植物生态学报 ›› 2020, Vol. 44 ›› Issue (9): 973-985.DOI: 10.17521/cjpe.2020.0203
所属专题: 碳储量
胡宗达1,*(), 刘世荣3, 罗明霞1, 胡璟4, 刘兴良2, 李亚非1, 余昊1, 欧定华1
收稿日期:
2020-06-19
修回日期:
2020-08-06
出版日期:
2020-09-20
发布日期:
2020-09-03
通讯作者:
* 胡宗达 E-mail: (huzd98@163.com )基金资助:
HU Zong-Da1,*(), LIU Shi-Rong3, LUO Ming-Xia1, HU Jing4, LIU Xing-Liang2, LI Ya-Fei1, YU Hao1, OU Ding-Hua1
Received:
2020-06-19
Revised:
2020-08-06
Online:
2020-09-20
Published:
2020-09-03
Contact:
HU Zong-Da
Supported by:
摘要:
为了解次生林自然更新演替过程中土壤碳氮含量及酶活性的变化规律, 采用空间代替时间的方法, 在川西亚高山米亚罗林区选取环境条件基本一致的20世纪60、70和80年代采伐迹地自然更新演替的次生林(60-NSF、70-NSF和80-NSF)和岷江冷杉(Abies faxoniana)原始林(对照, CK)为对象, 研究了表层(0-20 cm)土壤碳氮含量和土壤酶活性的关系。结果表明: 表层土壤有机碳(SOC)、可溶性有机碳(DOC)、轻组有机碳(LFOC)含量均随森林植被更新演替呈显著降低趋势, 而全氮(TN)和可溶性有机氮(DON)含量则表现为60-NSF < 80-NSF < 70-NSF, 但70-NSF和80-NSF间差异不显著; 次生林表层土壤有机碳氮及其活性组分含量均低于CK, 其中80-NSF的DOC和DON含量与CK差异不显著。次生林的β-葡萄糖苷酶(βG)、β-N-乙酰氨基葡萄糖苷酶(NAG)和多酚氧化酶(PHO)活性均显著低于CK, 纤维素水解酶(CBH)和过氧化物酶(PEO)活性与CK无显著差异; 天然次生林中, 60-NSF的βG和CBH活性显著低于70-NSF和80-NSF; 80-NSF的NAG活性显著高于60-NSF和70-NSF; 4种林型之间的PEO活性无显著性差异。Pearson相关分析和冗余分析显示, 土壤TN、LFOC和DOC含量与土壤酶活性显著相关, 其中TN含量解释了酶活性变化的65.4%, 说明土壤氮含量变化可能会影响到土壤碳的水解酶活性, 同时也表明土壤微生物优先利用易分解碳和氮。因此, 次生林近60年的天然更新演替引起了TN、LFOC及DOC含量的显著下降, 导致表层土壤某些胞外酶(如βG、CBH和NAG)活性降低。从土壤酶活性角度看, 岷江冷杉原始林比早期演替阶段的次生林(<60 a)更有利于川西亚高山高海拔森林生态系统的碳氮循环。
胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征. 植物生态学报, 2020, 44(9): 973-985. DOI: 10.17521/cjpe.2020.0203
HU Zong-Da, LIU Shi-Rong, LUO Ming-Xia, HU Jing, LIU Xing-Liang, LI Ya-Fei, YU Hao, OU Ding-Hua. Characteristics of soil carbon and nitrogen contents and enzyme activities in sub-alpine secondary forests with different successional stages in Western Sichuan, China. Chinese Journal of Plant Ecology, 2020, 44(9): 973-985. DOI: 10.17521/cjpe.2020.0203
林型 Forest type | 立地特征 Site characteristic | 林型特征 Stand characteristic | |||||||
---|---|---|---|---|---|---|---|---|---|
平均海拔 Mean altitude (m) | 坡向 Slope aspect | 平均坡度 Mean slope (°) | 坡位 Slope position | 林分密度 Stand density (tree·hm-2) | 平均树高 Mean height (m) | 平均胸径 Mean DBH (cm) | 郁闭度 Canopy density | 草本层盖度 Coverage of herb (%) | |
80-NSF | 3 387 | 东北 NE | 22 | 中坡 Middle slope | 2 375 | 6.35 | 10.83 | 0.60 | 65.2 |
70-NSF | 3 312 | 西北 NW | 27 | 中坡 Middle slope | 1 833 | 7.25 | 11.12 | 0.62 | 79.3 |
60-NSF | 3 080 | 东北 NE | 24 | 中坡 Middle slope | 1 583 | 6.83 | 14.17 | 0.68 | 40.5 |
CK | 3 189 | 东北 NE | 25 | 中上坡 Upper-middle slope | 1 633 | 10.56 | 26.70 | 0.76 | 43.3 |
表1 2019年米亚罗林区不同演替阶段天然次生林和岷江冷杉原始林主要林型和立地特征
Table 1 Stand and site characteristics of natural secondary forests and Abies faxoniana primary forest at different stages of succession in 2019 in Miyaluo forest area
林型 Forest type | 立地特征 Site characteristic | 林型特征 Stand characteristic | |||||||
---|---|---|---|---|---|---|---|---|---|
平均海拔 Mean altitude (m) | 坡向 Slope aspect | 平均坡度 Mean slope (°) | 坡位 Slope position | 林分密度 Stand density (tree·hm-2) | 平均树高 Mean height (m) | 平均胸径 Mean DBH (cm) | 郁闭度 Canopy density | 草本层盖度 Coverage of herb (%) | |
80-NSF | 3 387 | 东北 NE | 22 | 中坡 Middle slope | 2 375 | 6.35 | 10.83 | 0.60 | 65.2 |
70-NSF | 3 312 | 西北 NW | 27 | 中坡 Middle slope | 1 833 | 7.25 | 11.12 | 0.62 | 79.3 |
60-NSF | 3 080 | 东北 NE | 24 | 中坡 Middle slope | 1 583 | 6.83 | 14.17 | 0.68 | 40.5 |
CK | 3 189 | 东北 NE | 25 | 中上坡 Upper-middle slope | 1 633 | 10.56 | 26.70 | 0.76 | 43.3 |
酶 Enzyme | 缩写 Abbreviation | 功能 Function | 底物 Substrate |
---|---|---|---|
β-4-葡萄糖苷酶 β-4-glucosidase | βG | 分解易降解碳 Decomposition of labile carbon | 4-MUB-β-D-葡萄糖苷 4- MUB -β-D-glucoside |
纤维素水解酶 Cellulose hydrolysis | CBH | 分解易降解碳 Decomposition of labile carbon | 羧甲基纤维素钠 Sodium carboxymethyl cellulose |
β-4-N-乙酰基氨基葡萄糖苷酶 β-4-N-acetylglucosaminidase | NAG | 分解氮 Hydrolyze nitrogen | 4-MUB-β-D-乙酰基氨基葡萄糖苷 4-MUB-N-acetyl-β-D-glucosaminide |
多酚氧化酶 Phenol oxidase | PHO | 分解难降解碳 Decomposition of recalcitrant carbon | 邻苯三酚 Pyrogallic acid |
过氧化物酶 Peroxidase | PEO | 分解难降解碳 Decomposition of recalcitrant carbon | 邻苯三酚-过氧化氢 Pyrogallol-hydrogen peroxide |
表2 土壤酶的名称、缩写、功能及底物
Table 2 Abbreviations, function and substrates of soil enzymes
酶 Enzyme | 缩写 Abbreviation | 功能 Function | 底物 Substrate |
---|---|---|---|
β-4-葡萄糖苷酶 β-4-glucosidase | βG | 分解易降解碳 Decomposition of labile carbon | 4-MUB-β-D-葡萄糖苷 4- MUB -β-D-glucoside |
纤维素水解酶 Cellulose hydrolysis | CBH | 分解易降解碳 Decomposition of labile carbon | 羧甲基纤维素钠 Sodium carboxymethyl cellulose |
β-4-N-乙酰基氨基葡萄糖苷酶 β-4-N-acetylglucosaminidase | NAG | 分解氮 Hydrolyze nitrogen | 4-MUB-β-D-乙酰基氨基葡萄糖苷 4-MUB-N-acetyl-β-D-glucosaminide |
多酚氧化酶 Phenol oxidase | PHO | 分解难降解碳 Decomposition of recalcitrant carbon | 邻苯三酚 Pyrogallic acid |
过氧化物酶 Peroxidase | PEO | 分解难降解碳 Decomposition of recalcitrant carbon | 邻苯三酚-过氧化氢 Pyrogallol-hydrogen peroxide |
项目 Item | 80-NSF | 70-NSF | 60-NSF | CK |
---|---|---|---|---|
pH | 5.08 ± 0.06a | 5.24 ± 0.16ab | 5.42 ± 0.11bc | 5.54 ± 0.04c |
含水率 Soil water content (%) | 57.65 ± 14.58a | 48.68 ± 2.99a | 23.73 ± 4.50b | 68.47 ± 9.99a |
有机碳含量 Soil organic carbon content (g·kg-1) | 98.07 ± 4.08a | 91.28 ± 5.90a | 47.29 ± 1.88b | 124.38 ± 14.70c |
全氮含量 Soil total nitrogen content (g·kg-1) | 8.22 ± 0.57a | 8.90 ± 0.60a | 3.28 ± 0.15b | 11.70 ± 1.03c |
碳氮比 C:N | 11.95 ± 0.47a | 10.25 ± 0.03b | 14.40 ± 0.28c | 10.61 ± 0.35b |
全磷含量 Soil total phosphorus content (g·kg-1) | 0.78 ± 0.08a | 1.12 ± 0.14bc | 0.93 ± 0.02ad | 1.06 ± 0.05cd |
全钾含量 Soil total potassium content (g·kg-1) | 16.18 ± 0.47a | 21.69 ± 0.48b | 27.26 ± 0.87c | 23.86 ± 0.23d |
可溶性有机碳含量 Dissolved organic carbon content (mg·kg-1) | 123.57 ± 24.89a | 66.08 ± 5.52b | 45.19 ± 9.09b | 139.01 ± 38.74a |
轻组有机碳含量 Light fraction organic carbon content (g·kg-1) | 25.80 ± 9.00a | 20.85 ± 4.75ab | 14.02 ± 1.09b | 40.26 ± 5.99c |
可溶性有机氮含量 Dissolved organic nitrogen content (mg·kg-1) | 40.84 ± 5.35a | 48.29 ± 7.21a | 18.83 ± 5.64b | 39.03 ± 6.33a |
表3 米亚罗林区不同林型的主要土壤理化性质和有效养分含量(平均值±标准偏差, n = 3)
Table 3 Main soil physical and chemical properties and soil available nutrients in different forest types in Miyaluo forest area (mean ± SD, n = 3)
项目 Item | 80-NSF | 70-NSF | 60-NSF | CK |
---|---|---|---|---|
pH | 5.08 ± 0.06a | 5.24 ± 0.16ab | 5.42 ± 0.11bc | 5.54 ± 0.04c |
含水率 Soil water content (%) | 57.65 ± 14.58a | 48.68 ± 2.99a | 23.73 ± 4.50b | 68.47 ± 9.99a |
有机碳含量 Soil organic carbon content (g·kg-1) | 98.07 ± 4.08a | 91.28 ± 5.90a | 47.29 ± 1.88b | 124.38 ± 14.70c |
全氮含量 Soil total nitrogen content (g·kg-1) | 8.22 ± 0.57a | 8.90 ± 0.60a | 3.28 ± 0.15b | 11.70 ± 1.03c |
碳氮比 C:N | 11.95 ± 0.47a | 10.25 ± 0.03b | 14.40 ± 0.28c | 10.61 ± 0.35b |
全磷含量 Soil total phosphorus content (g·kg-1) | 0.78 ± 0.08a | 1.12 ± 0.14bc | 0.93 ± 0.02ad | 1.06 ± 0.05cd |
全钾含量 Soil total potassium content (g·kg-1) | 16.18 ± 0.47a | 21.69 ± 0.48b | 27.26 ± 0.87c | 23.86 ± 0.23d |
可溶性有机碳含量 Dissolved organic carbon content (mg·kg-1) | 123.57 ± 24.89a | 66.08 ± 5.52b | 45.19 ± 9.09b | 139.01 ± 38.74a |
轻组有机碳含量 Light fraction organic carbon content (g·kg-1) | 25.80 ± 9.00a | 20.85 ± 4.75ab | 14.02 ± 1.09b | 40.26 ± 5.99c |
可溶性有机氮含量 Dissolved organic nitrogen content (mg·kg-1) | 40.84 ± 5.35a | 48.29 ± 7.21a | 18.83 ± 5.64b | 39.03 ± 6.33a |
林型 Forest type | βG (nmol×g-1×h-1) | CBH (mg×g-1×h-1) | NAG (nmol×g-1×h-1) | PHO (mg×g-1×h-1) | PEO (mg×g-1×h-1) |
---|---|---|---|---|---|
80-NSF | 22.64 ± 3.83a | 26.15 ± 2.49a | 9.76 ± 0.82a | 38.83 ± 1.59a | 36.19 ± 2.61a |
70-NSF | 22.30 ± 1.23a | 25.66 ± 1.88a | 4.01 ± 0.36b | 35.09 ± 1.56a | 31.24 ± 2.91a |
60-NSF | 6.20 ± 1.69b | 18.53 ± 0.95b | 2.37 ± 0.05b | 34.82 ± 1.04a | 36.69 ± 1.18a |
CK | 31.54 ± 5.51c | 22.60 ± 1.03ab | 12.40 ± 0.56c | 46.02 ± 1.60b | 37.81 ± 1.54a |
表4 米亚罗林区不同林型的土壤酶活性(平均值±标准偏差, n = 3)
Table 4 Soil enzyme activities in different natural secondary forests and the primary Abies faxoniana forest in Miyaluo forest area (mean ± SD, n = 3)
林型 Forest type | βG (nmol×g-1×h-1) | CBH (mg×g-1×h-1) | NAG (nmol×g-1×h-1) | PHO (mg×g-1×h-1) | PEO (mg×g-1×h-1) |
---|---|---|---|---|---|
80-NSF | 22.64 ± 3.83a | 26.15 ± 2.49a | 9.76 ± 0.82a | 38.83 ± 1.59a | 36.19 ± 2.61a |
70-NSF | 22.30 ± 1.23a | 25.66 ± 1.88a | 4.01 ± 0.36b | 35.09 ± 1.56a | 31.24 ± 2.91a |
60-NSF | 6.20 ± 1.69b | 18.53 ± 0.95b | 2.37 ± 0.05b | 34.82 ± 1.04a | 36.69 ± 1.18a |
CK | 31.54 ± 5.51c | 22.60 ± 1.03ab | 12.40 ± 0.56c | 46.02 ± 1.60b | 37.81 ± 1.54a |
项目 Item | DOC 含量 DOC content | DON 含量 DON content | SOC 含量 SOC content | TN含量 TN content | TP含量 TP content | TK含量 TK content | C:N | pH | 土壤 含水率 SWC | H | D | J | E |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
轻组有机碳含量 LFOC content | 0.853** | 0.431 | 0.833** | 0.805** | 0.253 | -0.189 | -0.564 | 0.354 | 0.810** | 0.085 | 0.137 | 0.204 | 0.208 |
可溶性有机碳含量 DOC content | 1 | 0.510 | 0.857** | 0.770** | -0.079 | -0.479 | -0.456 | -0.029 | 0.869** | 0.235 | 0.242 | 0.248 | 0.240 |
可溶性有机氮含量 DON content | 1 | 0.712** | 0.754** | 0.311 | -0.596* | -0.837** | -0.451 | 0.659* | 0.683* | 0.594* | 0.148 | 0.369 | |
有机碳含量 SOC content | 1 | 0.983** | 0.194 | -0.450 | -0.799** | 0.017 | 0.860** | 0.332 | 0.302 | 0.111 | 0.295 | ||
全氮含量 TN content | 1 | 0.329 | -0.392 | -0.885** | 0.061 | 0.847** | 0.386 | 0.334 | 0.052 | 0.342 | |||
全磷含量 TP content | 1 | 0.444 | -0.486 | 0.408 | 0.157 | 0.420 | 0.282 | -0.203 | 0.632* | ||||
全钾含量 TK content | 1 | 0.425 | 0.744** | -0.483 | -0.347 | -0.390 | -0.306 | 0.212 | |||||
碳氮比 C:N | 1 | 0.060 | -0.710** | -0.519 | -0.431 | 0.040 | -0.307 | ||||||
土壤pH Soil pH | 1 | 0.013 | -0.421 | -0.410 | -0.247 | 0.082 | |||||||
土壤含水率 SWC | 1 | 0.340 | 0.280 | 0.051 | 0.222 |
表5 米亚罗林区天然次生林更新演替过程中表层土壤各指标的相关性
Table 5 Correlation among the soil properties in the natural secondary forests in Miyaluo forest area
项目 Item | DOC 含量 DOC content | DON 含量 DON content | SOC 含量 SOC content | TN含量 TN content | TP含量 TP content | TK含量 TK content | C:N | pH | 土壤 含水率 SWC | H | D | J | E |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
轻组有机碳含量 LFOC content | 0.853** | 0.431 | 0.833** | 0.805** | 0.253 | -0.189 | -0.564 | 0.354 | 0.810** | 0.085 | 0.137 | 0.204 | 0.208 |
可溶性有机碳含量 DOC content | 1 | 0.510 | 0.857** | 0.770** | -0.079 | -0.479 | -0.456 | -0.029 | 0.869** | 0.235 | 0.242 | 0.248 | 0.240 |
可溶性有机氮含量 DON content | 1 | 0.712** | 0.754** | 0.311 | -0.596* | -0.837** | -0.451 | 0.659* | 0.683* | 0.594* | 0.148 | 0.369 | |
有机碳含量 SOC content | 1 | 0.983** | 0.194 | -0.450 | -0.799** | 0.017 | 0.860** | 0.332 | 0.302 | 0.111 | 0.295 | ||
全氮含量 TN content | 1 | 0.329 | -0.392 | -0.885** | 0.061 | 0.847** | 0.386 | 0.334 | 0.052 | 0.342 | |||
全磷含量 TP content | 1 | 0.444 | -0.486 | 0.408 | 0.157 | 0.420 | 0.282 | -0.203 | 0.632* | ||||
全钾含量 TK content | 1 | 0.425 | 0.744** | -0.483 | -0.347 | -0.390 | -0.306 | 0.212 | |||||
碳氮比 C:N | 1 | 0.060 | -0.710** | -0.519 | -0.431 | 0.040 | -0.307 | ||||||
土壤pH Soil pH | 1 | 0.013 | -0.421 | -0.410 | -0.247 | 0.082 | |||||||
土壤含水率 SWC | 1 | 0.340 | 0.280 | 0.051 | 0.222 |
项目 Item | β-4-葡萄糖苷酶 β-4-glucosidase | 纤维素水解酶 Cellulose hydrolysis | β-4-N-乙酰基氨基葡萄糖苷酶 β-4-N-acetylglucosaminidase | 多酚氧化酶 Phenol oxidase | 过氧化物酶 Peroxidase |
---|---|---|---|---|---|
土壤pH Soil pH | 0.010 | -0.583* | 0.086 | 0.403 | 0.352 |
土壤含水率 SWC | 0.804** | 0.498 | 0.809** | 0.749** | 0.298 |
全氮含量 TN content | 0.939** | 0.474 | 0.787** | 0.715** | -0.016 |
有机碳含量 SOC content | 0.916** | 0.446 | 0.853** | 0.760** | 0.050 |
碳氮比 C:N | -0.867** | -0.621* | -0.508 | -0.421 | 0.227 |
全磷含量 TP content | 0.244 | 0.132 | -0.124 | 0.237 | -0.057 |
全钾含量 TK content | -0.456 | -0.694* | -0.447 | -0.087 | 0.094 |
轻组有机碳含量 LFOC content | 0.737** | 0.295 | 0.844** | 0.895** | 0.493 |
可溶性有机碳含量 DOC content | 0.722** | 0.374 | 0.908** | 0.832** | 0.422 |
可溶性有机氮含量 DON content | 0.682* | 0.814** | 0.388 | 0.222 | -0.287 |
Shannon-Wiener指数 H | 0.407 | 0.610* | 0.091 | 0.120 | -0.243 |
Simpson指数 D | 0.343 | 0.616* | 0.151 | 0.138 | -0.224 |
Pielou均匀度指数 J | 0.022 | 0.320 | 0.222 | 0.129 | 0.035 |
Margalef丰富度指数 E | 0.330 | 0.119 | 0.074 | 0.317 | 0.047 |
表6 米亚罗林区土壤酶活性与土壤理化性质和物种多样性的相关性
Table 6 Correlation among soil enzyme activity, soil physicochemical properties and species diversity in Miyaluo forest area
项目 Item | β-4-葡萄糖苷酶 β-4-glucosidase | 纤维素水解酶 Cellulose hydrolysis | β-4-N-乙酰基氨基葡萄糖苷酶 β-4-N-acetylglucosaminidase | 多酚氧化酶 Phenol oxidase | 过氧化物酶 Peroxidase |
---|---|---|---|---|---|
土壤pH Soil pH | 0.010 | -0.583* | 0.086 | 0.403 | 0.352 |
土壤含水率 SWC | 0.804** | 0.498 | 0.809** | 0.749** | 0.298 |
全氮含量 TN content | 0.939** | 0.474 | 0.787** | 0.715** | -0.016 |
有机碳含量 SOC content | 0.916** | 0.446 | 0.853** | 0.760** | 0.050 |
碳氮比 C:N | -0.867** | -0.621* | -0.508 | -0.421 | 0.227 |
全磷含量 TP content | 0.244 | 0.132 | -0.124 | 0.237 | -0.057 |
全钾含量 TK content | -0.456 | -0.694* | -0.447 | -0.087 | 0.094 |
轻组有机碳含量 LFOC content | 0.737** | 0.295 | 0.844** | 0.895** | 0.493 |
可溶性有机碳含量 DOC content | 0.722** | 0.374 | 0.908** | 0.832** | 0.422 |
可溶性有机氮含量 DON content | 0.682* | 0.814** | 0.388 | 0.222 | -0.287 |
Shannon-Wiener指数 H | 0.407 | 0.610* | 0.091 | 0.120 | -0.243 |
Simpson指数 D | 0.343 | 0.616* | 0.151 | 0.138 | -0.224 |
Pielou均匀度指数 J | 0.022 | 0.320 | 0.222 | 0.129 | 0.035 |
Margalef丰富度指数 E | 0.330 | 0.119 | 0.074 | 0.317 | 0.047 |
图2 米亚罗林区不同林型土壤酶活性与土壤理化性质和土壤活性有机碳氮冗余分析。CK为岷江冷杉原始林; 80-NSF, 70-NSF和60-NSF分别代表20世纪80、70和60年代砍伐迹地的天然次生林; D, Simpson指数; H, Shannon-Wiener指数。 C:N, 土壤碳氮比; DOC, 可溶性有机碳; DON, 可溶性有机氮; LFOC, 轻组有机碳; pH, 土壤酸碱性; SOC, 土壤有机碳; SWC, 土壤含水率; TN, 全氮; TK, 全钾; βG, β-4-葡萄糖苷酶; CBH, 纤维素水解酶; NAG, β-4-N-乙酰基氨基葡萄糖苷酶; PEO, 过氧化物酶; PHO, 多酚氧化酶。
Fig. 2 Redundancy analysis on the relationship between soil enzyme activity and soil physicochemical properties, dissolved organic carbon and nitrogen, light fraction organic carbon in different forest types in Miyaluo forest area. CK, Abies faxoniana primary forest; 80-NSF, 70-NSF and 60-NSF indicate the natural secondary forest regenerated after logging of the primary forest in 1980s, 1970s and 1960s, respectively. D, Simpson dominance index; H, Shannon-Wiener diversity index. C:N, soil carbon-nitrogen ratio; DOC, dissolved organic carbon; DON, dissolved organic nitrogen; LFOC, light fraction organic carbon; pH, soil acidity-alkalinity; SOC, soil organic carbon; SWC, soil water content; TN, total nitrogen; TK, total potassium. βG, β-4-glucosidase; CBH, cellulose hydrolysis; NAG, β-4-N-acetylglucosaminidase; PEO, peroxidase; PHO, phenol oxidase.
图3 米亚罗林区不同更新演替阶段植被类型多样性指数 (平均值±标准偏差, n = 3)。80-NSF, 70-NSF和60-NSF分别代表20世纪80、70和60年代砍伐迹地的天然次生林, CK为岷江冷杉原始林。
Fig. 3 Diversity index (mean ± SD) of the secondary forests with different successional stages in Miyaluo forest area. 80-NSF, 70-NSF and 60-NSF indicate the natural secondary forest regenerated after logging of the primary forest in 1980s, 1970s and 1960s, respectively. CK indicates the Abies faxoniana primary forest.
[1] |
Adamczyk B, Adamczyk S, Kukkola M, Tamminen P, Smolander A ( 2015). Logging residue harvest may decrease enzymatic activity of boreal forest soils. Soil Biology & Biochemistry, 82, 74-80.
DOI URL |
[2] |
Adamczyk B, Sietiö O-M, Straková P, Prommer J, Wild B, Hagner M, Pihlatie M, Fritze H, Richter A, Heinonsalo J ( 2019). Plant roots increase both decomposition and stable organic matter formation in boreal forest soil. Nature Communications, 10, 3982. DOI: 10.1038/s41467-019- 11993-1.
DOI URL |
[3] |
Bao Y, Gao Y, Zeng XM, Yuan P, Si YT, Chen YM, Chen YY ( 2018). Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China. Chinese Journal of Plant Ecology, 42, 508-516.
DOI URL |
[ 鲍勇, 高颖, 曾晓敏, 袁萍, 司友涛, 陈岳民, 陈滢伊 ( 2018). 中亚热带3种典型森林土壤碳氮含量和酶活性的关系. 植物生态学报, 42, 508-516.]
DOI URL |
|
[4] |
Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A ( 2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry, 58, 216-234.
DOI URL |
[5] |
Chandra LR, Gupta S, Pande V, Singh N ( 2016). Impact of forest vegetation on soil characteristics: a correlation between soil biological and physico-chemical properties. 3 Biotech, 6, 188. DOI: 10.1007/s13205-016-0510-y.
DOI URL |
[6] |
Chen J, Luo Y, Li J, Zhou X, Cao J, Wang R-W, Wang Y, Shelton S, Jin Z, Walker LM, Feng Z, Niu S, Feng W, Jian S, Zhou L ( 2017). Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biology, 23, 1328-1337.
DOI URL |
[7] | Chen QM, Wang ZX, Liu Y, Zheng HF, Li HJ, Wang LF, Chen YM, Chen X, Tang SY ( 2019). Response of soil enzyme activity and stoichiometric ratio to simulated nitrogen deposition in subalpine coniferous forests of western Sichuan. Chinese Journal of Applied & Environmental Biology, 25, 791-800. |
[ 陈倩妹, 王泽西, 刘洋, 郑海峰, 李洪杰, 王利峰, 陈亚梅, 谌贤, 唐实玉 ( 2019). 川西亚高山针叶林土壤酶及其化学计量比对模拟氮沉降的响应. 应用与环境生物学报, 25, 791-800.] | |
[8] |
Côté L, Brown S, Paré D, Fyles J, Bauhus J ( 2000). Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood. Soil Biology & Biochemistry, 32, 1079-1090.
DOI URL |
[9] |
Das C, Mondal NK ( 2019). Temporal and vertical variation of selected extracellular enzyme activities on tree litter degradation of a subtropical forest. Agricultural Research, 8, 84-91.
DOI URL |
[10] |
DeForest JL ( 2009). The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA. Soil Biology & Biochemistry, 41, 1180-1186.
DOI URL |
[11] | del Valle I, Webster TM, Cheng HY, Thies JE, Kessler A, Miller MK, Ball ZT, MacKenzie KR, Masiello CA, Silberg JJ, Lehmann J ( 2020). Soil organic matter attenuates the efficacy of flavonoid-based plant-microbe communication. Science Advances, 6, eaax8254. DOI: 10.1126/ sciadv.aax8254. |
[12] |
Deng L, Wang KB, Chen ML, Shangguan ZP, Sweeney S ( 2013). Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. Catena, 110, 1-7.
DOI URL |
[13] | Dhillon GS, van Rees KCJ ( 2017). Distribution of soil organic carbon in the light and heavy fractions for six shelterbelt species and their adjacent agricultural fields in Saskatchewan. Canadian Journal of Soil Science, 97, 732-744. |
[14] | Dove NC, Stark JM, Newman GS, Hart SC ( 2019). Carbon control on terrestrial ecosystem function across contrasting site productivities: the carbon connection revisited. Ecology, 100, e02695. DOI: 10.1002/ecy.2695. |
[15] |
Fan YX, Yang YS, Yang ZJ, Xie JS, Chen GS, Zhong XJ, Guo JF ( 2013). Seasonal dynamics and content of soil labile organic carbon of mid-subtropical evergreen broadleaved forest during natural succession. Acta Ecologica Sinica, 33, 5751-5759.
DOI URL |
[ 范跃新, 杨玉盛, 杨智杰, 谢锦升, 陈光水, 钟小剑, 郭剑芬 ( 2013). 中亚热带常绿阔叶林不同演替阶段土壤活性有机碳含量及季节动态. 生态学报, 33, 5751-5759.]
DOI URL |
|
[16] |
Feng C, Ma YH, Jin X, Wang Z, Ma Y, Fu SL, Chen HYH ( 2019). Soil enzyme activities increase following restoration of degraded subtropical forests. Geoderma, 351, 180-187.
DOI URL |
[17] |
Fujii K, Uemura M, Hayakawa C, Funakawa S, Kosaki T ( 2013). Environmental control of lignin peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. Soil Biology & Biochemistry, 57, 109-115.
DOI URL |
[18] | Gong L, Liu GH, Li ZS, Ye X, Wang H ( 2017). Altitudinal changes in nitrogen, organic carbon, and its labile fractions in different soil layers in an Abies faxoniana forest in Wolong. Acta Ecologica Sinica, 37, 4696-4705. |
[ 宫立, 刘国华, 李宗善, 叶鑫, 王浩 ( 2017). 川西卧龙岷江冷杉林土壤有机碳组分与氮素关系随海拔梯度的变化特征. 生态学报, 37, 4696-4705.]
DOI URL |
|
[19] |
Gu X, Zhang SJ, Liu ZD, Li LD, Chen JL, Wang LF, Fang X ( 2018). Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China. Chinese Journal of Plant Ecology, 42, 595-608.
DOI URL |
[ 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰 ( 2018). 中亚热带植被恢复对土壤有机碳含量、碳密度的影响. 植物生态学报, 42, 595-608.]
DOI URL |
|
[20] |
Gu X, Zhang SJ, Xiang WH, Li LD, Liu ZD, Sun WJ, Fang X ( 2016). Seasonal dynamics of active soil organic carbon in four subtropical forests in Southern China. Chinese Journal of Plant Ecology, 40, 1064-1076.
DOI URL |
[ 辜翔, 张仕吉, 项文化, 李雷达, 刘兆丹, 孙伟军, 方晰 ( 2016). 中亚热带4种森林类型土壤活性有机碳的季节动态特征. 植物生态学报, 40, 1064-1076.]
DOI URL |
|
[21] |
Hagedorn F, Gavazov K, Alexander JM ( 2019). Above- and belowground linkages shape responses of mountain vegetation to climate change. Science, 365, 1119-1123.
DOI URL |
[22] | Hu S, Zhang Y, Shi RJ, Han SQ, Li H, Xu H ( 2013). Temporal variations of soil microbial biomass and enzyme activities during the secondary succession of primary broadleaved- Pinus koraiensis forests in Changbai Mountains of Northeast. Chinese Journal of Applied Ecology, 24, 366-372. |
[ 胡嵩, 张颖, 史荣久, 韩斯琴, 李慧, 徐慧 ( 2013). 长白山原始红松林次生演替过程中土壤微生物生物量和酶活性变化. 应用生态学报, 24, 366-372.] | |
[23] | Huang YM, Yang WQ, Zhang J ( 2015). Process of leaf litter mass loss and the contributions of soil organisms in Picea aspoerata plantations of western Sichuan. Resources and Environment in the Yangtze Basin, 24, 676-683. |
[ 黄玉梅, 杨万勤, 张健 ( 2015). 川西亚高山云杉叶凋落物质量损失过程及土壤生物的作用. 长江流域资源与环境, 24, 676-683.]
DOI URL |
|
[24] | Jiang FY, Sun H, Lin B, Liu Q ( 2009). Dynamic changes of topsoil organic carbon in subalpine spruce plantation at different succession stages in western Sichuan Province. Chinese Journal of Applied Ecology, 20, 2581-2587. |
[ 姜发艳, 孙辉, 林波, 刘庆 ( 2009). 川西亚高山云杉人工林恢复过程中表层土壤碳动态变化. 应用生态学报, 20, 2581-2587.] | |
[25] |
Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E ( 2000). Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science, 165, 277-304.
DOI URL |
[26] |
Kang H, Kang S, Lee D ( 2009). Variations of soil enzyme activities in a temperate forest soil. Ecological Research, 24, 1137-1143.
DOI URL |
[27] | Kauppi PE, Ausubel JH, Fang J, Mather AS, Sedjo RA, Waggoner PE ( 2006). Returning forests analyzed with the forest identity. Proceedings of the National Academy of Sciences of the United States of America, 103, 17574-17579. |
[28] |
Kooch Y, Sanji R, Tabari M ( 2018). Increasing tree diversity enhances microbial and enzyme activities in temperate Iranian forests. Trees, 32, 809-822.
DOI URL |
[29] |
Li DJ, Niu SL, Luo YQ ( 2012). Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytologist, 195, 172-181.
DOI URL |
[30] |
Li JJ, Zhou XM, Yan JX, Li HJ, He JZ ( 2015). Effects of regenerating vegetation on soil enzyme activity and microbial structure in reclaimed soils on a surface coal mine site. Applied Soil Ecology, 87, 56-62.
DOI URL |
[31] |
Li LQ, Wang D, Liu XY, Zhang B, Liu YZ, Xie T, Du YX, Pan GX ( 2014). Soil organic carbon fractions and microbial community and functions under changes in vegetation: a case of vegetation succession in karst forest. Environmental Earth Sciences, 71, 3727-3735.
DOI URL |
[32] | Li YY, Shao MA ( 2004). The change of plant diversity during natural recovery process of vegetation in Ziwuling area. Acta Ecologica Sinica, 24, 252-260. |
[ 李裕元, 邵明安 ( 2004). 子午岭植被自然恢复过程中植物多样性的变化. 生态学报, 24, 252-260.] | |
[33] | Liu X, Lin TC, Yang Z, Vadeboncoeur MA, Lin C, Xiong D, Lin W, Chen G, Xie J, Li Y, Yang Y ( 2017). Increased litter in subtropical forests boosts soil respiration in natural forests but not plantations of Castanopsis carlesii. Plant and Soil, 418, 141-151. |
[34] |
Liu Y, Zhu G, Hai X, Li J, Shangguan Z, Peng C, Deng L ( 2020). Long-term forest succession improves plant diversity and soil quality but not significantly increase soil microbial diversity: evidence from the Loess Plateau. Ecological Engineering, 142, 105631. DOI: 10.1016/ j.ecoleng.2019.105631.
DOI URL |
[35] | Lu RK ( 2002). Analysis Methods of Soil Agricultural Chemistry. Publishing House of Agricultural Technology, Beijng. |
[ 鲁如坤 (2002). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[36] |
Lucas-Borja ME, Delgado-Baquerizo M ( 2019). Plant diversity and soil stoichiometry regulates the changes in multifunctionality during pine temperate forest secondary succession. Science of the Total Environment, 697, 134204. DOI: 10.1016/j.scitotenv.2019.134204.
DOI URL |
[37] |
Luo XZ, Hou EQ, Zhang LL, Zang XW, Yi YF, Zhang GH, Wen DZ ( 2019). Effects of forest conversion on carbon-degrading enzyme activities in subtropical China. Science of the Total Environment, 696, 133968. DOI: 10.1016/ j.scitotenv.2019.133968.
DOI URL |
[38] |
Lyu M, Li X, Xie J, Homyak PM, Ukonmaanaho L, Yang Z, Liu X, Ruan C, Yang Y ( 2019). Root-microbial interaction accelerates soil nitrogen depletion but not soil carbon after increasing litter inputs to a coniferous forest. Plant and Soil, 444, 153-164.
DOI URL |
[39] | Ma WW, Wang LX, Li N, Zheng DH, Xie LL, Liu Q, Yin CY ( 2019). Dynamic effects of nitrogen deposition on soil enzyme activities in soils with different moisture content. Acta Ecologica Sinica, 39, 7218-7228. |
[ 马伟伟, 王丽霞, 李娜, 郑东辉, 谢路路, 刘庆, 尹春英 ( 2019). 不同水氮水平对川西亚高山林地土壤酶活性的影响. 生态学报, 39, 7218-7228.] | |
[40] | Mayer M, Prescott CE, Abaker WEA, Augusto L, Cécillon L, Ferreira GWD, James J, Jandl R, Katzensteiner K, Laclau J-P, Laganière J, Nouvellon Y, Paré D, Stanturf JA, Vanguelova EI, Vesterdal L ( 2020). Tamm Review: Influence of forest management activities on soil organic carbon stocks: a knowledge synthesis. Forest Ecology and Management, 466, 118127. DOI: 10.1016/j.foreco.2020.118127. |
[41] |
Milcu A, Heim A, Ellis RJ, Scheu S, Manning P ( 2011). Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient. Ecosystems, 14, 710-719.
DOI URL |
[42] |
Mylliemngap W, Nath D, Barik SK ( 2016). Changes in vegetation and nitrogen mineralization during recovery of a montane subtropical broadleaved forest in North-eastern India following anthropogenic disturbance. Ecological Research, 31, 21-38.
DOI URL |
[43] | Ohtsuka T, Shizu Y, Nishiwaki A, Yashiro Y, Koizumi H ( 2010). Carbon cycling and net ecosystem production at an early stage of secondary succession in an abandoned coppice forest. Journal of Plant Research, 123, 393-401. |
[44] | Pang DB, Cui M, Liu YG, Wang GZ, Cao JH, Wang XR, Dan XQ, Zhou JX ( 2019). Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of southwest China. Ecological Engineering, 138, 391-402. |
[45] | Pang XY, Liu SQ, Liu Q, Wu Y, Lin B, He H, Zhang ZJ ( 2003). Influence of plant community succession on soil physical properties during subalpine coniferous plantation rehabilitation in western Sichuan. Journal of Soil and Water Conservation, 17(4), 42-45, 50. |
[ 庞学勇, 刘世全, 刘庆, 吴彦, 林波, 何海, 张宗锦 ( 2003). 川西亚高山针叶林植物群落演替对土壤性质的影响. 水土保持学报, 17(4), 42-45, 50.] | |
[46] |
Pang XY, Ning W, Qing L, Bao WK ( 2009). The relation among soil microorganism, enzyme activity and soil nutrients under subalpine coniferous forest in Western Sichuan. Acta Ecologica Sinica, 29, 286-292.
DOI URL |
[47] |
Post WM, Kwon KC ( 2000). Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 6, 317-327.
DOI URL |
[48] |
Pushkareva E, Eckhardt KU, Hotter V, Frossard A, Leinweber P, Frey B, Karsten U ( 2020). Chemical composition of soil organic matter and potential enzyme activity in the topsoil along a moisture gradient in the High Arctic (Svalbard). Geoderma, 368, 114304. DOI: 10.1016/j.geoderma. 2020. 114304.
DOI URL |
[49] |
Qiao N, Wang J, Xu X, Shen Y, Long X, Hu Y, Schaefer D, Li S, Wang H, Kuzyakov Y ( 2019). Priming alters soil carbon dynamics during forest succession. Biology and Fertility of Soils, 55, 339-350.
DOI URL |
[50] |
Saiya-Cork KR, Sinsabaugh RL, Zak DR ( 2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.
DOI URL |
[51] | Schedlbauer JL, Kavanagh KL ( 2008). Soil carbon dynamics in a chronosequence of secondary forests in northeastern Costa Rica. Forest Ecology and Management, 255, 1326-1335. |
[52] | Shen X, Liu Y, Tang SY, Yang S, Chen YM, Yang L, Zheng HF, Li HJ ( 2017). Characteristics of substrate quality variation at different litter decomposition stages in subalpine forest of Western Sichuan. Acta Botanica Boreali- Occidentalia Sinica , 37, 586-594. |
[ 谌贤, 刘洋, 唐实玉, 杨帅, 陈亚梅, 杨林, 郑海峰, 李洪杰 ( 2017). 川西亚高山森林凋落物不同分解阶段基质质量特征. 西北植物学报, 37, 586-594.] | |
[53] |
Sinsabaugh RL ( 2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology & Biochemistry, 42, 391-404.
DOI URL |
[54] |
Sinsabaugh RL, Belnap J, Findlay SG, Shah JJF, Hill BH, Kuehn KA, Kuske CR, Litvak ME, Martinez NG, Moorhead DL, Warnock DD ( 2014). Extracellular enzyme kinetics scale with resource availability. Biogeochemistry, 121, 287-304.
DOI URL |
[55] |
Smal H, Ligęza S, Pranagal J, Urban D, Pietruczyk-Popławska D ( 2019). Changes in the stocks of soil organic carbon, total nitrogen and phosphorus following afforestation of post-arable soils: a chronosequence study. Forest Ecology and Management, 451, 117536. DOI: 10.1016/j.foreco.2019.117536.
DOI URL |
[56] |
Tang J, Bolstad PV, Martin JG ( 2009). Soil carbon fluxes and stocks in a Great Lakes forest chronosequence. Global Change Biology, 15, 145-155.
DOI URL |
[57] |
Taylor AR, Wang JR, Chen HYH ( 2007). Carbon storage in a chronosequence of red spruce (Picea rubens) forests in central Nova Scotia, Canada. Canadian Journal of Forest Research, 37, 2260-2269.
DOI URL |
[58] | Taylor BN, Chazdon RL, Menge DNL ( 2019). Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology, 100, e02637. DOI: 10.1002/ecy.2637. |
[59] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH ( 2004). Ecological linkages between aboveground and belowground Biota. Science, 304, 1629-1633.
DOI URL |
[60] |
Weintraub MN, Scott-Denton LE, Schmidt SK, Monson RK ( 2007). The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia, 154, 327-338.
DOI URL |
[61] | Xiong HZ, Wang KY, Yang WQ ( 2004). Seasonal variations of soil enzyme activities in fir and birch forests in subalpine area of Western Sichuan. Chinese Journal of Applied & Environmental Biology, 4, 416-420. |
[ 熊浩仲, 王开运, 杨万勤 ( 2004). 川西亚高山冷杉林和白桦林土壤酶活性季节动态. 应用与环境生物学报, 10, 416-420.] | |
[62] |
Xu ZW, Yu GR, Zhang XY, He NP, Wang QF, Wang SZ, Wang RL, Zhao N, Jia YL, Wang CY ( 2017). Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology & Biochemistry, 104, 152-163.
DOI URL |
[63] |
Yang Y, Luo Y, Finzi AC ( 2011). Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytologist, 190, 977-989.
DOI URL |
[64] | Yu Y, Zou L, Sun TT, Guo J, Zhang GQ, Tang QM ( 2014). Relationship between vegetation diversity and soil functional diversity in native pine forests. Pratacultural Science, 31, 1241-1247. |
[ 于洋, 邹莉, 孙婷婷, 郭静, 张国权, 唐庆明 ( 2014). 天然红松林植被多样性与土壤功能多样性的关系. 草业科学, 31, 1241-1247.]
DOI URL |
|
[65] |
Zhang WW, Lu ZT, Yang K, Zhu JJ ( 2017). Impacts of conversion from secondary forests to larch plantations on the structure and function of microbial communities. Applied Soil Ecology, 111, 73-83.
DOI URL |
[66] | Zhang X, Han SJ, Wang SQ, Gu Y, Yue LY, Feng Y, Geng SC, Chen ZJ ( 2016). Change of soil organic carbon fractions at different successional stages of Betula platyphylla forest in Changbai Mountains. Chinese Journal of Ecology, 35, 282-289. |
[ 张雪, 韩士杰, 王树起, 谷越, 岳琳艳, 冯月, 耿世聪, 陈志杰 ( 2016). 长白山白桦林不同演替阶段土壤有机碳组分的变化. 生态学杂志, 35, 282-289.] | |
[67] | Zhang YD, Liu YC, Gu FX, Guo MM, Miao N, Liu SR ( 2019). Litter composition and its dynamic in five main forest types in subalpine areas of west Sichuan, China. Acta Ecologica Sinica, 39, 502-508. |
[ 张远东, 刘彦春, 顾峰雪, 郭明明, 缪宁, 刘世荣 ( 2019). 川西亚高山五种主要森林类型凋落物组成及动态. 生态学报, 39, 502-508.]
DOI URL |
|
[68] |
Zhang YG, Zhang XQ, Liu XD, Xiao Y, Qu LJ, Wu LY, Zhou JZ ( 2007). Microarray-based analysis of changes in diversity of microbial genes involved in organic carbon decomposition following land use/cover changes. FEMS Microbiology Letters, 266, 144-151.
DOI URL |
[69] | Zhang Z, Wang SJ, Li JH, Cao R, Chen MK, Li SH ( 2019). Response of soil readily oxidizable carbon to community succession of Xishuangbanna tropical forests. Acta Ecologica Sinica, 39, 6257-6263. |
[ 张哲, 王邵军, 李霁航, 曹润, 陈闽昆, 李少辉 ( 2019). 土壤易氧化有机碳对西双版纳热带森林群落演替的响应. 生态学报, 39, 6257-6263.] | |
[70] |
Zhou L, Liu S, Shen H, Zhao M, Xu L, Xing A, Fang J ( 2020). Soil extracellular enzyme activity and stoichiometry in China’s forests. Functional Ecology, 34, 1461-1471.
DOI URL |
[71] | Zhou YG, Hao KJ, Li XW, Fan C, Chen LL, Wang X, Wang XH ( 2014). Effect of different land use patterns on seasonal dynamic of soil microbial biomass carbon in the subalpine forest of western Sichuan, China. Journal of Natural Resources, 29, 1944-1956. |
[ 周义贵, 郝凯婕, 李贤伟, 范川, 陈栎霖, 王谢, 王晓红 ( 2014). 川西亚高山不同土地利用类型对土壤微生物量碳动态特征的影响. 自然资源学报, 29, 1944-1956.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[3] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[4] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[5] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[6] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[7] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[8] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[9] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[10] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[11] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[12] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[13] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[14] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[15] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19