 402, 331-337.
DOI URL PMID |
[34] | Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993). Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7, 811-841. |
[35] |
Raich JW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler PA, Peterson BJ, Grace AL, Moore III B, Vörösmarty CJ (1991). Potential net primary productivity in south America: application of a global modle. Ecological Applications, 1, 399-429.
DOI URL PMID |
[36] | Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005). Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology Letters, 8, 811-818. |
[37] | Reichstein M, Tenhunen J, Roupsar O, Ourcival J, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2002). Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Global Change Biology, 8, 999-1017. |
[38] |
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
URL PMID |
[39] | Schermelleh-Engel K, Moosbrugger H, Müller H (2003). Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8, 23-74. |
[40] |
Schipper LA, Hobbs JK, Rutledge S, Arcus VL (2014). Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Global Change Biology, 20, 3578-3586.
DOI URL |
[41] |
Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20.
DOI URL |
[42] |
Song XZ, Peng CH, Zhao ZY, Zhang ZT, Guo BH, Wang WF, Jiang H, Zhu Q (2014). Quantification of soil respiration in forest ecosystems across China. Atmospheric Environment, 94, 546-551.
DOI URL |
[43] | State Forestry and Grassland Administration (2014). Chinese Forest Resources Report, the Eighth National Forest Resources Inventory. China Forestry Publishing House, Beijing. |
[ 国家林业和草原局 (2014). 中国森林资源报告, 第八次全国森林资源清查. 中国林业出版社, 北京.] | |
[44] | State Forestry and Grassland Administration (2019). How is the forest coverage rate investigated? http://www.forestry.gov.cn/. Cited: 2019-06-17. |
[ 国家林业和草原局 (2019). 森林覆盖率是怎么调查出来的? http://www.forestry.gov.cn/. 2019-06-17引用.] | |
[45] |
Steinbauer MJ, Grytnes JA, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, Winkler M, Bardy-Durchhalter M, Barni E, Bjorkman AD, Breiner FT, Burg S, Czortek P, Dawes MA, Delimat A, Dullinger S, Erschbamer B, Felde VA, Fernández-Arberas O, Fossheim KF, Gómez-García D, Georges D, Grindrud ET, Haider S, Haugum SV, Henriksen H, Herreros MJ, Jaroszewicz B, Jaroszynska F, Kanka R, Kapfer J, Klanderud K, Kühn I, Lamprecht A, Matteodo M, di Cella UM, Normand S, Odland A, Olsen SL, Palacio S, Petey M, Piscová V, Sedlakova B, Steinbauer K, Stöckli V, Svenning JC, Teppa G, Theurillat JP, Vittoz P, Woodin SJ, Zimmermann NE, Wipf S (2018). Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556, 231-234.
DOI URL PMID |
[46] | Van’t Hoff JH (1898). Lectures on Theoretical and Physical Chemistry. Part Ι: Chemical Dynamics. Edward Arnold, London. |
[47] | Wang B, Zha TS, Jia X, Gong JN, Bourque C, Feng W, Tian Y, Wu B, Zhang YQ, Pelto H (2017). Soil water regulates the control of photosynthesis on diel hysteresis between soil respiration and temperature in a desert shrubland. Biogeosciences, 14, 3899-3908. |
[48] | Wang B, Zha TS, Jia X, Wu B, Zhang YQ, Qin SG (2014). Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem. Biogeosciences, 11, 259-268. |
[49] | Wang LP, Wen M, Song JX, Dou XY (2016). Spatial-temporal Variation of Aridity Index during 1961-2014 in China. Journal of Natural Resources, 31, 1488-1498. |
[ 王利平, 文明, 宋进喜, 窦馨逸 (2016). 1961-2014年中国干燥度指数的时空变化研究. 自然资源学报, 31, 1488-1498.] | |
[50] |
Wang QK, Liu SG, Tian P (2018a). Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Global Change Biology, 24, 2841-2849.
DOI URL PMID |
[51] |
Wang X, Piao SL, Ciais P, Janssens IA, Reichstein M, Peng SS, Wang T (2010). Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality? Soil Biology & Biochemistry, 42, 1728-1734.
DOI URL |
[52] | Wang YH, Song C, Yu LF, Mi ZR, Wang SP, Zeng H, Fang CM, Li JY, He JS (2018b). Convergence in temperature sensitivity of soil respiration: evidence from the Tibetan alpine grasslands. Soil Biology & Biochemistry, 122, 50-59. |
[53] | Xu ZF, Tang SS, Xiong L, Yang WQ, Yin HJ, Tu LH, Wu FZ, Chen LH, Tan B (2015). Temperature sensitivity of soil respiration in China’s forest ecosystems: patterns and controls. Applied Soil Ecology, 93, 105-110. |
[54] |
Yan T, Song HH, Wang ZQ, Teramoto M, Wang JS, Liang NS, Ma C, Sun ZZ, Xi Y, Li LL, Peng SS (2019). Temperature sensitivity of soil respiration across multiple time scales in a temperate plantation forest. The Science of the Total Environment, 688, 479-485.
URL PMID |
[55] |
Yvon-Durocher G, Caffrey JM, Cescatti A, Cescatti A, Dossena M, Giorgio PD, Gasol JM, Montoya JM, Pumpanen J, Staehr PA, Trimmer M, Woodward G, Allen AP (2012). Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature, 487, 472-476.
DOI URL PMID |
[56] | Zhao JX, Li RC, Li X, Tian LX (2017). Environmental controls on soil respiration in alpine meadow along a large altitudinal gradient on the central Tibetan Plateau. Catena, 159, 84-92. |
[57] | Zheng TL, Zhu JL, Wang SP, Fang JY (2016). When will China achieve its carbon emission peak? National Science Review, 3, 8-12. |
[58] | Zheng Z, Yu GR, Fu YL, Wang YS, Sun XM, Wang YH (2009). Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: a trans-China based case study. Soil Biology & Biochemistry, 41, 1531-1540. |
[59] | Zhou T, Shi PJ, Hui DF, Luo YQ (2009). Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon-climate feedback. Journal of Geophysical Research, 114, 271-274. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[3] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[4] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[5] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[6] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[7] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[8] | 王晶苑, 魏杰, 温学发. 土壤CO2通量梯度观测技术和方法的理论、假设与应用进展[J]. 植物生态学报, 2022, 46(12): 1523-1536. |
[9] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. |
[10] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[11] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[12] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[13] | 邢鹏, 李彪, 韩一萱, 顾秋锦, 万洪秀. 淡水生态系统对全球变化的响应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 565-574. |
[14] | 周贵尧, 周灵燕, 邵钧炯, 周旭辉. 极端干旱对陆地生态系统的影响: 进展与展望[J]. 植物生态学报, 2020, 44(5): 515-525. |
[15] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19