植物生态学报 ›› 2020, Vol. 44 ›› Issue (12): 1195-1202.DOI: 10.17521/cjpe.2020.0224
• 研究论文 • 下一篇
康剑1,2,3, 梁寒雪1,3, 蒋少伟1,2,3, 朱火星1,3, 周鹏1,2,3, 黄建国1,2,3,*()
收稿日期:
2020-07-06
接受日期:
2020-09-16
出版日期:
2020-12-20
发布日期:
2021-04-01
通讯作者:
黄建国
作者简介:
*(huangjg@scbg.ac.cn)基金资助:
KANG Jian1,2,3, LIANG Han-Xue1,3, JIANG Shao-Wei1,2,3, ZHU Huo-Xing1,3, ZHOU Peng1,2,3, HUANG Jian-Guo1,2,3,*()
Received:
2020-07-06
Accepted:
2020-09-16
Online:
2020-12-20
Published:
2021-04-01
Contact:
HUANG Jian-Guo
Supported by:
摘要:
阿尔泰山的北方森林是中亚以及全球的生态系统的重要组成部分, 其生长动态可以影响到全球范围的热辐射、碳平衡等。因此, 探究影响阿尔泰山树木径向生长的主要因素至关重要。该研究以新疆喀纳斯国家级自然保护区的西伯利亚五针松(Pinus sibirica)为研究对象, 建立西伯利亚五针松年表, 通过分析不同时间间隔累年生长量、竞争指数以及气候因子之间的关系, 运用线性混合效应模型、相关分析等方法, 探究竞争和气候对新疆阿尔泰山西伯利亚五针松树木径向生长的影响。结果表明: (1)线性混合效应模型结果显示竞争树胸径和与西伯利亚五针松过去30年的累年生长量之间的拟合效果最好; (2)标准年表与3月的平均气温、平均最高气温、平均最低气温之间有显著正相关关系; (3)累年生长量最高值出现在气温0-5 ℃, 竞争指数低于100的时候。累年生长量最低时, 气温达到-10 ℃, 竞争指数也超过了300。目标树的树木径向生长受到竞争树胸径和及生长季前期气温的影响, 两者共同作用。但相较于气候因子而言, 竞争对西伯利亚五针松的树木径向生长有更大的影响作用。
康剑, 梁寒雪, 蒋少伟, 朱火星, 周鹏, 黄建国. 竞争和气候对新疆阿尔泰山西伯利亚五针松树木径向生长的影响. 植物生态学报, 2020, 44(12): 1195-1202. DOI: 10.17521/cjpe.2020.0224
KANG Jian, LIANG Han-Xue, JIANG Shao-Wei, ZHU Huo-Xing, ZHOU Peng, HUANG Jian-Guo. Effects of competition and climate on tree radial growth of Pinus sibirica in Altai Mountains, Xinjiang, China. Chinese Journal of Plant Ecology, 2020, 44(12): 1195-1202. DOI: 10.17521/cjpe.2020.0224
图1 新疆阿尔泰山研究区1958-2017年月平均气温、月平均最低气温、月平均最高气温和月降水量的变化趋势。
Fig. 1 Variation trend of monthly mean air temperature (T), monthly mean minimum air temperature (Tmin), monthly mean maximum temperature (Tmax) and monthly precipitation (P) in the research area of Altai Mountains, Xinjiang from 1958 to 2017.
年表长度 Chronology length | 平均敏感度 Mean sensitivity | 标准偏差 Standard deviation | 样本相关系数 Correlation coefficient for all series | 信噪比 Signal-to-noise ratio | 样本总体解释量 Expressed population signal |
---|---|---|---|---|---|
1808-2017 | 0.19 | 0.30 | 0.24 | 13.30 | 0.93 |
表1 新疆阿尔泰山西伯利亚五针松的标准年表主要特征参数
Table 1 Main characteristic parameters of the standard chronology of Pinus sibirica in Altai Mountains, Xinjiang
年表长度 Chronology length | 平均敏感度 Mean sensitivity | 标准偏差 Standard deviation | 样本相关系数 Correlation coefficient for all series | 信噪比 Signal-to-noise ratio | 样本总体解释量 Expressed population signal |
---|---|---|---|---|---|
1808-2017 | 0.19 | 0.30 | 0.24 | 13.30 | 0.93 |
竞争树密度(株·hm-2) N (individual·hm-2) | 竞争树胸径和 SDBH (m·hm-2) | 竞争树胸高断面积和 SBA (m2·hm-2) | ||||||
---|---|---|---|---|---|---|---|---|
最大值 Max | 平均值 Mean | 最小值 Min | 最大值 Max | 平均值 Mean | 最小值 Min | 最大值 Max | 平均值 Mean | 最小值 Min |
1 800 | 1 153 | 800 | 369.4 | 206.7 | 69.8 | 97.5 | 41.3 | 10.8 |
表2 新疆阿尔泰山西伯利亚五针松竞争指数特征参数
Table 2 Characteristic parameters of competitive indices of Pinus sibirica in Altai Mountains, Xinjiang
竞争树密度(株·hm-2) N (individual·hm-2) | 竞争树胸径和 SDBH (m·hm-2) | 竞争树胸高断面积和 SBA (m2·hm-2) | ||||||
---|---|---|---|---|---|---|---|---|
最大值 Max | 平均值 Mean | 最小值 Min | 最大值 Max | 平均值 Mean | 最小值 Min | 最大值 Max | 平均值 Mean | 最小值 Min |
1 800 | 1 153 | 800 | 369.4 | 206.7 | 69.8 | 97.5 | 41.3 | 10.8 |
时间间隔 Time interval (a) | 竞争指数 Competition indices | a | b | 临界R2 Marginal R2 | 条件R2 Conditional R2 |
---|---|---|---|---|---|
5 | N | 0.098 3 | 0.000 0 | 0.09 | 0.59 |
SDBH | 0.082 9 | -0.000 1 | 0.12 | 0.6 | |
SBA | 0.072 0 | -0.000 4 | 0.08 | 0.52 | |
10 | N | 0.204 5 | -0.000 1 | 0.12 | 0.57 |
SDBH | 0.169 1 | -0.000 3 | 0.16 | 0.59 | |
SBA | 0.145 0 | -0.000 9 | 0.11 | 0.49 | |
15 | N | 0.328 1 | -0.000 1 | 0.15 | 0.58 |
SDBH | 0.265 7 | -0.000 5 | 0.20 | 0.60 | |
SBA | 0.226 7 | -0.001 4 | 0.14 | 0.49 | |
20 | N | 0.409 0 | -0.000 2 | 0.13 | 0.52 |
SDBH | 0.338 6 | -0.000 6 | 0.18 | 0.55 | |
SBA | 0.290 6 | -0.001 9 | 0.13 | 0.46 | |
25 | N | 0.486 2 | -0.000 2 | 0.13 | 0.51 |
SDBH | 0.404 9 | -0.000 7 | 0.18 | 0.54 | |
SBA | 0.349 4 | -0.002 2 | 0.14 | 0.45 | |
30 | N | 0.578 1 | -0.000 2 | 0.15 | 0.47 |
SDBH | 0.484 7 | -0.000 9 | 0.22 | 0.62 | |
SBA | 0.416 5 | -0.002 8 | 0.17 | 0.41 |
表3 新疆阿尔泰山西伯利亚五针松竞争指数与累积断面积生长量的线性混合效应模型结果
Table 3 Results of the linear mixed-effects models of competitive indices and cumulated basal area increments of Pinus sibirica in Altai Mountains, Xinjiang
时间间隔 Time interval (a) | 竞争指数 Competition indices | a | b | 临界R2 Marginal R2 | 条件R2 Conditional R2 |
---|---|---|---|---|---|
5 | N | 0.098 3 | 0.000 0 | 0.09 | 0.59 |
SDBH | 0.082 9 | -0.000 1 | 0.12 | 0.6 | |
SBA | 0.072 0 | -0.000 4 | 0.08 | 0.52 | |
10 | N | 0.204 5 | -0.000 1 | 0.12 | 0.57 |
SDBH | 0.169 1 | -0.000 3 | 0.16 | 0.59 | |
SBA | 0.145 0 | -0.000 9 | 0.11 | 0.49 | |
15 | N | 0.328 1 | -0.000 1 | 0.15 | 0.58 |
SDBH | 0.265 7 | -0.000 5 | 0.20 | 0.60 | |
SBA | 0.226 7 | -0.001 4 | 0.14 | 0.49 | |
20 | N | 0.409 0 | -0.000 2 | 0.13 | 0.52 |
SDBH | 0.338 6 | -0.000 6 | 0.18 | 0.55 | |
SBA | 0.290 6 | -0.001 9 | 0.13 | 0.46 | |
25 | N | 0.486 2 | -0.000 2 | 0.13 | 0.51 |
SDBH | 0.404 9 | -0.000 7 | 0.18 | 0.54 | |
SBA | 0.349 4 | -0.002 2 | 0.14 | 0.45 | |
30 | N | 0.578 1 | -0.000 2 | 0.15 | 0.47 |
SDBH | 0.484 7 | -0.000 9 | 0.22 | 0.62 | |
SBA | 0.416 5 | -0.002 8 | 0.17 | 0.41 |
图2 西伯利亚五针松树轮宽度年表与月气候因子的相关性。p8-p12表示上一年8-12月份。P, 月降水量; T, 月平均气温; Tmax, 月平均最高气温; Tmin, 月平均最低气温。*, p < 0.05。
Fig. 2 Correlation between ring width chronology of Pinus sibirica and monthly climate factors. p8-p12 represents August to December of the previous year. P, monthly precipitation; T, monthly mean air temperature; Tmax, monthly mean maximum air temperature; Tmin, monthly mean minimum air temperature. * p < 0.05.
图3 新疆阿尔泰山西伯利亚五针松累年生长量与气温、竞争指数的关系。
Fig. 3 Relationship between cumulated basal area increments (BAI) of Pinus sibirica in Altai Mountains, Xinjiang and air temperature (T) and competition index (CI).
[1] | Barton K (2009). MuMIn: Multi-Model Inference, R Package Version 0.12. 0. [2020-06-16]. http://rforge.r-project.org/ projects/mumin/. |
[2] | Bunn AG (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26, 115-124. |
[3] | Chen F, Yuan YJ, Wei WS, Zhang TW, Shang HM, Zhang RB (2014). Precipitation reconstruction for the southern Altay Mountains (China) from tree rings of Siberian spruce, reveals recent wetting trend. Dendrochronologia, 32, 266-272. |
[4] | Cook ER (1985). A Time Series Analysis Approach to Tree Ring Standardization. PhD dissertation, University of Arizona, Tucson. |
[5] | Dan XQ, Hong JF (1993). A preliminary survey of Pinus sibirica forests in Hanas Nature Reserve. Forest Resources Management, (2), 53-55. |
[ 但新球, 洪加凤 (1993). 哈纳斯自然保护区西伯利亚五针松林调查初报. 林业资源管理, (2), 53-55.] | |
[6] | de Grandpré L, Tardif JC, Hessl A, Pederson N, Conciatori F, Green TR, Oyunsanaa B, Baatarbileg N (2011). Seasonal shift in the climate responses of Pinus sibirica, Pinus sylvestris, and Larix sibirica trees from semi-arid, north- central Mongolia. Canadian Journal of Forest Research, 41, 1242-1255. |
[7] | Dong LH, Li FR, Jia WW (2013). Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation. Journal of Beijing Forestry University, 35(6), 15-22. |
[ 董利虎, 李凤日, 贾炜玮 (2013). 林木竞争对红松人工林立木生物量影响及模型研究. 北京林业大学学报, 35(6), 15-22.] | |
[8] | Dulamsuren C, Khishigjargal M, Leuschner C, Hauck M (2014). Response of tree-ring width to climate warming and selective logging in larch forests of the Mongolian Altai. Journal of Plant Ecology, 7, 24-38. |
[9] | Gao LL, Gou XH, Deng Y, Wang ZQ, Gu F, Wang F (2018). Increased growth of Qinghai spruce in northwestern China during the recent warming hiatus. Agricultural and Forest Meteorology, 260- 261, 9-16. |
[10] | Gómez-Aparicio L, García-Valdés R, Ruíz-Benito P, Zavala MA (2011). Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Global Change Biology, 17, 2400-2414. |
[11] | Han DX, Jin GZ (2017). Influences of topography and competition on DBH growth in different growth stages in a typical mixed broadleaved-Korean pine forest, northeastern China. Journal of Beijing Forestry University, 39(1), 9-19. |
[ 韩大校, 金光泽 (2017). 地形和竞争对典型阔叶红松林不同生长阶段树木胸径生长的影响. 北京林业大学学报, 39(1), 9-19.] | |
[12] | Holmes RL (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-78. |
[13] |
Huang JG, Stadt KJ, Dawson A, Comeau PG (2013). Modelling growth-competition relationships in trembling aspen and white spruce mixed boreal forests of Western Canada. PLOS ONE, 8, e77607. DOI: 10.1371/journal.pone.0077607.
URL PMID |
[14] | Huang LP, Gao YQ, Li Y, Zhang TW, Hu DY, Wang L (2015). Growth of Siberia larch in the middle east of Altay Mountains and its response to climate change. Arid Land Geography, 38, 1169-1178. |
[ 黄力平, 高亚琪, 李云, 张同文, 胡东宇, 王蕾 (2015). 阿尔泰山中东部西伯利亚落叶松生长量及其对气候变化的响应研究. 干旱区地理, 38, 1169-1178.] | |
[15] | Kang J, Jiang SW, Huang JG (2020). Radial growth response of four dominant tree species to climate factors in the Sayan Range of the Altai Mountains, Russia. Acta Ecologica Sinica, 40, 6135-6146. |
[ 康剑, 蒋少伟, 黄建国 (2020). 阿尔泰山萨彦岭4种优势树种径向生长对气候因子的响应. 生态学报, 40, 6135-6146.] | |
[16] | Kang YC, Liu BH, Ren JY, Tan KL (2019). Effect of competition on tree ring growth and climate factors of Pinus koraiensis. Journal of Northeast Forestry University, 47(11), 6-10. |
[ 康雨昌, 刘滨辉, 任柬宇, 谭凯亮 (2019). 竞争对红松树轮生长与气候因子关系的影响. 东北林业大学学报, 47(11), 6-10.] | |
[17] | Kawata M (1997). Exploitative competition and ecological effective abundance. Ecological Modelling, 94, 125-137. |
[18] |
Kerhoulas LP, Kane JM (2012). Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees. Tree Physiology, 32, 14-23.
URL PMID |
[19] | Kharuk VI, Ranson KJ, Im ST, Dvinskaya ML (2009). Response of Pinus sibirica and Larix sibirica to climate change in southern Siberian alpine forest-tundra ecotone. Scandinavian Journal of Forest Research, 24, 130-139. |
[20] | Kwon S, Pan LL, Shi ZJ, Yang XH, Zhang X, Liu YS, Zhang KB (2019). Radial growth of Mongolian pine and its response to climate at different competition intensities. Chinese Journal of Ecology, 38, 1962-1972. |
[ Kwon S, 潘磊磊, 时忠杰, 杨晓晖, 张晓, 刘艳书, 张克斌 (2019). 不同竞争强度下的沙地樟子松天然林树木径向生长及其气候响应. 生态学杂志, 38, 1962-1972.] | |
[21] | Li ZS, Liu GH, Fu BJ, Zhang QB, Hu CJ, Luo SZ (2011). Influence of different detrending methods on climate signal in tree-ring chronologies in Wolong National Natural Reserve, western Sichuan, China. Chinese Journal of Plant Ecology, 35, 707-721. |
[ 李宗善, 刘国华, 傅伯杰, 张齐兵, 胡婵娟, 罗淑政 (2011). 不同去趋势方法对树轮年表气候信号的影响——以卧龙地区为例. 植物生态学报, 35, 707-721.] | |
[22] | Liang HX, Huang JG, Ma QQ, Li JY, Wang Z, Guo XL, Zhu HX, Jiang SW, Zhou P, Yu BY, Luo DW (2019). Contributions of competition and climate on radial growth of Pinus massoniana in subtropics of China. Agricultural and Forest Meteorology, 274, 7-17. |
[23] | Liu B, Pan CD, Li GH, Yu GB, Zhang F, Guo K, Zou ZY (2019). Quantitative classification and sequencing of communities in pyrogenic succession of Kanas Taiga. Ecology and Environmental Sciences, 28, 1961-1973. |
[ 刘博, 潘存德, 李贵华, 余戈壁, 张帆, 郭珂, 邹卓颖 (2019). 喀纳斯泰加林火成演替群落数量分类与排序. 生态环境学报, 28, 1961-1973.] | |
[24] | Ma SY (2016). Research on the Response of Radial Growth to Thinning and Climatic Factors for Platycladus orientalis Plantation in Beijing. Master degree dissertation, Beijing Forestry University, Beijing. |
[ 马士友 (2016). 北京地区侧柏人工林径向生长对采伐、气候因子的响应研究. 硕士学位论文, 北京林业大学, 北京. ] | |
[25] | Nikolaeva SA, Savchuk DA, Bocharov AY (2015). Influence of different factors on tree growth of Pinus sibirica in the highlands of the central Altai Mountains. Journal of Siberian Federal University Biology, 8, 299-318. |
[26] |
Pan Y, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
DOI URL PMID |
[27] | Shah S (2019). The Growth-climate Relationships and Potential Distribution of Siberian Pine (Pinus sibirica) in Northeast China. PhD dissertation, Beijing Forestry University, Beijing. |
[ Shah S (2019). 西伯利亚红松生长与气候的关系及在中国东北地区的潜在分布. 博士学位论文, 北京林业大学, 北京.] | |
[28] | Shang HM, Wei WS, Yuan YJ, Yu SL, Zhang TW, Aizemaiti W, Li XJ (2010). Response of tree ring width to recent climate change, south slope of Altai Mountains. Acta Ecologica Sinica, 30, 2246-2253. |
[ 尚华明, 魏文寿, 袁玉江, 喻树龙, 张同文, 瓦合提·艾则买提, 李新建 (2010). 阿尔泰山南坡树轮宽度对气候变暖的响应. 生态学报, 30, 2246-2253.] | |
[29] | Stadt KJ, Huston C, Coates KD, Feng ZL, Dale MRT, Lieffers VJ (2007). Evaluation of competition and light estimation indices for predicting diameter growth in mature boreal mixed forests. Annals of Forest Science, 64, 477-490. |
[30] | Sidorova OV, Saurer M, Myglan VS, Eichler A, Schwikowski M, Kirdyanov AV, Bryukhanova MV, Gerasimova OV, Kalugin IA, Daryin AV, Siegwolf RTW (2012). A multi-proxy approach for revealing recent climatic changes in the Russian Altai. Climate Dynamics, 38, 175-188. |
[31] | Velisevich SN, Kozlov DS (2006). Effects of temperature and precipitation on radial growth of Siberian larch in ecotopes with optimal, insufficient, and excessive soil moistening. Russian Journal of Ecology, 37, 241-246. |
[32] |
Wang ZQ, Wu GS, Wang JB (2000). Application of competition index in assessing intraspecific and interspecific spatial relations between Manchurian ash and dahurian larch. Chinese Journal of Applied Ecology, 11, 641-645.
URL PMID |
[ 王政权, 吴巩胜, 王军邦 (2000). 利用竞争指数评价水曲柳落叶松种内种间空间竞争关系. 应用生态学报, 11, 641-645.]
PMID |
|
[33] | Wigley TML, Briffa KR, Jones PD (1984). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology, 23, 201-213. |
[34] | Xuan HC, Guo MZ, Gao LS, Fan CY (2020). Effect of competition environment changes on the radial growth of Pinus koraiensis and Fraxinus mandshurica in mixed coniferous-broad-leaved forest. Acta Ecologica Sinica, 40, 4087-4093. |
[ 宣海憧, 郭梦昭, 高露双, 范春雨 (2020). 竞争强度变化对针阔混交林红松和水曲柳径向生长的影响. 生态学报, 40, 4087-4093.] | |
[35] | Yu DP, Wang SZ, Tang LN, Dai LM, Wang QL, Wang SX (2005). Relationship between tree-ring chronology of Larix olgensis in Changbai Mountains and the climate change. Chinese Journal of Applied Ecology, 16, 14-20. |
[ 于大炮, 王顺忠, 唐立娜, 代力民, 王庆礼, 王绍先. 长白山北坡落叶松年轮年表及其与气候变化的关系. 应用生态学报, 16, 14-20.] | |
[36] | Zang C, Biondi F (2015). Treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography, 38, 431-436. |
[37] | Zhang DL, Feng ZD, Yang YP, Lan B, Ran M, Mu GJ (2018). Peat δ13C celluose-recorded wetting trend during the past 8000 years in the southern Altai Mountains, northern Xinjiang, NW China. Journal of Asian Earth Sciences, 156, 174-179. |
[38] |
Zhang J, Huang S, He FL (2015). Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences of the United States of America, 112, 4009-4014.
DOI URL PMID |
[39] | Zou WT, Zeng WS, Zhang LJ, Zeng M (2015). Modeling crown biomass for four pine species in China. Forests, 6, 433-449. |
[1] | 高德才 白娥. 冻融循环期间土壤N2O排放影响因素研究[J]. 植物生态学报, 2021, 45(9): 0-0. |
[2] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[3] | 方欧娅, 张永, 张启, 贾恒锋. 黄河上游甘蒙柽柳生长对极端旱涝的响应[J]. 植物生态学报, 2021, 45(6): 641-649. |
[4] | 倪铭, 张曦月, 姜超, 王鹤松. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021, 45(6): 626-640. |
[5] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[6] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[7] | 徐光来, 李爱娟, 徐晓华, 杨先成, 杨强强. 中国生态功能保护区归一化植被指数动态及气候因子驱动[J]. 植物生态学报, 2021, 45(3): 213-223. |
[8] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[9] | 石娇星, 许洺山, 方晓晨, 郑丽婷, 张宇, 鲍迪峰, 杨安娜, 阎恩荣. 中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J]. 植物生态学报, 2021, 45(2): 163-173. |
[10] | 李雪莹, 朱文泉, 李培先, 谢志英, 赵涔良. 气候变暖背景下青藏高原草本植物物候变化空间换时间预测[J]. 植物生态学报, 2020, 44(7): 742-751. |
[11] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
[12] | 白娥, 薛冰. 土地利用与土地覆盖变化对生态系统的影响[J]. 植物生态学报, 2020, 44(5): 543-552. |
[13] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
[14] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[15] | 季倩雯, 郑成洋, 张磊, 曾发旭. 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系[J]. 植物生态学报, 2020, 44(3): 257-265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19