植物生态学报 ›› 2021, Vol. 45 ›› Issue (5): 507-515.DOI: 10.17521/cjpe.2020.0231
所属专题: 青藏高原植物生态学:植物-土壤-微生物; 土壤呼吸; 碳储量
董利军1, 李金花1,*(), 陈珊1, 张瑞1, 孙建2, 马妙君1
收稿日期:
2020-07-13
接受日期:
2020-10-23
出版日期:
2021-05-20
发布日期:
2020-12-09
通讯作者:
李金花
作者简介:
*(jinhuali@lzu.edu.cn)基金资助:
DONG Li-Jun1, LI Jin-Hua1,*(), CHEN Shan1, ZHANG Rui1, SUN Jian2, MA Miao-Jun1
Received:
2020-07-13
Accepted:
2020-10-23
Online:
2021-05-20
Published:
2020-12-09
Contact:
LI Jin-Hua
摘要:
土壤碳输入与输出之间的收支差决定土壤有机碳(SOC)含量。若尔盖湿地高寒草甸退化过程中, 土壤碳输入和输出哪个过程对SOC含量的影响占主导作用还不明确。该研究用空间序列代替时间序列的方法研究了若尔盖湿地高寒草甸不同退化阶段(高寒草甸(AM)、轻度退化高寒草甸(SD)和重度退化高寒草甸(HD)) SOC含量变化及原因。首先, 通过测定高寒草甸退化阶段上主要的土壤理化性状、微生物生物量、植物生物量和功能群组成的变化, 分析了退化阶段上土壤碳输入量的变化及原因; 其次, 结合室内土壤碳矿化培养实验结果和研究区的月平均气温以及土壤呼吸温度敏感性(Q10)估算了该区域土壤碳输出, 并分析了其变化原因; 最后, 分析了造成SOC含量变化的主要原因和过程。结果表明: 在退化梯度上, 土壤含水量(SWC)、SOC和全氮(TN)含量、微生物生物量碳氮含量降低; 植物群落组成逐渐从莎草科、禾本科占优势过渡到杂类草占优势, 且植物生物量降低; SOC矿化量降低; 有机碳潜在积累量降低(与AM阶段相比, SD和HD阶段有机碳潜在输入量、输出量和积累量分别降低了16%、18%、15%和59%、63%、41%)。SWC降低引起土壤容重、SOC含量、TN含量、全磷含量、C:N的改变, 进而导致植物功能群分布模式和土壤微生物的变化, 最终引起SOC输入和输出量的降低。SWC降低导致的植物碳潜在输入量的降低是若尔盖湿地高寒草甸退化过程中SOC含量下降的主要原因。
董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析. 植物生态学报, 2021, 45(5): 507-515. DOI: 10.17521/cjpe.2020.0231
DONG Li-Jun, LI Jin-Hua, CHEN Shan, ZHANG Rui, SUN Jian, MA Miao-Jun. Changes in soil organic carbon content and their causes during the degradation of alpine meadows in Zoigê Wetland. Chinese Journal of Plant Ecology, 2021, 45(5): 507-515. DOI: 10.17521/cjpe.2020.0231
草地类型 Grassland type | 优势种 Dominant species | 主要伴生种 Major associated species | 塔头情况 Condition of grass hill | 鼠兔洞穴 Pika cave | 总盖度 Total coverage (%) |
---|---|---|---|---|---|
高寒草甸 Alpine meadow (AM) | 木里薹草 Carex muliensis | 鹅绒委陵菜、矮生嵩草 Potentilla anserine, Kobresia humilis | 塔头高10-20 cm The height of grass hill was 10-20 cm | 无 No | 92 |
轻度退化高寒草甸 Slightly degraded alpine meadow (SD) | 木里薹草 C. muliensis | 鹅绒委陵菜、华扁穗草 P. anserine, Blysmus sinocompressus | 无塔头 No grass hill | 有 Yes | 97 |
重度退化高寒草甸 Heavily degraded alpine meadow (HD) | 二裂委陵菜 P. bifurca | 鹅绒委陵菜、木里薹草 P. anserine, C. muliensis | 无塔头, 出现斑块化裸地, 部分土地沙化 No grass hill, there were patches of bare land, and partially desertifield land | 有 Yes | 64 |
表1 若尔盖湿地高寒草甸退化阶段划分依据
Table 1 Classification basis of degradation stages of alpine meadows in Zoigê Wetland
草地类型 Grassland type | 优势种 Dominant species | 主要伴生种 Major associated species | 塔头情况 Condition of grass hill | 鼠兔洞穴 Pika cave | 总盖度 Total coverage (%) |
---|---|---|---|---|---|
高寒草甸 Alpine meadow (AM) | 木里薹草 Carex muliensis | 鹅绒委陵菜、矮生嵩草 Potentilla anserine, Kobresia humilis | 塔头高10-20 cm The height of grass hill was 10-20 cm | 无 No | 92 |
轻度退化高寒草甸 Slightly degraded alpine meadow (SD) | 木里薹草 C. muliensis | 鹅绒委陵菜、华扁穗草 P. anserine, Blysmus sinocompressus | 无塔头 No grass hill | 有 Yes | 97 |
重度退化高寒草甸 Heavily degraded alpine meadow (HD) | 二裂委陵菜 P. bifurca | 鹅绒委陵菜、木里薹草 P. anserine, C. muliensis | 无塔头, 出现斑块化裸地, 部分土地沙化 No grass hill, there were patches of bare land, and partially desertifield land | 有 Yes | 64 |
图1 若尔盖湿地高寒草甸退化梯度上土壤理化性质变化特征(平均值±标准误)。AM, 高寒草甸; HD, 重度退化高寒草甸; SD, 轻度退化高寒草甸。不同小写字母表示在退化梯度上差异显著(p < 0.05)。
Fig. 1 Soil physicochemical characteristics along degradation gradients (mean ± SE). AM, alpine meadow; HD, heavily degraded alpine meadow; SD, slightly degraded alpine meadow. Different lowercase letters indicate significant difference among the degradation stages (p < 0.05).
图2 植物功能群(禾本科、莎草科、杂类草)重要值与退化梯度主成分分析(PCA)。AM, 高寒草甸; HD, 重度退化高寒草甸; SD, 轻度退化高寒草甸。
Fig. 2 Principal component analysis (PCA) of plant functional groups (grasses, sedges, and forbs) importance value and degradation gradient. AM, alpine meadow; HD, heavily degraded alpine meadow; SD, slightly degraded alpine meadow.
图3 植物功能群重要值(A)和土壤碳累积矿化量(B)与土壤因子的冗余分析(RDA)。C1、C15、C31分别表示第1、15、31天的土壤碳累积矿化量。BD, 容重; MBC, 微生物生物量碳含量; MBN, 微生物生物量氮含量; MBP, 微生物生物量磷含量; SOC, 土壤有机碳含量; SWC, 土壤含水量; TN, 全氮含量; TP, 全磷含量。
Fig. 3 Redundancy analysis (RDA) of plant functional groups importance value (A), cumulative soil carbon mineralization (B) and soil physicochemical properties. C1, C15, and C31 represent the cumulative mineralization amount of soil carbon during 1day, 15 days, and 31 days of incubation, respectively. BD, bulk density; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; MBP, microbial biomass phosphorus content; SOC, soil organic carbon content; SWC, soil water content; TN, total nitrogen content; TP, total phosphorus content.
图4 退化梯度上土壤有机碳潜在输入量、输出量、积累量变化特征(平均值±标准误)。AM, 高寒草甸; HD, 重度退化高寒草甸; SD, 轻度退化高寒草甸。不同小写字母表示该指标在退化梯度上差异显著(p < 0.05)。
Fig. 4 Characteristics of potential input, output, and accumulation of soil organic carbon along degradation gradients (mean ± SE). AM, alpine meadow; HD, heavily degraded alpine meadow; SD, slightly degraded alpine meadow. Different lowercase letters indicate significant difference among the degradation stages (p < 0.05).
[1] | Chang ZQ,Shi ZM,Feng Q,Su YH(2005).Temporal variation of soil respiration on sloping pasture of Heihe River basin and effects of temperature and soil moisture on it.Chinese Journal of Applied Ecology,16, 1603-1606. |
[常宗强,史作民,冯起,苏永红(2005).黑河流域山区牧坡草地土壤呼吸的时间变化及水热因子影响.应用生态学报,16, 1603-1606.] | |
[2] | Chapin III FS,Matson PA,Vitousek PM(2012).Principles of Terrestrial Ecosystem Ecology. 2nd ed.Springer,New York. |
[3] | Chen H(2018).Impact of Water Status on Soil Microbial Biomass and Community Structure in Typical Grasslands in Inner Mongolia. PhD dissertation,China Agriculture University, Beijing. |
[陈昊(2018).水分状况对内蒙古典型草原土壤微生物量及群落结构的影响. 博士学位论文,中国农业大学, 北京.] | |
[4] |
Cong J,Wang XL,Liu X,Zhang YG(2016).The distribution variation and key influencing factors of soil organic carbon of natural deciduous broadleaf forests along the latitudinal gradient.Acta Ecologica Sinica,36, 333-339.
DOI URL |
[5] |
Cox PM,Betts RA,Jones CD,Spall SA,Totterdell IJ(2000).Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model.Nature,408, 184-187.
DOI URL |
[6] | Dlamini P,Chivenge P,Manson A,Chaplot V(2014).Land degradation impact on soil organic carbon and nitrogen stocks of sub-tropical humid grasslands in South Africa.Geoderma, 235-236-372-381. |
[7] |
Dong SK,Wen L,Yi YY,Wang XX,Zhu L,Li XY(2012).Soil-quality effects of grassland degradation and restoration on the Qinghai-Tibetan Plateau.Soil Science Society of America Journal,76, 2256-2264.
DOI URL |
[8] |
Gao Y,Zhou J,Wang LM,Guo JM,Feng JX,Wu H,Lin GH(2019).Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China.Global Ecology and Conservation,17, e00575. DOI:10.1016/j.gecco.2019.e00575.
DOI URL |
[9] | Guo XJ,Du W,Wang X,Yang ZF(2013).Degradation and structure change of humic acids corresponding to water decline in Zoige peatland, Qinghai-Tibet Plateau.Science of the Total Environment, 445-446-231-236. |
[10] | Hu K,Tao JP,Huang K,Hu J,Wang W(2020).Effects of simulated root exudate carbon inputs on the dynamics of microbial communities during litter decomposition.Chinese Journal of Applied and Environmental Biology,26, 417-424. |
[胡凯,陶建平,黄科,胡靖,王微(2020).模拟根系分泌物碳输入对凋落叶分解中微生物群落动态的影响.应用与环境生物学报,26, 417-424.] | |
[11] | Huang XY,Chen KL,Wu CY(2016).Diurnal variation and seasonal dynamics of soil respiration in the alpine meadow in the Qinghai Tibet Plateau.Yunnan Geographic Environment Research,28, 66-71. |
[黄晓宇,陈克龙,吴成永(2016).青藏高原高寒草甸生长季土壤呼吸的昼夜变化及其季节动态.云南地理环境研究,28, 66-71.] | |
[12] |
Jiang WG,Lü J,Wang CC,Chen Z,Liu YH(2017).Marsh wetland degradation risk assessment and change analysis: a case study in the Zoige Plateau, China.Ecological Indicators,82, 316-326.
DOI URL |
[13] |
Jin XY,Qiang HF,Zhao L,Jiang SZ,Cui NB,Cao Y,Feng Y(2020).SPEI-based analysis of spatio-temporal variation characteristics for annual and seasonal drought in the Zoige Wetland, Southwest China from 1961 to 2016.Theoretical and Applied Climatology,139, 711-725.
DOI URL |
[14] |
Lal R(2004).Soil carbon sequestration to mitigate climate change.Geoderma,123, 1-22.
DOI URL |
[15] | Li F(2019).Effects of Fertilization on Organic Carbon Stimulation and Net Carbon Balance in Alpine Meadow Soil. Master degree dissertation,Lanzhou University, Lanzhou. |
[李峰(2019).施肥对高寒草甸土壤有机碳激发效应及净碳平衡的影响. 硕士学位论文,兰州大学, 兰州.] | |
[16] |
Li JH,Hou YL,Zhang SX,Li WJ,Xu DH,Knops JMH,Shi XM(2018).Fertilization with nitrogen and/or phosphorus lowers soil organic carbon sequestration in alpine meadows.Land Degradation and Development,29, 1634-1641.
DOI URL |
[17] |
Li JH,Zhang R,Cheng BH,Ye LF,Li WJ,Shi XM(2021).Effect of nitrogen and phosphorus additions on decomposition and accumulation of soil organic carbon in alpine meadows on the Tibetan Plateau.Land Degradation and Development,32, 1467-1477.
DOI URL |
[18] |
Li ZW,Gao P,Hu XY,Yi YJ,Pan BZ,You YC(2020).Coupled impact of decadal precipitation and evapotranspiration on peatland degradation in the Zoige basin, China.Physical Geography,41, 145-168.
DOI URL |
[19] | Liu W,Zhou HK,Zhou L(2005).Biomass distribution pattern of degraded grassland in alpine meadow.Grassland of China,27, 9-15. |
[刘伟,周华坤,周立(2005).不同程度退化草地生物量的分布模式.中国草地,27, 9-15.] | |
[20] | Liu XM,Luo JF,Chen DC,Zhu XW,Zhou JX(2019).Floristic assembly and dominant population niches in degraded grasslands on the Zoigê Plateau.Journal of Zhejiang A&F University,36, 289-297. |
[刘学敏,罗久富,陈德朝,朱欣伟,周金星(2019).若尔盖高原不同退化程度草地植物种群生态位特征.浙江农林大学学报,36, 289-297.] | |
[21] | Liu YH,Yang YW,Zhang Y(2018).Redundancy analysis of the relationship between plant functional groups and soil factors in the degraded alpine meadow.Journal of Ecology and Rural Environment,34, 1112-1121. |
[刘育红,杨元武,张英(2018).退化高寒草甸植物功能群与土壤因子关系的冗余分析.生态与农村环境学报,34, 1112-1121.] | |
[22] | Liu YJ(2017).Responses of Soil Microbial Community Structure and Function to Water Condition Change in Wetland. Master degree dissertation,Nanchang University, Nanchang. |
[刘亚军(2017).湿地土壤微生物群落结构和功能对水分条件变化的响应. 硕士学位论文,南昌大学, 南昌.] | |
[23] |
Luan JW,Cui LJ,Xiang CH,Wu JH,Song HT,Ma QF(2014).Soil carbon stocks and quality across intact and degraded alpine wetlands in Zoige, east Qinghai-Tibet Plateau.Wetlands Ecology and Management,22, 427-438.
DOI URL |
[24] |
Miller AJ,Schuur EAG,Chadwick OA(2001).Redox control of phosphorus pools in Hawaiian montane forest soils.Geoderma,102, 219-237.
DOI URL |
[25] |
Nie C,Li Y,Niu L,Liu YH,Shao R,Xu X,Tian YQ(2019).Soil respiration and its Q10 response to various grazing systems of a typical steppe in Inner Mongolia, China.Peer J,7, e7112. DOI:10.7717/peerj.7112.
DOI URL |
[26] | Qin SJ,Liu JS,Wang GP(2006).Mechanism of phosphorus availability changing in soil.Chinese Journal of Soil Science,37, 1012-1016. |
[秦胜金,刘景双,王国平(2006).影响土壤磷有效性变化作用机理.土壤通报,37, 1012-1016.] | |
[27] |
Qiu PF,Wu N,Luo P,Wang ZY,Li MH(2009).Analysis of dynamics and driving factors of wetland landscape in Zoige, Eastern Qinghai-Tibetan Plateau.Journal of Mountain Science,6, 42-55.
DOI URL |
[28] |
Song MH,Jiang J,Cao GM,Xu XL(2010).Effects of temperature, glucose and inorganic nitrogen inputs on carbon mineralization in a Tibetan alpine meadow soil.European Journal of Soil Biology,46, 375-380.
DOI URL |
[29] |
Suh S,Lee E,Lee J(2009).Temperature and moisture sensitivities of CO2 efflux from lowland and alpine meadow soils.Journal of Plant Ecology,2, 225-231.
DOI URL |
[30] | Tang MK,Li MF,Zhao J,Chen WW,Suolang D,Sun ZY(2011).Comparative study of the alpine grassland communities in varying degradation in Zoige County, Sichuan Province.Guihaia,31, 775-781. |
[唐明坤,李明富,赵杰,陈薇薇,索朗夺尔基,孙治宇(2011).四川若尔盖县不同退化程度高寒草地群落比较研究.广西植物,31, 775-781.] | |
[31] |
Wang D,Lü YL,Xu L,Zhang HX,Wang RM,He NP(2013).The effect of moisture and temperature on soil C mineralization in wetland and steppe of the Zoige region, China.Acta Ecologica Sinica,33, 6436-6443.
DOI URL |
[王丹,吕瑜良,徐丽,张洪轩,王若梦,何念鹏(2013).水分和温度对若尔盖湿地和草甸土壤碳矿化的影响.生态学报,33, 6436-6443.] | |
[32] | Wang JL,Zhong ZM,Wang ZH,Chen BX,Yu CQ,Hu XX,Shen ZX,Dacizhuoga ,Zhang XZ(2014).Soil C/N distribution characteristics of alpine steppe ecosystem in Qinghai-Tibetan Plateau.Acta Ecologica Sinica,34, 6678-6691. |
[王建林,钟志明,王忠红,陈宝雄,余成群,胡兴祥,沈振西,大次卓嘎,张宪洲(2014).青藏高原高寒草原生态系统土壤碳氮比的分布特征.生态学报,34, 6678-6691.] | |
[33] | Wu PF,Hua C,Wei X(2014).Response of plant functional groups to the de-gradational succession of alpine meadow in Zoigê County.Journal of Southwest University for Nationalities (Natural Science Edition),40, 321-329. |
[34] | [吴鹏飞,华翠,魏雪(2014).若尔盖高寒草甸不同功能群植物数量特征对退化演替的响应.西南民族大学学报(自然科学版),40, 321-329.] |
[35] |
Xu L,Yu SX,He NP,Wen XF,Shi PL,Zhang YJ,Dai JZ,Wang RM(2013).Soil C mineralization and temperature sensitivity in alpine grasslands of the Qinghai-Xizang Plateau.Chinese Journal of Plant Ecology,37, 988-997.
DOI URL |
[徐丽,于书霞,何念鹏,温学发,石培礼,张扬建,代景忠,王若梦(2013).青藏高原高寒草地土壤碳矿化及其温度敏感性.植物生态学报,37, 988-997.] | |
[36] |
Yang G,Peng C,Chen H,Dong F,Wu N,Yang Y,Zhu Q(2017).Qinghai-Tibetan Plateau peatland sustainable. utilization under anthropogenic disturbances and climate change.Ecosystem Health and Sustainability,3, e01263. DOI:10.1002/ehs2.1263.
DOI URL |
[37] |
Yu HY,Zha TG,Zhang XX,Ma LM(2019).Vertical distribution and influencing factors of soil organic carbon in the Loess Plateau, China.Science of the Total Environment,693, 133632. DOI:10.1016/j.scitotenv.2019.133632.
DOI URL |
[38] | Zhang MM,Chen W,Lin L,Zhang DG,Wu YX,Xiao HL(2019).A study of soil nutrient characteristics and soil soluble organic carbon levels in different types of alpine grassland in Qinghai Province.Acta Prataculturae Sinica,28, 20-28. |
[张苗苗,陈伟,林丽,张德罡,吴玉鑫,肖海龙(2019).青海省不同高寒草地土壤主要养分及可溶性有机碳特性研究.草业学报,28, 20-28.] | |
[39] | Zhao YF,Hong MM,Ou YS,Huang Z,Zhang YY,Wang X(2018).The stoichiometric characteristics of soil C, N, P in mountain steppe of eastern Tibetan Plateau.Ecological Science,37, 25-32. |
[赵云飞,洪苗苗,欧延升,黄政,张洋洋,汪霞(2018).青藏高原东部山地草地土壤碳、氮、磷元素计量特征.生态科学,37, 25-32.] | |
[40] |
Zhu XC,Shao MG(2018).Distribution, stock, and influencing factors of soil organic carbon in an alpine meadow in the hinterland of the Qinghai-Tibetan Plateau.Journal of Earth System Science,127, 71. DOI:10.1007/S12040-018-0974-8.
DOI URL |
[1] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[2] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[3] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[4] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[5] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[6] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[7] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[8] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[9] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[10] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[11] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[12] | 李捷, 陈莹莹, 乔福云, 郅堤港, 郭正刚. 高原鼠兔干扰对高寒草甸β多样性的影响[J]. 植物生态学报, 2021, 45(5): 476-486. |
[13] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[14] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[15] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19