植物生态学报 ›› 2020, Vol. 44 ›› Issue (12): 1203-1214.DOI: 10.17521/cjpe.2020.0318
李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀*()
收稿日期:
2020-09-21
接受日期:
2020-11-04
出版日期:
2020-12-20
发布日期:
2021-04-01
通讯作者:
刘菊秀
作者简介:
*(ljxiu@scbg.ac.cn)基金资助:
LI Xu, WU Ting, CHENG Yan, TAN Na-Dan, JIANG Fen, LIU Shi-Zhong, CHU Guo-Wei, MENG Ze, LIU Ju-Xiu*()
Received:
2020-09-21
Accepted:
2020-11-04
Online:
2020-12-20
Published:
2021-04-01
Contact:
LIU Ju-Xiu
Supported by:
摘要:
以红枝蒲桃(Syzygium rehderianum)、海南红豆(Ormosia pinnata)、红锥(Castanopsis hystrix)和木荷(Schima superba) 4种南亚热带常绿阔叶林典型树种为研究对象, 采用红外-箱式增温的方法, 研究4个树种叶片气孔性状(表征气孔调节能力)、叶片解剖结构(表征叶片组织调节能力)和光合特征(表征养分维持能力)对增温的响应情况, 比较不同树种在增温背景下的生理生态适应能力, 为预测该地区森林植物在全球变暖情形下的生长变化趋势提供理论依据。结果表明: 增温后, 红枝蒲桃叶片海绵组织厚度减小, 且光合氮利用效率(PNUE)和光合磷利用效率(PPUE)降低; 海南红豆气孔导度增大、气孔密度减小以及叶片厚度和栅栏组织厚度减小, 同时光合速率、PNUE和PPUE升高; 红锥气孔大小缩小, 但光合速率不变; 木荷气孔增大而密度减小, 栅栏组织厚度减小, 光合速率、PNUE和PPUE降低。综上所述, 红枝蒲桃、海南红豆和木荷能够通过降低叶片厚度来适应高温环境, 不同物种的气孔调节、养分维持、光合速率和光合养分利用效率对增温的响应存在差异。增温有利于固氮植物海南红豆的生长, 但不利于传统优势树种木荷和红枝蒲桃的生长。因此, 在未来气候变暖的情况下, 固氮植物海南红豆由于具有较强的适应能力, 在南亚热带常绿阔叶林中可能会取代木荷和红枝蒲桃等成为新的优势树种。
李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较. 植物生态学报, 2020, 44(12): 1203-1214. DOI: 10.17521/cjpe.2020.0318
LI Xu, WU Ting, CHENG Yan, TAN Na-Dan, JIANG Fen, LIU Shi-Zhong, CHU Guo-Wei, MENG Ze, LIU Ju-Xiu. Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming. Chinese Journal of Plant Ecology, 2020, 44(12): 1203-1214. DOI: 10.17521/cjpe.2020.0318
图1 南亚热带常绿阔叶林4个树种的叶片解剖性状和气孔特征。 CT, 角质层厚度; LT, 叶片厚度; LET, 下表皮厚度; PT, 栅栏组织; ST, 海绵组织厚度; UET, 上表皮厚度。
Fig. 1 Leaf anatomical structure and stomatal characteristics of four tree species in southern subtropical evergreen broad-leaved forest. CT, cuticle thickness; LET, lower epidermis thickness; LT, leaf thickness; PT, palisade tissue thickness; ST, spongy tissue thickness; UET, upper epidermis thickness.
图2 对照和增温环境下大气温度、土壤温度和土壤体积含水量的变化(平均值±标准误差)。
Fig. 2 Dynamics of air temperature, soil temperature and soil volumetric water content at 5 cm depth in the control and warming sites (mean ± SE).
图3 增温对南亚热带常绿阔叶林4个树种的气孔导度(Gs)、气孔密度(SD)和气孔大小(SS)的影响(平均值+标准误差, n = 6)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 3 Effects of warming on stomatal conductance (Gs), stomatal density (SD), and stomatal size (SS) of four tree species in southern subtropical evergreen broad-leaved forest (mean + SE, n = 6).*, p < 0.05; **, p < 0.01; ***, p < 0.001.
因子 Item | 气孔导度 Gs | 气孔密度 SD | 气孔大小 SS | 叶片厚度 LT | 栅栏组织厚度 PT | 海绵组织厚度 ST | 上表皮 厚度 UET | 下表皮 厚度 LET | 角质层 厚度 CT | 光合 速率 Pn | 蒸腾 速率 Tr | 水分利用效率 WUE | 光合氮利用效率 PNUE | 光合磷利用效率 PPUE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W | 0.838 | 6.385* | 0.156 | 5.248* | 14.160*** | 0.000 | 1.358 | 0.147 | 0.177 | 6.973* | 3.558 | 0.370 | 3.692 | 4.172 |
S | 4.670* | 377.401*** | 115.697*** | 0.572 | 1.176 | 0.678 | 82.049*** | 64.682*** | 23.588*** | 9.032** | 1.878 | 19.357*** | 2.250 | 0.001 |
W × S | 8.638** | 12.526*** | 0.075 | 1.187 | 0.022 | 3.409 | 0.005 | 2.552 | 0.056 | 17.443*** | 9.874** | 0.186 | 8.099* | 20.012*** |
表1 增温(W)、树种(S)及其交互作用对南亚热带常绿阔叶林4个树种叶片解剖结构和光合特性的双因素方差分析
Table 1 Effects of warming (W), tree species (S) and their interactions on the leaf anatomical structure and photosynthetic characters of four tree species in southern subtropical evergreen broad-leaved forest
因子 Item | 气孔导度 Gs | 气孔密度 SD | 气孔大小 SS | 叶片厚度 LT | 栅栏组织厚度 PT | 海绵组织厚度 ST | 上表皮 厚度 UET | 下表皮 厚度 LET | 角质层 厚度 CT | 光合 速率 Pn | 蒸腾 速率 Tr | 水分利用效率 WUE | 光合氮利用效率 PNUE | 光合磷利用效率 PPUE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W | 0.838 | 6.385* | 0.156 | 5.248* | 14.160*** | 0.000 | 1.358 | 0.147 | 0.177 | 6.973* | 3.558 | 0.370 | 3.692 | 4.172 |
S | 4.670* | 377.401*** | 115.697*** | 0.572 | 1.176 | 0.678 | 82.049*** | 64.682*** | 23.588*** | 9.032** | 1.878 | 19.357*** | 2.250 | 0.001 |
W × S | 8.638** | 12.526*** | 0.075 | 1.187 | 0.022 | 3.409 | 0.005 | 2.552 | 0.056 | 17.443*** | 9.874** | 0.186 | 8.099* | 20.012*** |
图4 增温对南亚热带常绿阔叶林4个树种叶片厚度(LT)、栅栏组织厚度(PT)和海绵组织厚度(ST)的影响的箱型图。图中的数据节点依次为上限、上四分位数、中位数、下四分位数和下限。圆圈为数据点。*, p < 0.05; **, p < 0.01; ***, p < 0.001; n = 9。
Fig. 4 Box plots illustrating the effects of warming on leaf thickness (LT), palisade tissue thickness (PT) and sponge tissue thickness (ST) of four tree species in southern subtropical evergreen broad-leaved forest. Whiskers of box plots indicates upper extreme, upper quartile, median, lower quartile and lower extreme, respectively. Each circle represents one individual tree. *, p < 0.05; **, p < 0.01; ***, p < 0.001; n = 9.
图5 增温对南亚热带常绿阔叶林4个树种叶片上、下表皮厚度(UET、LET)和角质层厚度(CT)的影响的箱型图。图中的数据节点依次为上限、上四分位数、中位数、下四分位数和下限。圆圈为数据点。*, p < 0.05; **, p < 0.01; ***, p < 0.001; n = 9。
Fig. 5 Box plots illustrating the effects of warming on leaf upper epidermis thickness (UET), lower epidermis thickness (LET) and cuticle thickness (CT) of four tree species in southern subtropical evergreen broad-leaved forest. Whiskers of box plots indicates upper extreme, upper quartile, median, lower quartile and lower extreme, respectively. Each circle represents one individual tree. *, p < 0.05; **, p < 0.01; ***, p < 0.001; n = 9.
图6 增温对南亚热带常绿阔叶林4个树种的光合速率(Pn)、蒸腾速率(Tr)和水分利用效率(WUE)的影响(平均值+标准误差, n = 6)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 6 Effects of warming on photosynthetic rate (Pn), transpiration rate (Tr), and water use efficiency (WUE) of four tree species in southern subtropical evergreen broad-leaved forest in 2018 and 2019 (mean + SE, n = 6). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图7 增温对南亚热带常绿阔叶林4个树种的光合氮利用效率(PNUE)和光合磷利用效率(PPUE)的影响(平均值+标准误差, n = 6)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 7 Effects of warming on the photosynthetic nitrogen-use efficiency (PNUE) and photosynthetic phosphorous-use efficiency (PPUE) of four tree species in southern subtropical evergreen broad-leaved forest in 2018 and 2019 (mean + SE, n = 6). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
树种 Species | 处理 Treatment | 斜率 Slope | 截距 Intercept | R2 | p |
---|---|---|---|---|---|
红枝蒲桃 Syzygium rehderianum | 对照 Control | 20.057 | 6.463 | 0.319 | 0.109 |
增温 Warming | 20.178 | 4.252 | 0.162 | 0.076 | |
海南红豆 Ormosia pinnata | 对照 Control | 123.374 | -0.843 | 0.492 | 0.021 |
增温 Warming | -8.698 | 9.819 | 0.039 | 0.490 | |
红锥 Castanopsis hystrix | 对照 Control | 20.228 | 4.090 | 0.530 | 0.007 |
增温 Warming | 18.066 | 3.978 | 0.159 | 0.070 | |
木荷 Schima superba | 对照 Control | 31.071 | 7.561 | 0.462 | 0.009 |
增温 Warming | 35.576 | 5.570 | 0.410 | 0.003 |
表2 增温和对照条件下南亚热带常绿阔叶林4个树种光合速率和气孔导度的关系(一元线性回归)
Table 2 Relationship between photosynthesis rate and stomatal conductance under control and warming environments of four tree species in southern subtropical evergreen broad-leaved forest (unary linear regression)
树种 Species | 处理 Treatment | 斜率 Slope | 截距 Intercept | R2 | p |
---|---|---|---|---|---|
红枝蒲桃 Syzygium rehderianum | 对照 Control | 20.057 | 6.463 | 0.319 | 0.109 |
增温 Warming | 20.178 | 4.252 | 0.162 | 0.076 | |
海南红豆 Ormosia pinnata | 对照 Control | 123.374 | -0.843 | 0.492 | 0.021 |
增温 Warming | -8.698 | 9.819 | 0.039 | 0.490 | |
红锥 Castanopsis hystrix | 对照 Control | 20.228 | 4.090 | 0.530 | 0.007 |
增温 Warming | 18.066 | 3.978 | 0.159 | 0.070 | |
木荷 Schima superba | 对照 Control | 31.071 | 7.561 | 0.462 | 0.009 |
增温 Warming | 35.576 | 5.570 | 0.410 | 0.003 |
变量 Variable | 光合速率 Pn | 气孔导度 Gs | 蒸腾速率 Tr | 水分利用效率 WUE | 光合氮利用效率 PNUE | 光合磷利用效率 PPUE |
---|---|---|---|---|---|---|
气孔密度 SD | 0.350* | 0.080 | 0.113 | -0.198 | 0.270 | 0.337* |
气孔大小 SS | -0.241 | -0.126 | -0.155 | 0.018 | -0.146 | -0.100 |
叶片厚度 LT | -0.033 | 0.217 | 0.159 | -0.079 | -0.203 | -0.159 |
栅栏组织厚度 PT | -0.010 | 0.212 | 0.154 | -0.015 | -0.177 | -0.124 |
海绵组织厚度 ST | -0.077 | 0.145 | 0.065 | -0.396** | -0.262 | -0.189 |
上表皮厚度 UET | 0.095 | -0.199 | -0.075 | 0.035 | 0.252 | 0.054 |
下表皮厚度 LET | -0.400** | -0.115 | -0.208 | -0.121 | -0.359* | -0.364* |
角质层厚度 CT | 0.166 | 0.163 | 0.088 | -0.006 | 0.111 | -0.011 |
表3 南亚热带常绿阔叶林4个树种叶片解剖结构特征与光合特征相关关系
Table 3 Correlations between leaf anatomical structure and photosynthetic characters of four tree species in southern subtropical evergreen broad-leaved forest
变量 Variable | 光合速率 Pn | 气孔导度 Gs | 蒸腾速率 Tr | 水分利用效率 WUE | 光合氮利用效率 PNUE | 光合磷利用效率 PPUE |
---|---|---|---|---|---|---|
气孔密度 SD | 0.350* | 0.080 | 0.113 | -0.198 | 0.270 | 0.337* |
气孔大小 SS | -0.241 | -0.126 | -0.155 | 0.018 | -0.146 | -0.100 |
叶片厚度 LT | -0.033 | 0.217 | 0.159 | -0.079 | -0.203 | -0.159 |
栅栏组织厚度 PT | -0.010 | 0.212 | 0.154 | -0.015 | -0.177 | -0.124 |
海绵组织厚度 ST | -0.077 | 0.145 | 0.065 | -0.396** | -0.262 | -0.189 |
上表皮厚度 UET | 0.095 | -0.199 | -0.075 | 0.035 | 0.252 | 0.054 |
下表皮厚度 LET | -0.400** | -0.115 | -0.208 | -0.121 | -0.359* | -0.364* |
角质层厚度 CT | 0.166 | 0.163 | 0.088 | -0.006 | 0.111 | -0.011 |
[1] | Bremner J, Mulvaney C (1982). Nitrogen-total//Page AL. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd ed. American Society of Agronomy, Soil Science Society of America, Madison. |
[2] |
Cavaleri MA, Reed SC, Smith WK, Wood TE (2015). Urgent need for warming experiments in tropical forests. Global Change Biology, 21, 2111-2121.
DOI URL PMID |
[3] | Chen L, Wen YG, Zeng J, Wang H, Wang JX, Dell B, Liu SR (2019). Differential responses of net N mineralization and nitrification to throughfall reduction in a Castanopsis hystrix plantation in Southern China. Forest Ecosystems, 6, 1-11. |
[4] | Ding YH, Wang HJ (2016). Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China. Chinese Science Bulletin, 61, 1029-1041. |
[ 丁一汇, 王会军 (2016). 近百年中国气候变化科学问题的新认识. 科学通报, 61, 1029-1041.] | |
[5] | Dusenge ME, Way DA (2017). Warming puts the squeeze on photosynthesis—Lessons from tropical trees. Journal of Experimental Botany, 68, 2073-2077. |
[6] | Ellsworth DS, Reich PB (1996). Photosynthesis and leaf nitrogen in five Amazonian tree species during early secondary succession. Ecology, 77, 581-594. |
[7] | Escudero A, Mediavilla S (2003). Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. Journal of Ecology, 91, 880-889. |
[8] |
Feng YL, Fu GL, Zheng YL (2008). Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta, 228, 383-390.
URL PMID |
[9] | Franks PJ, Beerling DJ (2009). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences of the United States of America, 106, 10343-10347. |
[10] |
Franks PJ, Farquhar GD (2007). The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiology, 143, 78-87.
URL PMID |
[11] | Hepworth C, Doheny-Adams T, Hunt L, Cameron DD, Gray JE (2015). Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytologist, 208, 336-341. |
[12] |
Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 901-908.
URL PMID |
[13] | Hu JY, Guo K, Dong M (2008). Variation of leaf structure of two dominant species in alpine grassland and the relationship between leaf structure and ecological factors. Chinese Journal of Plant Ecology, 32, 370-378. |
[ 胡建莹, 郭柯, 董鸣 (2008). 高寒草原优势种叶片结构变化与生态因子的关系. 植物生态学报, 32, 370-378.] | |
[14] | Huang J, Chen C, Zhang WX, Ding CJ, Su XH, Huang QJ (2017). Effects of drought stress on anatomical structure and photosynthetic characteristics of transgenic JERF36 Populus alba × P. berolinensis seedling leaves. Scientia Silvae Sinicae, 53(5), 8-15. |
[ 黄绢, 陈存, 张伟溪, 丁昌俊, 苏晓华, 黄秦军 (2017). 干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响. 林业科学, 53(5), 8-15.] | |
[15] | IPCC (2018). Summary for Policymakers. [2020-09-21]. https:// www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_HR.pdf. |
[16] |
James SA, Bell DT (2000). Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances. Tree Physiology, 20, 1007-1018.
URL PMID |
[17] |
Li DJ, Zhou XH, Wu LY, Zhou JZ, Luo YQ (2013). Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual-dominated prairie. Global Change Biology, 19, 3553-3564.
URL PMID |
[18] | Li W, Fu Z, Hao XZ, Li QY, Zhang CP (2020). Leaf anatomical structure and photosynthetic characteristics of Megaskepasma erythrochlamys and Pachystachys lutea in greenhouse. Chinese Agricultural Science Bulletin, 36, 58-61. |
[ 李伟, 符喆, 郝晓哲, 李秋雨, 张翠萍 (2020). 温室内赤苞花和黄虾花叶片解剖结构及光合特性研究. 中国农学通报, 36, 58-61.] | |
[19] | Liu L (2016). Study on the Photosynthetic Characteristics of Liangshan Introduced Olive (Olea europaea L.) Cultivars. Master degree dissertation, Sichuan Agricultural University, Ya’an, Sichuan. |
[ 刘露 (2016). 凉山引进油橄榄品种的光合特性研究. 硕士学位论文, 四川农业大学, 四川雅安.] | |
[20] |
Liu JX, Huang WJ, Zhou GY, Zhang DQ, Liu SZ, Li YY (2013). Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests. Global Change Biology, 19, 208-216.
URL PMID |
[21] | Liu JX, Li YL, Liu SZ, Li YY, Chu GW, Meng Z, Zhang DQ (2013). An introduction to an experimental design for studying effects of air temperature rise on model forest ecosystems. Chinese Journal of Plant Ecology, 37, 558-565. |
[ 刘菊秀, 李跃林, 刘世忠, 李义勇, 褚国伟, 孟泽, 张德强 (2013). 气温上升对模拟森林生态系统影响实验的介绍. 植物生态学报, 37, 558-565.] | |
[22] | Méndez-Alonzo R, Ewers FW, Jacobsen AL, Pratt RB, Scoffoni C, Bartlett MK, Sack L (2019). Covariation between leaf hydraulics and biomechanics is driven by leaf density in Mediterranean shrubs. Trees, 33, 507-519. |
[23] | Niu SL, Han XG, Ma KP, Wan SQ (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version), 31, 262-271. |
[ 牛书丽, 韩兴国, 马克平, 万师强 (2007). 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31, 262-271.] | |
[24] | Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M (2017). Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 214, 1447-1463. |
[25] |
Parkhurst DF (1994). Diffusion of CO2 and other gases inside leaves. New Phytologist, 126, 449-479.
DOI URL |
[26] | Reich PB, Walters MB, Ellsworth DS, Uhl C (1994). Photosynthesis-nitrogen relations in Amazonian tree species. Oecologia, 97, 62-72. |
[27] |
Robinson DE, Wagner RG, Bell FW, Swanton CJ (2001). Photosynthesis, nitrogen-use efficiency, and water-use efficiency of jack pine seedlings in competition with four boreal forest plant species. Canadian Journal of Forest Research, 31, 2014-2025.
DOI URL |
[28] |
Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms. American Journal of Botany, 97, 438-445.
URL PMID |
[29] | Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003). The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell & Environment, 26, 1343-1356. |
[30] |
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
DOI URL PMID |
[31] |
Sigurdsson BD, Medhurst JL, Wallin G, Eggertsson O, Linder S (2013). Growth of mature boreal Norway spruce was not affected by elevated [CO2] and/or air temperature unless nutrient availability was improved. Tree Physiology, 33, 1192-1205.
URL PMID |
[32] |
Slot M, Winter K (2017). Photosynthetic acclimation to warming in tropical forest tree seedlings. Journal of Experimental Botany, 68, 2275-2284.
URL PMID |
[33] | Stinziano JR, Hüner NPA, Way DA (2015). Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies). Tree Physiology, 35, 1303-1313. |
[34] | Su J, Sun B, Wang DZ (1995). The biological characteristics and ornamental value of Ormosia pinnata. Forest Research, 8, 677-681. |
[ 栗娟, 孙冰, 王德祯 (1995). 海南红豆生物学特性和观赏价值. 林业科学研究, 8, 677-681.] | |
[35] | Tanaka Y, Sugano SS, Shimada T, Hara-Nishimura I (2013). Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytologist, 198, 757-764. |
[36] | Tang B, Yin CY, Wang YJ, Sun YY, Liu Q (2016). Positive effects of night warming on physiology of coniferous trees in late growing season: leaf and root. Acta Oecologica, 73, 21-30. |
[37] |
Upadhyay RK, Soni DK, Singh R, Dwivedi UN, Pathre UV, Nath P, Sane AP (2013). SIERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth. Journal of Experimental Botany, 64, 3237-3247.
URL PMID |
[38] | van Ommen Kloeke AEE, Douma JC, Ordoñez JC, Reich PB, van Bodegom PM (2012). Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography, 21, 224-235. |
[39] |
Wu GL, Liu H, Hua L, Luo Q, Lin YX, He PC, Feng SW, Liu JX, Ye Q (2018). Differential responses of stomata and photosynthesis to elevated temperature in two co-occurring subtropical forest tree species. Frontiers in Plant Science, 9, 467. DOI: 10.3389/fpls.2018.00467.
URL PMID |
[40] | Ye WM, Xiong DC, Yang ZJ, Zhu YG, Zhang QF, Liu XF, Lin WS, Xu C, Zhang J, Yang YS (2019). Effect of soil warming on growth and photosynthetic characteristics of Cunninghamia lanceolata saplings. Acta Ecologica Sinica, 39, 2501-2509. |
[ 叶旺敏, 熊德成, 杨智杰, 朱益广, 张秋芳, 刘小飞, 林伟盛, 胥超, 张景, 杨玉盛 (2019). 模拟增温对杉木幼树生长和光合特性的影响. 生态学报, 39, 2501-2509.] | |
[41] | Ye WM (2019). Effects of Simulated Warming on Photosynthetic Characteristics and Product Distribution of Cunninghamia lanceolata. Master degree dissertation, Fujian Normal University, Fuzhou. |
[ 叶旺敏 (2019). 模拟增温对杉木光合特性及产物分配的影响. 硕士学位论文, 福建师范大学, 福州.] | |
[42] | Zheng YP, Xu M, Hou RX, Shen RC, Qiu S, Ouyang Z (2013). Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.). Ecology and Evolution, 3, 3095-3111. |
[43] |
Zhou GY, Peng CH, Li YL, Liu SZ, Zhang QM, Tang XL, Liu JX, Yan JH, Zhang DQ, Chu GW (2013). A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China. Global Change Biology, 19, 1197-1210.
URL PMID |
[44] | Zhou GY, Wei XH, Wu YP, Liu SG, Huang YH, Yan JH, Zhang DQ, Zhang QM, Liu JX, Meng Z, Wang CL, Chu GW, Liu SZ, Tang XL, Liu XD (2011). Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China. Global Change Biology, 17, 3736-3746. |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[4] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[5] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[6] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[7] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[8] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[9] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[10] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[11] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[12] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[13] | 张小燕, WEE Kim Shan Alison, KAJITA Tadashi, 曹坤芳. 种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传[J]. 植物生态学报, 2021, 45(11): 1241-1250. |
[14] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[15] | 朱彪, 陈迎. 陆地生态系统野外增温控制实验的技术与方法[J]. 植物生态学报, 2020, 44(4): 330-339. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19