植物生态学报 ›› 2021, Vol. 45 ›› Issue (4): 383-393.DOI: 10.17521/cjpe.2021.0001
王奕丹1,2, 李亮2,3, 刘琪璟1,*(), 马泽清2,3,*()
收稿日期:
2021-01-04
接受日期:
2021-03-08
出版日期:
2021-04-20
发布日期:
2021-04-23
通讯作者:
刘琪璟,马泽清
作者简介:
Liu QJ: liuqijing@bjfu.edu.cn基金资助:
WANG Yi-Dan1,2, LI Liang2,3, LIU Qi-Jing1,*(), MA Ze-Qing2,3,*()
Received:
2021-01-04
Accepted:
2021-03-08
Online:
2021-04-20
Published:
2021-04-23
Contact:
LIU Qi-Jing,MA Ze-Qing
Supported by:
摘要:
根周转是地下生态过程的主要驱动力, 根属性指征了物种生态策略, 根寿命与属性是理解生态系统碳氮循环和群落多样性的关键。目前对亚热带常绿阔叶林根周转等生态过程的直接观测资料缺乏。该研究对中亚热带江西樟树试验林场6个树种吸收细根动态进行了2年观测, 获取了2.8万张微根管照片, 分析了吸收细根寿命年际和季节变化特征及其与根形态属性的关系。结果显示: 1)亚热带6个树种间吸收细根寿命变异为4.6倍, 变异系数可达73%。中值寿命排序为: 红豆杉(Taxus wallichiana)(426天) >复羽叶栾树( Koelreuteria bipinnata)(155天) >竹柏( Nageia nagi)(145天) >樟( Cinnamomum camphora)(126天) >东京樱花( Cerasus yedoensis)(93天) >深山含笑( Michelia maudiae)(92天); 2)树木吸收细根寿命年际、季节变异较大, 可能是适应伏秋旱、雨热不同期、年际变化大的亚热带季风气候的结果; 3)吸收细根寿命与直径呈显著正相关关系, 与比根长呈显著负相关关系, 表明根的构建成本可以在一定程度上预测寿命。这些结果为预测亚热带地下生态过程、揭示亚热带常绿阔叶林碳氮循环、物种共存机制提供依据。
王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局. 植物生态学报, 2021, 45(4): 383-393. DOI: 10.17521/cjpe.2021.0001
WANG Yi-Dan, LI Liang, LIU Qi-Jing, MA Ze-Qing. Lifespan and morphological traits of absorptive fine roots across six typical tree species in subtropical China. Chinese Journal of Plant Ecology, 2021, 45(4): 383-393. DOI: 10.17521/cjpe.2021.0001
图1 江西省樟树市亚热带典型树种吸收细根观测系统。A, 样地位点分布。B, 微根管观测装置。
Fig. 1 Observation system of absorptive root processes for subtropical tree species in Zhangshu, Jiangxi Province. A, Spatial distribution of the sampling sites. B, Illustration of minirhizotron.
树种 Tree species | 中值寿命 Median lifespan | 95%置信区间 | 平均寿命 Mean lifespan | 观测细根数 Number observed | 删失细根数 Number censored | |
---|---|---|---|---|---|---|
LCL | UCL | |||||
红豆杉 Taxus wallichiana | 426 ± 103 d | 242 | 426 | 417 ± 21 d | 31 | 17 |
复羽叶栾树 Koelreuteria bipinnata | 155 ± 35 c | 153 | 175 | 216 ± 4 bc | 1 745 | 488 |
竹柏 Nageia nagi | 145 ± 20 bc | 128 | 154 | 178 ± 7 b | 436 | 102 |
樟 Cinnamomum camphora | 126 ± 11 ab | 105 | 188 | 179 ± 12 b | 128 | 54 |
东京樱花 Cerasus yedoensis | 93 ± 7 a | 93 | 96 | 126 ± 3 a | 772 | 155 |
深山含笑 Michelia maudiae | 92 ± 63 ab | 92 | 120 | 180 ± 9 b | 444 | 192 |
表1 亚热带6个典型树种吸收细根寿命格局(平均值±标准误)
Table 1 Absorptive fine root lifespan across six common subtropical tree species (mean ± SE)
树种 Tree species | 中值寿命 Median lifespan | 95%置信区间 | 平均寿命 Mean lifespan | 观测细根数 Number observed | 删失细根数 Number censored | |
---|---|---|---|---|---|---|
LCL | UCL | |||||
红豆杉 Taxus wallichiana | 426 ± 103 d | 242 | 426 | 417 ± 21 d | 31 | 17 |
复羽叶栾树 Koelreuteria bipinnata | 155 ± 35 c | 153 | 175 | 216 ± 4 bc | 1 745 | 488 |
竹柏 Nageia nagi | 145 ± 20 bc | 128 | 154 | 178 ± 7 b | 436 | 102 |
樟 Cinnamomum camphora | 126 ± 11 ab | 105 | 188 | 179 ± 12 b | 128 | 54 |
东京樱花 Cerasus yedoensis | 93 ± 7 a | 93 | 96 | 126 ± 3 a | 772 | 155 |
深山含笑 Michelia maudiae | 92 ± 63 ab | 92 | 120 | 180 ± 9 b | 444 | 192 |
树种 Tree species | 根级 Root order | 直径 Diam (mm) | 比根长 SRL (m·g-1) | 根组织密度 RTD (g·cm-3) | 比根表面积 SRA (cm2·g-1) |
---|---|---|---|---|---|
红豆杉 Taxus wallichiana | 1 | 0.57 ± 0.03 Aa | 19.06 ± 0.81 Aa | 0.21 ± 0.02 Aa | 340.61 ± 27.04 Aa |
2 | 1.14 ± 0.06 Ab | 3.43 ± 0.10 Ab | 0.29 ± 0.03 Aab | 123.26 ± 9.52 Ab | |
复羽叶栾树 Koelreuteria bipinnata | 1 | 0.33 ± 0.00 Aa | 26.62 ± 5.94 Aa | 0.47 ± 0.11 Ba | 275.29 ± 61.28 Aa |
2 | 0.61 ± 0.03 Ab | 7.18 ± 0.11 Ab | 0.49 ± 0.05 Bab | 137.74 ± 9.50 Ab | |
竹柏 Nageia nagi | 1 | 0.45 ± 0.00 Aa | 23.15 ± 0.27 Aa | 0.27 ± 0.00 ABa | 328.68 ± 3.77 Aa |
2 | 0.66 ± 0.02 Ab | 7.27 ± 0.49 Ab | 0.41 ± 0.04 ABab | 151.14 ± 11.97 Ab | |
樟 Cinnamomum camphora | 1 | 0.40 ± 0.01 Aa | 25.61 ± 0.25 Aa | 0.31 ± 0.01 ABa | 323.48 ± 7.77 Aa |
2 | 0.63 ± 0.05 Ab | 8.92 ± 1.08 Ab | 0.40 ± 0.09 ABab | 178.26 ± 35.13 Ab | |
东京樱花 Cerasus yedoensis | 1 | 0.28 ± 0.01 Aa | 35.41 ± 1.39 Aa | 0.45 ± 0.04 Ba | 317.36 ± 19.73 Aa |
2 | 0.71 ± 0.05 Ab | 4.92 ± 0.10 Ab | 0.52 ± 0.07 Bab | 110.46 ± 9.41 Ab | |
深山含笑 Michelia maudiae | 1 | 0.45 ± 0.00 Aa | 28.26 ± 0.64 Aa | 0.23 ± 0.00 Aa | 397.19 ± 8.56 Aa |
2 | 0.70 ± 0.05 Ab | 9.26 ± 0.16 Ab | 0.27 ± 0.05 Aab | 205.60 ± 18.67 Ab |
表2 亚热带6个典型树种吸收细根形态属性特征(平均值±标准误)
Table 2 Morphological traits of absorptive fine root across six common subtropical tree species (mean ± SE)
树种 Tree species | 根级 Root order | 直径 Diam (mm) | 比根长 SRL (m·g-1) | 根组织密度 RTD (g·cm-3) | 比根表面积 SRA (cm2·g-1) |
---|---|---|---|---|---|
红豆杉 Taxus wallichiana | 1 | 0.57 ± 0.03 Aa | 19.06 ± 0.81 Aa | 0.21 ± 0.02 Aa | 340.61 ± 27.04 Aa |
2 | 1.14 ± 0.06 Ab | 3.43 ± 0.10 Ab | 0.29 ± 0.03 Aab | 123.26 ± 9.52 Ab | |
复羽叶栾树 Koelreuteria bipinnata | 1 | 0.33 ± 0.00 Aa | 26.62 ± 5.94 Aa | 0.47 ± 0.11 Ba | 275.29 ± 61.28 Aa |
2 | 0.61 ± 0.03 Ab | 7.18 ± 0.11 Ab | 0.49 ± 0.05 Bab | 137.74 ± 9.50 Ab | |
竹柏 Nageia nagi | 1 | 0.45 ± 0.00 Aa | 23.15 ± 0.27 Aa | 0.27 ± 0.00 ABa | 328.68 ± 3.77 Aa |
2 | 0.66 ± 0.02 Ab | 7.27 ± 0.49 Ab | 0.41 ± 0.04 ABab | 151.14 ± 11.97 Ab | |
樟 Cinnamomum camphora | 1 | 0.40 ± 0.01 Aa | 25.61 ± 0.25 Aa | 0.31 ± 0.01 ABa | 323.48 ± 7.77 Aa |
2 | 0.63 ± 0.05 Ab | 8.92 ± 1.08 Ab | 0.40 ± 0.09 ABab | 178.26 ± 35.13 Ab | |
东京樱花 Cerasus yedoensis | 1 | 0.28 ± 0.01 Aa | 35.41 ± 1.39 Aa | 0.45 ± 0.04 Ba | 317.36 ± 19.73 Aa |
2 | 0.71 ± 0.05 Ab | 4.92 ± 0.10 Ab | 0.52 ± 0.07 Bab | 110.46 ± 9.41 Ab | |
深山含笑 Michelia maudiae | 1 | 0.45 ± 0.00 Aa | 28.26 ± 0.64 Aa | 0.23 ± 0.00 Aa | 397.19 ± 8.56 Aa |
2 | 0.70 ± 0.05 Ab | 9.26 ± 0.16 Ab | 0.27 ± 0.05 Aab | 205.60 ± 18.67 Ab |
图3 亚热带6个典型树种吸收细根不同出生年份(A)、季节(B)及根级(C)的生存曲线。
Fig. 3 Annual (A), seasonal (B) absorptive fine root processes and survival probability of different root order (C) across six common subtropical tree species.
图4 亚热带6个典型树种吸收细根中值寿命与根形态属性的关系。ns, 不显著; *, p < 0.05; **, p < 0.01。
Fig. 4 Relations between morphological traits and median lifespan of absorptive fine root across six common subtropical tree species. ns, not significant; *, p < 0.05; **, p < 0.01.
影响因素 Effect factor | 红豆杉 Taxus wallichiana | 复羽叶栾树 Koelreuteria bipinnata | 竹柏 Nageia nagi | 樟 Cinnamomum camphora | 东京樱花 Cerasus yedoensis | 深山含笑 Michelia maudiae | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | Exp(B) | p | Exp(B) | p | Exp(B) | p | Exp(B) | p | Exp(B) | p | Exp(B) | ||
出生 季节 Birth season | 春季 Spring | 0.157 | 0.378 | 0.001 | 0.639 | 0.792 | 1.055 | 0.013 | 0.046 | 0.152 | 0.478 | 0.642 | 0.823 |
夏季 Summer | 0.000 | 0.000 | 0.425 | 0.426 | 0.826 | 0.931 | 0.916 | 0.102 | 0.449 | 0.037 | 0.410 | ||
秋季 Autumn | 0.825 | 0.644 | 0.620 | 0.930 | 0.021 | 1.640 | 0.397 | 0.414 | 0.379 | 0.598 | 0.384 | 0.671 | |
冬季 Winter | 0.000 | 0.002 | 0.000 | 0.355 | 0.000 | ||||||||
根级 Root order | 0.413 | 0.624 | 0.073 | 1.252 | 0.000 | 0.291 | 0.000 | 9.059 | 0.135 | 1.828 | 0.000 | 3.355 | |
出生年份 Birth year | 0.017 | 0.029 | 0.083 | 0.860 | 0.001 | 1.917 | 0.614 | 1.188 | 0.755 | 0.921 | 0.922 | 0.986 |
表3 3种因素对亚热带不同树种吸收细根寿命的Cox比例风险回归分析
Table 3 Cox analysis for absorptive fine roots lifespan and its drivers across different subtropical tree species
影响因素 Effect factor | 红豆杉 Taxus wallichiana | 复羽叶栾树 Koelreuteria bipinnata | 竹柏 Nageia nagi | 樟 Cinnamomum camphora | 东京樱花 Cerasus yedoensis | 深山含笑 Michelia maudiae | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | Exp(B) | p | Exp(B) | p | Exp(B) | p | Exp(B) | p | Exp(B) | p | Exp(B) | ||
出生 季节 Birth season | 春季 Spring | 0.157 | 0.378 | 0.001 | 0.639 | 0.792 | 1.055 | 0.013 | 0.046 | 0.152 | 0.478 | 0.642 | 0.823 |
夏季 Summer | 0.000 | 0.000 | 0.425 | 0.426 | 0.826 | 0.931 | 0.916 | 0.102 | 0.449 | 0.037 | 0.410 | ||
秋季 Autumn | 0.825 | 0.644 | 0.620 | 0.930 | 0.021 | 1.640 | 0.397 | 0.414 | 0.379 | 0.598 | 0.384 | 0.671 | |
冬季 Winter | 0.000 | 0.002 | 0.000 | 0.355 | 0.000 | ||||||||
根级 Root order | 0.413 | 0.624 | 0.073 | 1.252 | 0.000 | 0.291 | 0.000 | 9.059 | 0.135 | 1.828 | 0.000 | 3.355 | |
出生年份 Birth year | 0.017 | 0.029 | 0.083 | 0.860 | 0.001 | 1.917 | 0.614 | 1.188 | 0.755 | 0.921 | 0.922 | 0.986 |
[1] |
Abramoff RZ, Finzi AC (2015). Are above- and below-ground phenology in sync? New Phytologist, 205, 1054-1061.
DOI URL |
[2] |
Aerts R (1995). The advantages of being evergreen. Trends in Ecology & Evolution, 10, 402-407.
DOI URL |
[3] |
Bai WM, Zhou M, Fang Y, Zhang WH (2017). Differences in spatial and temporal root lifespan of three Stipa grasslands in northern China. Biogeochemistry, 132, 293-306.
DOI URL |
[4] |
Bauhus J, Messier C (1999). Evaluation of fine root length and diameter measurements obtained using RHIZO image analysis. Agronomy Journal, 91, 142-147.
DOI URL |
[5] |
Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389-399.
DOI PMID |
[6] |
Comas LH, Bouma TJ, Eissenstat DM (2002). Linking root traits to potential growth rate in six temperate tree species. Oecologia, 132, 34-43.
DOI PMID |
[7] |
Comas LH, Callahan HS, Midford PE (2014). Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies. Evolutionary and Ecology, 4, 2979-2990.
DOI URL |
[8] |
Comas LH, Eissenstat DM (2004). Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology, 18, 388-397.
DOI URL |
[9] |
Courchesne DN, Wilson AZ, Ryser P (2020). Regional distribution patterns of wetland monocots with different root turnover strategies are associated with local variation in soil temperature. New Phytologist, 226, 86-97.
DOI |
[10] | Eissenstat DM (1997). Trade-offs in root form and function //Jackson LE. Ecology in Agriculture. Academic Press, San Diego,USA. 173-199. |
[11] |
Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33-42.
DOI URL |
[12] | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan. Advances in Ecological Research, 27, 1-60. |
[13] |
Fan PP, Guo DL (2010). Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia, 163, 509-515.
DOI URL |
[14] |
Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010). Evidence of the “plant economics spectrum” in a subarctic flora. Journal of Ecology, 98, 362-373.
DOI URL |
[15] |
Gaudinski J, Trumbore S, Davidson E, Cook A, Markewitz D, Richter D (2001). The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia, 129, 420-429.
DOI PMID |
[16] |
Gordon WS, Jackson RB (2000). Nutrient concentrations in fine roots. Ecology, 81, 275-280.
DOI URL |
[17] |
Gu JC, Wang Y, Fahey TJ, Wang ZQ (2017). Effects of root diameter, branch order, soil depth and season of birth on fine root life span in five temperate tree species. European Journal of Forest Research, 136, 727-738.
DOI URL |
[18] |
Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL (2008a). Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytologist, 177, 443-456.
DOI URL |
[19] |
Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008b). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
DOI URL |
[20] |
Hansson K, Helmisaari HS, Sah SP, Lange H (2013). Fine root production and turnover of tree and understorey vegetation in Scots pine, silver birch and Norway spruce stands in SW Sweden. Forest Ecology and Management, 309, 58-65.
DOI URL |
[21] |
Huang JX, Ling H, Yang ZJ, Lu ZL, Xiong DC, Chen GS, Yang YS ( 2012). Fine root longevity and controlling factors in subtropical Altingia grlilipes and Castanopsis carlesii forests . Acta Ecologica Sinica, 32, 1932-1942.
DOI URL |
[ 黄锦学, 凌华, 杨智杰, 卢正立, 熊德成, 陈光水, 杨玉盛 ( 2012). 细柄阿丁枫和米槠细根寿命影响因素. 生态学报, 32, 1932-1942.] | |
[22] |
Huo CF, Cheng WX (2019). Improved root turnover assessment using field scanning rhizotrons with branch order analysis. Ecosphere, 10, e02793. DOI: 10.1002/ecs2.2793.
DOI URL |
[23] |
Iversen CM (2014). Using root form to improve our understanding of root function. New Phytologist, 203, 707-709.
DOI URL |
[24] |
Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
PMID |
[25] | Kajimoto T (2010). Root system development of larch trees growing on siberian permafrost. Permafrost Ecosystems, 209, 303-330. |
[26] |
Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL (2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872.
DOI URL |
[27] |
Liljeroth E, Bryngelsson T (2001). DNA fragmentation in cereal roots indicative of programmed root cortical cell death. Physiologia Plantarum, 111, 365-372.
DOI URL |
[28] | Ling H, Yuan YD, Yang ZJ, Huang JX, Chen GS, Yang YS ( 2011). Influencing factors of fine root lifespans in two Chinese fir plantations in subtropical China. Acta Ecologica Sinica, 31, 1130-1138. |
[ 凌华, 袁一丁, 杨智杰, 黄锦学, 陈光水, 杨玉盛 ( 2011). 杉木人工林细根寿命的影响因素. 生态学报, 31, 1130-1138.] | |
[29] |
Liu BT, Li HB, Zhu B, Koide RT, Eissenstat DM, Guo DL (2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136.
DOI URL |
[30] | Liu XJ, Trogisch S, He JS, Niklaus PA, Bruelheide H, Tang ZY, Erfmeier A, Scherer-Lorenzen M, Pietsch KA, Yang B, Kühn P, Scholten T, Huang YY, Wang C, Staab M, Leppert KN, Wirth C, Schmid B, Ma KP (2018). Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B: Biological Sciences, 285, 1240. |
[31] |
Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
DOI URL |
[32] |
Majdi H, Damm E, Nylund JE (2001). Longevity of mycorrhizal roots depends on branching order and nutrient availability. New Phytologist, 150, 195-202.
DOI URL |
[33] |
McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM (2012). Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist, 195, 823-831.
DOI URL |
[34] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI URL |
[35] |
McCormack ML, Guo DL (2014). Impacts of environmental factors on fine root lifespan. Frontiers in Plant Science, 5, 205. DOI: 10.3389/fpls.2014.00205.
DOI PMID |
[36] |
Niinemets Ü, Ostonen I (2020). Plant organ senescence above- and belowground in trees: How to best salvage resources for new growth? Tree Physiology, 40, 981-986.
DOI PMID |
[37] | Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG (2004). Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences of the United States of America, 101, 9689-9693. |
[38] |
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
DOI URL |
[39] |
Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
DOI URL |
[40] |
Radville L, McCormack ML, Post E, Eissenstat DM (2016). Root phenology in a changing climate. Journal of Experimental Botany, 67, 3617-3628.
DOI PMID |
[41] |
Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301.
DOI URL |
[42] |
Roumet C, Urcelay C, Díaz S (2006). Suites of root traits differ between annual and perennial species growing in the field. New Phytologist, 170, 357-368.
DOI URL |
[43] |
Ryser P (1996). The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Functional Ecology, 10, 717.
DOI URL |
[44] |
Sun K, McCormack ML, Li L, Ma ZQ, Guo DL (2016). Fast-cycling unit of root turnover in perennial herbaceous plants in a cold temperate ecosystem. Scientific Reports, 6, 19698. DOI: 10.1038/srep19698.
DOI URL |
[45] |
Tierney GL, Fahey TJ (2001). Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest. Plant and Soil, 229, 167-176.
DOI URL |
[46] |
Warren JM, Hanson PJ, Iversen CM, Kumar J, Walker AP, Wullschleger SD (2015). Root structural and functional dynamics in terrestrial biosphere models: evaluation and recommendations. New Phytologist, 205, 59-78.
DOI URL |
[47] |
Weemstra M, Kiorapostolou N, van Ruijven J, Mommer L, de Vries J, Sterck F (2020). The role of fine-root mass, specific root length and life span in tree performance: a whole-tree exploration. Functional Ecology, 34, 575-585.
DOI URL |
[48] |
Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211, 1159-1169.
DOI URL |
[49] |
Wells CE, Glenn DM, Eissenstat DM (2002). Changes in the risk of fine-root mortality with age: a case study in peach, Prunus persica (Rosaceae). American Journal of Botany, 89, 79-87.
DOI URL |
[50] |
Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-397.
DOI URL |
[51] | Wu C, Wang ZQ, Fan ZQ ( 2004). Significance of senescence study on tree roots and its advances. Chinese Journal of Applied Ecology, 15, 1276-1280. |
[ 吴楚, 王政权, 范志强 ( 2004). 树木根系衰老研究的意义与现状. 应用生态学报, 15, 1276-1280.] | |
[52] |
Xia MX, Guo DL, Pregitzer KS (2010). Ephemeral root modules in Fraxinus mandshurica. New Phytologist, 188, 1065-1074.
DOI URL |
[53] | Yu GR, Chen Z, Piao SL, Peng CH, Ciais P, Wang QF, Li XR, Zhu XJ (2014). High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 111, 4910-4915. |
[54] | Yu SQ, Wang JB, Hao QW, Wang WF, Wang Q, Zhan LF ( 2020). Fine root lifespan and influencing factors of four tree species with different life forms. Acta Ecologica Sinica, 40, 3040-3047. |
[ 于水强, 王静波, 郝倩葳, 王维枫, 王琪, 詹龙飞 ( 2020). 四种不同生活型树种细根寿命及影响因素. 生态学报, 40, 3040-3047.] | |
[55] |
Zadworny M, McCormack ML, Żytkowiak R, Karolewski P, Mucha J, Oleksyn J (2017). Patterns of structural and defense investments in fine roots of Scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Global Change Biology, 23, 1218-1231.
DOI PMID |
[56] |
Zheng JX, Huang JX, Wang ZZ, Xiong DC, Yang ZJ, Chen GS ( 2012). Fine root longevity and controlling factors in aPhoebe bournei plantation . Acta Ecologica Sinica, 32, 7532-7539.
DOI URL |
[ 郑金兴, 黄锦学, 王珍珍, 熊德成, 杨智杰, 陈光水 ( 2012). 闽楠人工林细根寿命及其影响因素. 生态学报, 32, 7532-7539.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[4] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[5] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[6] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[7] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[8] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[9] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[10] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[11] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[12] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[13] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[14] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[15] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19