植物生态学报 ›› 2022, Vol. 46 ›› Issue (7): 797-810.DOI: 10.17521/cjpe.2021.0288
所属专题: 稳定同位素生态学
甘子莹1, 王浩1, 丁驰1, 雷梅1, 杨晓刚2, 蔡敬琰1, 丘清燕1,*(), 胡亚林1
收稿日期:
2021-08-11
接受日期:
2021-11-05
出版日期:
2022-07-20
发布日期:
2022-07-15
通讯作者:
丘清燕
作者简介:
* (qingyan_qiu@126.com)基金资助:
GAN Zi-Ying1, WANG Hao1, DING Chi1, LEI Mei1, YANG Xiao-Gang2, CAI Jing-Yan1, QIU Qing-Yan1,*(), HU Ya-Lin1
Received:
2021-08-11
Accepted:
2021-11-05
Online:
2022-07-20
Published:
2022-07-15
Contact:
QIU Qing-Yan
Supported by:
摘要:
外源有机物的输入可以通过正负激发效应影响土壤有机碳(SOC)的矿化。然而, 当前的研究较少考虑不同植物及器官来源可溶性有机质(DOM)输入对土壤激发效应的影响及其作用机理。该研究以武夷山森林土壤为研究对象, 以室内培养的方式向土壤中添加13C标记青冈(Cyclobalanopsis glauca)、杉木(Cunninghamia lanceolata)、木莲(Manglietia fordiana)和相思(Acacia confusa)这4种植物的根和叶来源DOM, 研究不同植物及器官来源DOM输入对土壤激发效应的影响及其作用机理。主要结果: 不同植物及器官来源DOM添加初期加快了SOC的矿化, 呈现正激发效应, 随后转为负激发效应。从整个培养期(90天)的累积激发效应来看, DOM的输入均抑制了SOC的矿化, 使其矿化量减少22%-49%, 其中青冈根DOM输入使SOC的矿化量减少最多, 而由木莲叶DOM输入减少的SOC矿化量最少。DOM输入引起的土壤激发效应强度受不同植物器官影响明显, 具体表现在植物根来源DOM输入所引起的土壤激发效应强度显著高于植物叶来源DOM输入所引起的激发效应强度(相思除外)。DOM的输入总体上提高了土壤微生物生物量碳(MBC)含量、土壤β-葡萄糖苷酶活性、纤维素酶活性以及土壤有效氮含量, 而对微生物群落组成无明显影响。从结构方程模型来看, DOM输入所引起的土壤激发效应主要受土壤微生物对外源碳的利用(13C-MBC)、纤维素酶活性以及土壤有效氮含量的影响, 这些因子的变化可解释植物叶来源DOM和根来源DOM添加处理下土壤激发效应变化的68%和86%。该研究结果表明在土壤氮充足的条件下, DOM的输入可以通过提高微生物生物量、土壤酶活性来加快分解所添加的外源有机物, 从而减少了对SOC的分解。因此, 在该研究中“底物优先利用”是土壤激发效应的主要作用机理。
甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理. 植物生态学报, 2022, 46(7): 797-810. DOI: 10.17521/cjpe.2021.0288
GAN Zi-Ying, WANG Hao, DING Chi, LEI Mei, YANG Xiao-Gang, CAI Jing-Yan, QIU Qing-Yan, HU Ya-Lin. Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms. Chinese Journal of Plant Ecology, 2022, 46(7): 797-810. DOI: 10.17521/cjpe.2021.0288
植物器官 Plant tissue | 碳(C)含量 Carbon (C) content (g·kg-1) | 氮(N)含量 Nitrogen (N) content (g·kg-1) | C:N | 稳定碳同位素比值 δ13C (‰) |
---|---|---|---|---|
CGL | 426.70 ± 1.17a | 3.79 ± 0.05g | 112.54 ± 0.13a | 32.16 ± 0.05g |
CGR | 362.52 ± 6.80c | 4.71 ± 0.04f | 77.03 ± 0.72c | 26.83 ± 0.05h |
CLL | 380.69 ± 17.98b | 4.43 ± 0.15fg | 85.96 ± 1.16b | 40.25 ± 0.01e |
CLR | 355.38 ± 0.29cd | 17.21 ± 0.09c | 20.65 ± 0.12e | 36.37 ± 0.03f |
ACL | 351.61 ± 0.81cd | 50.11 ± 0.56a | 7.02 ± 0.08g | 44.36 ± 0.10d |
ACR | 342.23 ± 3.36de | 15.08 ± 0.08d | 22.69 ± 0.14e | 53.92 ± 0.10a |
MFL | 362.64 ± 0.81c | 7.52 ± 0.24e | 48.28 ± 1.63d | 49.30 ± 0.20c |
MFR | 329.10 ± 0.15e | 19.62 ± 0.10b | 16.77 ± 0.08f | 49.89 ± 0.20b |
表1 亚热带森林不同植物及器官来源可溶性有机质(DOM)的基本化学性质(平均值±标准误, n = 3)
Table 1 Basic chemical properties of dissolved organic matter (DOM) derived from different plant and tissues in a subtropical forest (mean ± SE, n = 3)
植物器官 Plant tissue | 碳(C)含量 Carbon (C) content (g·kg-1) | 氮(N)含量 Nitrogen (N) content (g·kg-1) | C:N | 稳定碳同位素比值 δ13C (‰) |
---|---|---|---|---|
CGL | 426.70 ± 1.17a | 3.79 ± 0.05g | 112.54 ± 0.13a | 32.16 ± 0.05g |
CGR | 362.52 ± 6.80c | 4.71 ± 0.04f | 77.03 ± 0.72c | 26.83 ± 0.05h |
CLL | 380.69 ± 17.98b | 4.43 ± 0.15fg | 85.96 ± 1.16b | 40.25 ± 0.01e |
CLR | 355.38 ± 0.29cd | 17.21 ± 0.09c | 20.65 ± 0.12e | 36.37 ± 0.03f |
ACL | 351.61 ± 0.81cd | 50.11 ± 0.56a | 7.02 ± 0.08g | 44.36 ± 0.10d |
ACR | 342.23 ± 3.36de | 15.08 ± 0.08d | 22.69 ± 0.14e | 53.92 ± 0.10a |
MFL | 362.64 ± 0.81c | 7.52 ± 0.24e | 48.28 ± 1.63d | 49.30 ± 0.20c |
MFR | 329.10 ± 0.15e | 19.62 ± 0.10b | 16.77 ± 0.08f | 49.89 ± 0.20b |
图1 亚热带森林土壤有机碳(SOC)来源、植物可溶性有机质(DOM)来源累积CO2排放动态以及不同碳源对CO2排放的贡献(平均值±标准误, n = 3)。ACL, 相思叶; ACR, 相思根; CGL, 青冈叶; CGR, 青冈根; CK, 对照; CLL, 杉木叶; CLR, 杉木根; MFL, 木莲叶; MFR, 木莲根。**和*分别表示因子对该指标有极显著(p < 0.01)和显著(p < 0.05)影响, ns表示因子对该指标的影响不显著。不同小写字母表示不同处理下来自土壤的CO2排放量差异显著(p < 0.05), 不同大写字母则表示不同处理下来自DOM的CO2排放量差异显著(p < 0.05)。
Fig. 1 Dynamics of cumulative CO2 emissions derived from soil organic carbon (SOC) and dissolved organic matter (DOM) in a subtropical forest and contribution of different carbon sources to CO2 emissions (mean ± SE, n = 3). ACL, Acacia confusa leaf; ACR, Acacia confusa root; CGL, Cyclobalanopsis glauca leaf; CGR, Cyclobalanopsis glauca root; CK, control; CLL, Cunninghamia lanceolata leaf; CLR, Cunninghamia lanceolata root; MFL, Manglietia fordiana leaf; MFR, Manglietia fordiana root. ** and * represent the factor has significant effect on the index at p < 0.01 and p < 0.05, respectively. ns represents no significant effect. Different lowercase letters indicate CO2 emissions derived from soil was significantly different under different treatments (p < 0.05), and different uppercase letters indicate the CO2 emissions derived from DOM were significantly different under different treatments (p < 0.05).
图2 亚热带森林不同植物及器官来源可溶性有机质(DOM)添加对土壤激发速率与土壤累积激发效应的影响(平均值±标准误, n = 3)。ACL, 相思叶; ACR, 相思根; CGL, 青冈叶; CGR, 青冈根; CK, 对照; CLL, 杉木叶; CLR, 杉木根; MFL, 木莲叶; MFR, 木莲根。**和*分别表示因子对该指标有极显著(p < 0.01)和显著(p < 0.05)影响, ns表示因子对该指标的影响不显著。
Fig. 2 Effect of dissolved organic matter (DOM) derived from different plant and tissues in a subtropical forest on soil priming rate and soil cumulative priming effect (mean ± SE, n = 3). ACL, Acacia confusa leaf; ACR, Acacia confusa root; CGL, Cyclobalanopsis glauca leaf; CGR, Cyclobalanopsis glauca root; CK, control; CLL, Cunninghamia lanceolata leaf; CLR, Cunninghamia lanceolata root; MFL, Manglietia fordiana leaf; MFR, Manglietia fordiana root. ** and * represent the factor has significant effect on the index at p < 0.01 and p < 0.05, respectively. ns represents the factor has no significant effect on the index.
图3 亚热带森林不同植物及器官来源可溶性有机质(DOM)添加对土壤β-葡萄糖苷酶和纤维素酶活性的影响(平均值±标准误, n = 3)。ACL, 相思叶; ACR, 相思根; CGL, 青冈叶; CGR, 青冈根; CK, 对照; CLL, 杉木叶; CLR, 杉木根; MFL, 木莲叶; MFR, 木莲根。**和*分别表示因子对该指标有极显著(p < 0.01)和显著(p < 0.05)影响, ns表示因子对该指标的影响不显著。不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 3 Effects of dissolved organic matter (DOM) derived from different plant and tissues in a subtropical forest on soil β-glucosidase and cellobiohydrolase activities (means ± SE, n = 3). ACL, Acacia confusa leaf; ACR, Acacia confusa root; CGL, Cyclobalanopsis glauca leaf; CGR, Cyclobalanopsis glauca root; CK, control; CLL, Cunninghamia lanceolata leaf; CLR, Cunninghamia lanceolata root; MFL, Manglietia fordiana leaf; MFR, Manglietia fordiana root. ** and * represent the factor has significant effect on the index at p < 0.01 and p < 0.05, respectively. ns represents no significant effect. Different lowercase letters indicate significant difference among different treatments (p < 0.05).
图4 亚热带森林不同植物及器官来源可溶性有机质(DOM)添加对土壤微生物生物量碳与13C-MBC含量的影响(平均值±标准误, n = 3)。ACL, 相思叶; ACR, 相思根; CGL, 青冈叶; CGR, 青冈根; CK, 对照; CLL, 杉木叶; CLR, 杉木根; MFL, 木莲叶; MFR, 木莲根。**和*分别表示因子对该指标有极显著(p < 0.01)和显著(p < 0.05)影响, ns表示因子对该指标的影响不显著。不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 4 Effects of dissolved organic matter (DOM) derived from different plant and tissues in a subtropical forest on soil MBC and 13C-MBC content (means ± SE, n = 3). ACL, Acacia confusa leaf; ACR, Acacia confusa root; CGL, Cyclobalanopsis glauca leaf; CGR, Cyclobalanopsis glauca root; CK, control; CLL, Cunninghamia lanceolata leaf; CLR, Cunninghamia lanceolata root; MFL, Manglietia fordiana leaf; MFR, Manglietia fordiana root. ** and * represent the factor has significant effect on the index at p < 0.01 and p < 0.05, respectively. ns represents no significant effect. Different lowercase letters indicate significant difference among different treatments (p < 0.05).
图5 亚热带森林不同植物及器官来源可溶性有机质(DOM)添加对土壤微生物磷酸脂肪酸(PLFAs)含量的影响(平均值±标准误, n = 3)。ACL, 相思叶; ACR, 相思根; CGL, 青冈叶; CGR, 青冈根; CK, 对照; CLL, 杉木叶; CLR, 杉木根; MFL, 木莲叶; MFR, 木莲根。**和*分别表示因子对该指标有极显著(p < 0.01)和显著(p < 0.05)影响, ns表示因子对该指标的影响不显著。
Fig. 5 Effects of dissolved organic matter (DOM) derived from different plant and tissues in a subtropical forest on soil microbial phosphate fatty acids (PLFAs) content (means ± SE, n = 3). G+, Gram-positive bacteria; G-, Gram-negative bacteria. ACL, Acacia confusa leaf; ACR, Acacia confusa root; CGL, Cyclobalanopsis glauca leaf; CGR, Cyclobalanopsis glauca root; CK, control; CLL, Cunninghamia lanceolata leaf; CLR, Cunninghamia lanceolata root; MFL, Manglietia fordiana leaf; MFR, Manglietia fordiana root. ** and * represent the factor has significant effect on the index at p < 0.01 and p < 0.05, respectively. ns represents no significant effect.
图6 亚热带森林不同植物及器官来源可溶性有机质(DOM)添加对土壤有效氮含量的影响(平均值±标准误, n = 3)。ACL, 相思叶; ACR, 相思根; CGL, 青冈叶; CGR, 青冈根; CK, 对照; CLL, 杉木叶; CLR, 杉木根; MFL, 木莲叶; MFR, 木莲根。**和*分别表示因子对该指标有极显著(p < 0.01)和显著(p < 0.05)影响, ns表示因子对该指标的影响不显著。不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 6 Effects of dissolved organic matter (DOM) derived from different plant and tissues in a subtropical forest on soil available nitrogen (means ± SE, n = 3). ACL, Acacia confusa leaf; ACR, Acacia confusa root; CGL, Cyclobalanopsis glauca leaf; CGR, Cyclobalanopsis glauca root; CK, control; CLL, Cunninghamia lanceolata leaf; CLR, Cunninghamia lanceolata root; MFL, Manglietia fordiana leaf; MFR, Manglietia fordiana root. ** and * represent the factor has significant effect on the index at p < 0.01 and p < 0.05, respectively. ns represents no significant effect. Different lowercase letters indicate significant difference among different treatments (p < 0.05).
图7 亚热带森林植物叶和植物根来源可溶性有机质(DOM)输入对土壤激发效应影响的结构方程模型(SEM)。实线表示正向路径, 虚线为负向路径, 线段粗细表示因果关系的强弱。箭头相邻的数字表示关系的标准化路径系数(*, p < 0.05; **, p < 0.01; ***, p < 0.001), 实线箭头和虚线箭头分别表示拟合SEM中的正负相关。双向箭头表示变量之间的协方差。模型解释的总变异量用R2表示。AGFI, 调整拟合优度指数; 13C-MBC, 植物来源微生物生物量碳; GFI, 拟合优度指数; RMSEA, 近似均方根误差。
Fig. 7 Structural equation model (SEM) for the effect of dissolved organic matter (DOM) derived from roots and leaves of plant input on soil priming effect in a subtropical forest. Solid line is positive path and dashed line is negative path. Arrow line thickness indicates the strength of the causal relationship. Numbers adjacent to arrows represented standardized path coefficients of the relationships (*, p < 0.05; **, p < 0.01; ***, p < 0.001). Solid and dashed arrows indicated positive and negative relationships in a fitted SEM, respectively. Double-sided arrows represented covariance between variables. The total variation explained by the model is indicated by R2. AGFI, adjusted goodness of fit index; 13C-MBC, plant-derived microbial biomass carbon; G-, Gram-negative bacteria; GFI, goodness of fit index; RMSEA, root mean square error of approximation.
可溶性有机质来源 Dissolved organic matter source | 土壤生化指标 Soil biochemical index | 标准化直接效应值 Standardized direct effect | 标准化间接效应值 Standardized indirect effect | 标准化总效应值 Standardized total effect | p |
---|---|---|---|---|---|
叶 Leaf | 土壤有效氮 Soil available nitrogen | 0.000 | 0.466 | 0.466 | <0.01 |
细菌 Bacteria | -0.121 | -0.078 | -0.199 | <0.05 | |
纤维素酶 Cellobiohydrolase | -0.547 | 0.000 | -0.547 | <0.01 | |
植物来源微生物生物量碳 13C-MBC | -0.346 | -0.233 | -0.579 | <0.01 | |
根 Root | 革兰氏阴性菌 G- | 0.000 | -0.122 | -0.122 | <0.01 |
真菌 Fungi | 0.162 | 0.000 | 0.162 | <0.01 | |
植物来源微生物生物量碳 13C-MBC | -0.483 | -0.344 | -0.827 | <0.01 | |
纤维素酶 Cellobiohydrolase | -0.413 | 0.000 | -0.413 | <0.01 | |
土壤有效氮 Soil available nitrogen | 0.248 | 0.000 | 0.248 | <0.01 |
表2 亚热带森林土壤激发效应与土壤生化指标的关系
Table 2 Relationship between soil priming effect and soil biochemical indices in a subtropical forest
可溶性有机质来源 Dissolved organic matter source | 土壤生化指标 Soil biochemical index | 标准化直接效应值 Standardized direct effect | 标准化间接效应值 Standardized indirect effect | 标准化总效应值 Standardized total effect | p |
---|---|---|---|---|---|
叶 Leaf | 土壤有效氮 Soil available nitrogen | 0.000 | 0.466 | 0.466 | <0.01 |
细菌 Bacteria | -0.121 | -0.078 | -0.199 | <0.05 | |
纤维素酶 Cellobiohydrolase | -0.547 | 0.000 | -0.547 | <0.01 | |
植物来源微生物生物量碳 13C-MBC | -0.346 | -0.233 | -0.579 | <0.01 | |
根 Root | 革兰氏阴性菌 G- | 0.000 | -0.122 | -0.122 | <0.01 |
真菌 Fungi | 0.162 | 0.000 | 0.162 | <0.01 | |
植物来源微生物生物量碳 13C-MBC | -0.483 | -0.344 | -0.827 | <0.01 | |
纤维素酶 Cellobiohydrolase | -0.413 | 0.000 | -0.413 | <0.01 | |
土壤有效氮 Soil available nitrogen | 0.248 | 0.000 | 0.248 | <0.01 |
土壤基本理化性质 Basic properties of the study soil | 平均值 Mean |
---|---|
土壤有机碳含量 SOC content (g·kg-1) | 12.30 |
总氮含量 TN content (g·kg-1) | 2.07 |
硝态氮含量 NO3--N content (mg N·kg-1) | 0.79 |
铵态氮含量 NH4+-N content (mg N·kg-1) | 11.56 |
微生物生物量碳含量 MBC content (mg·kg-1) | 330.86 |
微生物生物量氮含量 MBN content (mg·kg-1) | 55.93 |
微生物碳/微生物氮 MBC:MBN | 5.92 |
13C (‰) | -23.39 |
附录I 亚热带森林实验土壤(0-20 cm)基本理化性质
Supplement I Basic properties of the study soil in a subtropical forest (0-20 cm)
土壤基本理化性质 Basic properties of the study soil | 平均值 Mean |
---|---|
土壤有机碳含量 SOC content (g·kg-1) | 12.30 |
总氮含量 TN content (g·kg-1) | 2.07 |
硝态氮含量 NO3--N content (mg N·kg-1) | 0.79 |
铵态氮含量 NH4+-N content (mg N·kg-1) | 11.56 |
微生物生物量碳含量 MBC content (mg·kg-1) | 330.86 |
微生物生物量氮含量 MBN content (mg·kg-1) | 55.93 |
微生物碳/微生物氮 MBC:MBN | 5.92 |
13C (‰) | -23.39 |
[1] |
Ahirwal J, Maiti SK, Singh AK (2017). Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India. Science of the Total Environment, 583, 153-162.
DOI URL |
[2] |
Averill C, Hawkes CV (2016). Ectomycorrhizal fungi slow soil carbon cycling. Ecology Letters, 19, 937-947.
DOI PMID |
[3] |
Batjes NH (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151-163.
DOI URL |
[4] |
Blagodatskaya E, Khomyakov N, Myachina O, Bogomolova I, Blagodatsky S, Kuzyakov Y (2014). Microbial interactions affect sources of priming induced by cellulose. Soil Biology & Biochemistry, 74, 39-49.
DOI URL |
[5] |
Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y (2007). Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Applied Soil Ecology, 37, 95-105.
DOI URL |
[6] |
Blagodatskaya Е, Kuzyakov Y (2008). Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils, 45, 115-131.
DOI URL |
[7] | Chen FL, Jiang B, Zhang K, Zheng H, Xiao Y, Ouyang ZY, Tu NM (2011). Relationships between initial chemical composition of forest leaf litters and their decomposition rates in degraded red soil hilly region of Southern China. Chinese Journal of Applied Ecology, 22, 565-570. |
[陈法霖, 江波, 张凯, 郑华, 肖燚, 欧阳志云, 屠乃美 (2011). 退化红壤丘陵区森林凋落物初始化学组成与分解速率的关系. 应用生态学报, 22, 565-570.] | |
[8] |
Chen RR, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014). Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology, 20, 2356-2367.
DOI URL |
[9] |
Cheng WX, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201, 31-44.
DOI URL |
[10] | Cleveland CC, Neff JC, Townsend AR, Hood E (2004). Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems, 7, 175-285. |
[11] |
Du LS, Zhu ZK, Qi YT, Zou DS, Zhang GL, Zeng XY, Ge TD, Wu JS, Xiao ZH (2020). Effects of different stoichiometric ratios on mineralisation of root exudates and its priming effect in paddy soil. Science of the Total Environment, 743, 140808. DOI: 10.1016/j.scitotenv.2020.140808.
DOI URL |
[12] |
Fang Y, Nazaries L, Singh BK, Singh BP (2018). Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Global Change Biology, 24, 2775-2790.
DOI URL |
[13] |
Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004). Carbon input to soil may decrease soil carbon content. Ecology Letters, 7, 314-320.
DOI URL |
[14] |
Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011). Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology & Biochemistry, 43, 86-96.
DOI URL |
[15] |
Frostegård Å, Tunlid A, Bååth E (2011). Use and misuse of PLFA measurements in soils. Soil Biology & Biochemistry, 43, 1621-1625.
DOI URL |
[16] |
Gregorich EG, Beare MH, Stoklas U, St-Georges P (2003). Biodegradability of soluble organic matter in maize- cropped soils. Geoderma, 113, 237-252.
DOI URL |
[17] |
Guenet B, Danger M, Abbadie L, Lacroix G (2010). Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology, 91, 2850-2861.
DOI URL |
[18] |
Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC (2004). Carbon sequestration in ecosystems: the role of stoichiometry. Ecology, 85, 1179-1192.
DOI URL |
[19] |
Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000). Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science, 165, 277-304.
DOI URL |
[20] |
Kuzyakov Y (2002). Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165, 382-396.
DOI URL |
[21] |
Kuzyakov Y (2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371.
DOI URL |
[22] |
Liang X, Yuan J, Yang E, Meng J (2017). Responses of soil organic carbon decomposition and microbial community to the addition of plant residues with different C:N ratio. European Journal of Soil Biology, 82, 50-55.
DOI URL |
[23] | Liu SY, Liang AZ, Yang XM, Zhang XP, Jia SX, Chen XW, Zhang SX, Sun BJ, Chen SL (2015). Effects of different residue part inputs of corn straws on CO2 efflux and microbial biomass in clay loam and sandy loam black soils. Environmental Science, 36, 2686-2694. |
[刘四义, 梁爱珍, 杨学明, 张晓平, 贾淑霞, 陈学文, 张士秀, 孙冰洁, 陈升龙 (2015). 不同部位玉米秸秆对两种质地黑土CO2排放和微生物量的影响. 环境科学, 36, 2686-2694.] | |
[24] |
Lü MK, Xie JS, Wang C, Guo JF, Wang MH, Liu XF, Chen Y, Chen GS, Yang YS (2015). Forest conversion stimulated deep soil C losses and decreased C recalcitrance through priming effect in subtropical China. Biology and Fertility of Soils, 51, 857-867.
DOI URL |
[25] |
Luo D, Shi ZM, Tang JC, Liu SR, Lu LH (2014). Soil microbial community structure of monoculture and mixed plantation stands of native tree species in south subtropical China. Chinese Journal of Applied Ecology, 25, 2543-2550.
PMID |
[罗达, 史作民, 唐敬超, 刘世荣, 卢立华 (2014). 南亚热带乡土树种人工纯林及混交林土壤微生物群落结构. 应用生态学报, 25, 2543-2550.]
PMID |
|
[26] |
Lyu MK, Xie JS, Vadeboncoeur MA, Wang MH, Qiu X, Ren YB, Jiang MH, Yang YS, Kuzyakov Y (2018). Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils. Biology and Fertility of Soils, 54, 925-934.
DOI URL |
[27] |
Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008). The global stoichiometry of litter nitrogen mineralization. Science, 321, 684-686.
DOI URL |
[28] |
Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ (2009). Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Applied Soil Ecology, 42, 183-190.
DOI URL |
[29] |
Perveen N, Barot S, Maire V, Cotrufo MF, Shahzad T, Blagodatskaya E, Stewart CE, Ding WX, Siddiq MR, Dimassi B, Mary B, Fontaine S (2019). Universality of priming effect: an analysis using thirty five soils with contrasted properties sampled from five continents. Soil Biology & Biochemistry, 134, 162-171.
DOI URL |
[30] |
Qiao N, Schaefer D, Blagodatskaya E, Zou XM, Xu XL, Kuzyakov Y (2014). Labile carbon retention compensates for CO2 released by priming in forest soils. Global Change Biology, 20, 1943-1954.
DOI PMID |
[31] |
Qiu QY, Wu LF, Li BB (2019). Crop residue-derived dissolved organic matter accelerates the decomposition of native soil organic carbon in a temperate agricultural ecosystem. Acta Ecologica Sinica, 39, 69-76.
DOI URL |
[32] | Qiu QY, Yang Y, Wang H, Hu YL (2020). Effects of labile organic carbon application rates on the priming effect at different soil depths in an evergreen broadleaved forest of Wuyi Mountain. Chinese Journal of Ecology, 39, 1153-1163. |
[丘清燕, 杨钰, 王浩, 胡亚林 (2020). 易分解有机碳输入量对武夷山常绿阔叶林不同土层深度土壤激发效应的影响. 生态学杂志, 39, 1153-1163.] | |
[33] |
Shahbaz M, Kuzyakov Y, Heitkamp F (2017a). Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls. Geoderma, 304, 76-82.
DOI URL |
[34] |
Shahbaz M, Kuzyakov Y, Sanaullah M, Heitkamp F, Zelenev V, Kumar A, Blagodatskaya E (2017b). Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biology and Fertility of Soils, 53, 287-301.
DOI URL |
[35] | Shao YJ, Yu MX, Jiang J, Cao NN, Chu GW, Yan JH (2017). Status and dynamic of soil C, N and P of three forest succession gradient in Dinghushan. Journal of Tropical and Subtropical Botany, 25, 523-530. |
[邵宜晶, 俞梦笑, 江军, 曹楠楠, 褚国伟, 闫俊华 (2017). 鼎湖山3种演替阶段森林土壤C、N、P现状及动态. 热带亚热带植物学报, 25, 523-530.] | |
[36] | Song XZ, Jiang H, Yu SQ, Ma YD, Zhou GM, Dou RP, Guo PP (2009). Litter decomposition of dominant plant species in successional stages in mid-subtropical zone. Chinese Journal of Applied Ecology, 20, 537-542. |
[宋新章, 江洪, 余树全, 马元丹, 周国模, 窦荣鹏, 郭培培 (2009). 中亚热带森林群落不同演替阶段优势种凋落物分解试验. 应用生态学报, 20, 537-542.] | |
[37] |
Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
DOI URL |
[38] |
Wan JJ, Guo JF, Ji SR, Ren WL, Si YT, Yang YS (2015). Effects of different sources of dissolved organic matter on soil CO2 emission in subtropical forests. Chinese Journal of Plant Ecology, 39, 674-681.
DOI URL |
[万菁娟, 郭剑芬, 纪淑蓉, 任卫岭, 司友涛, 杨玉盛 (2015). 不同来源可溶性有机物对亚热带森林土壤CO2排放的影响. 植物生态学报, 39, 674-681.]
DOI |
|
[39] |
Wang H, Xu WH, Hu GQ, Dai WW, Jiang P, Bai E (2015). The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest. Oecologia, 178, 1239-1250.
DOI PMID |
[40] | Wang H, Yang Y, Xi D, Qiu QY, Hu YL (2020). Impacts of labile organic carbon input on the priming effect of three forest soils in Wuyi Mountain. Acta Ecologica Sinica, 40, 9184-9194. |
[王浩, 杨钰, 习丹, 丘清燕, 胡亚林 (2020). 易分解有机碳输入量对武夷山不同林型土壤激发效应的影响. 生态学报, 40, 9184-9194.] | |
[41] |
Wang QK, Liu SP, Wang SL (2013). Debris manipulation alters soil CO2 efflux in a subtropical plantation forest. Geoderma, 192, 316-322.
DOI URL |
[42] |
Wild B, Schnecker J, Alves RJE, Barsukov P, Bárta J, Čapek P, Gentsch N, Gittel A, Guggenberger G, Lashchinskiy N, Mikutta R, Rusalimova O, Šantrůčková H, Shibistova O, Urich T, et al. (2014). Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biology & Biochemistry, 75, 143-151.
DOI URL |
[43] |
Xu YD, Ding F, Gao XD, Wang Y, Li M, Wang JK (2019). Mineralization of plant residues and native soil carbon as affected by soil fertility and residue type. Journal of Soils and Sediments, 19, 1407-1415.
DOI URL |
[44] |
Yin HJ, Phillips RP, Liang RB, Xu ZF, Liu Q (2016). Resource stoichiometry mediates soil C loss and nutrient transformations in forest soils. Applied Soil Ecology, 108, 248-257.
DOI URL |
[45] | Zhang L, Jia SX, Li XL, Lu YM, Liu XF, Guo JF (2021). Effects of litter and root inputs on soil organic carbon fractions in a subtropical natural forest of Castanopsis carlesii. Journal of Soil and Water Conservation, 35, 244-251. |
[张磊, 贾淑娴, 李啸灵, 陆宇明, 刘小飞, 郭剑芬 (2021). 凋落物和根系输入对亚热带米槠天然林土壤有机碳组分的影响. 水土保持学报, 35, 244-251.] | |
[46] |
Zhang WD, Wang SL (2012). Effects of NH4+ and NO3- on litter and soil organic carbon decomposition in a Chinese fir plantation forest in South China. Soil Biology & Biochemistry, 47, 116-122.
DOI URL |
[47] | Zhang Z, Cai XZ, Tang CD, Guo JF (2017). Priming effect of dissolved organic matter in the surface soil of a Cunninghamia lanceolata plantation. Acta Ecologica Sinica, 37, 7660-7667. |
[张政, 蔡小真, 唐偲頔, 郭剑芬 (2017). 可溶性有机质输入对杉木人工林表层土壤有机碳矿化的激发效应. 生态学报, 37, 7660-7667.] | |
[48] |
Zhu ZK, Zeng GJ, Ge TD, Hu YJ, Tong CL, Shibistova O, He XH, Wang J, Guggenberger G, Wu JS (2016). Fate of rice shoot and root residues, rhizodeposits, and microbe- assimilated carbon in paddy soil-Part 1: decomposition and priming effect. Biogeosciences, 13, 4481-4489.
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[3] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[4] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[5] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[6] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[7] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[8] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[9] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[10] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[11] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[12] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[13] | 梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响[J]. 植物生态学报, 2020, 44(12): 1273-1284. |
[14] | 邹瓒, 陈劲松, 李洋, 宋会兴. 光合产物传输方向对蓉城竹根际微生物过程的影响[J]. 植物生态学报, 2018, 42(8): 863-872. |
[15] | 魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄. 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响[J]. 植物生态学报, 2018, 42(6): 692-702. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19