植物生态学报 ›› 2024, Vol. 48 ›› Issue (4): 459-468.DOI: 10.17521/cjpe.2023.0032 cstr: 32100.14.cjpe.2023.0032
梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎*()()
收稿日期:
2023-02-06
接受日期:
2023-05-19
出版日期:
2024-04-20
发布日期:
2024-05-11
通讯作者:
* (quanxiankui@nefu.edu.cn)
基金资助:
LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui*()()
Received:
2023-02-06
Accepted:
2023-05-19
Online:
2024-04-20
Published:
2024-05-11
Contact:
* (quanxiankui@nefu.edu.cn)
Supported by:
摘要:
研究气候变暖对树木径向生长和生物量分配的影响, 对准确评价气候变化背景下树木的固碳能力具有重要意义。该研究于2004年将4个纬度地点(从北往南依次为塔河、松岭、黑河和带岭)的落叶松(Larix gmelinii)幼树向南移植到黑龙江帽儿山森林生态研究站的同质园内, 模拟气候暖化。在同质园和移栽来源地同步测定树木径向生长和生物量及其分配。结果表明: (1)气候变暖显著促进了松岭和塔河落叶松树木的径向生长, 胸径(DBH)、树干距离地面10 cm处直径(D10)及其相对增长率和单位增温相对增长率均随增温幅度的增加而增大; 松岭和塔河树木DBH的相对增长率分别为58.62%和101.49%, 单位增温相对增长率分别为16.11%·℃-1和18.79%·℃-1。(2)气候变暖显著减小了塔河树木叶、枝和根生物量的占比, 增大了树干和地上生物量的占比; 气候变暖也显著减小了松岭树木根生物量占比, 增大了树干生物量占比。气候变暖后, 松岭和塔河树木根冠比均显著减小。气候变暖会影响落叶松树木的径向生长和生物量的分配, 且这种影响因暖化程度的不同而存在一定的差异。
梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应. 植物生态学报, 2024, 48(4): 459-468. DOI: 10.17521/cjpe.2023.0032
LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming. Chinese Journal of Plant Ecology, 2024, 48(4): 459-468. DOI: 10.17521/cjpe.2023.0032
地点 Site | 纬度 Latitude (° N) | 经度 Longitude (° E) | 年平均气温 Annual mean air temperature (℃) | 平均年降水量 Mean annual precipitation (mm) | 1月平均气温 Mean air temperature in January (℃) | 7月平均气温 Mean air temperature in July (℃) | 无霜期 Frost-free period (d) | 树木基径 Base diameter (cm) | 树高 Height (m) |
---|---|---|---|---|---|---|---|---|---|
帽儿山 Mao’ershan | 45.40 | 127.50 | 3.10 | 629.00 | -18.50 | 22.00 | 140.00 | ||
带岭 Dailing | 47.08 | 128.90 | 1.34 | 621.27 | -22.00 | 20.30 | 139.00 | 3.42 | 0.77 |
黑河 Heihe | 49.22 | 127.20 | 0.62 | 554.08 | -25.50 | 19.50 | 90.00 | 4.36 | 1.72 |
松岭 Songling | 50.72 | 124.42 | -0.54 | 525.36 | -26.30 | 17.60 | 93.80 | 2.62 | 2.99 |
塔河 Tahe | 52.52 | 124.65 | -2.30 | 463.44 | -25.50 | 16.70 | 89.70 | 1.17 | 3.06 |
表1 落叶松4个移栽来源地和帽儿山生态站的地理和气候基本特征
Table 1 Geographical and climatic characteristics of Larix gmelinii at four transplanting sites and common garden
地点 Site | 纬度 Latitude (° N) | 经度 Longitude (° E) | 年平均气温 Annual mean air temperature (℃) | 平均年降水量 Mean annual precipitation (mm) | 1月平均气温 Mean air temperature in January (℃) | 7月平均气温 Mean air temperature in July (℃) | 无霜期 Frost-free period (d) | 树木基径 Base diameter (cm) | 树高 Height (m) |
---|---|---|---|---|---|---|---|---|---|
帽儿山 Mao’ershan | 45.40 | 127.50 | 3.10 | 629.00 | -18.50 | 22.00 | 140.00 | ||
带岭 Dailing | 47.08 | 128.90 | 1.34 | 621.27 | -22.00 | 20.30 | 139.00 | 3.42 | 0.77 |
黑河 Heihe | 49.22 | 127.20 | 0.62 | 554.08 | -25.50 | 19.50 | 90.00 | 4.36 | 1.72 |
松岭 Songling | 50.72 | 124.42 | -0.54 | 525.36 | -26.30 | 17.60 | 93.80 | 2.62 | 2.99 |
塔河 Tahe | 52.52 | 124.65 | -2.30 | 463.44 | -25.50 | 16.70 | 89.70 | 1.17 | 3.06 |
参数 Parameter | 处理 Treatment | 地点 Site | 处理 × 地点 Treatment × site | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
DBH | 81.22 | <0.01 | 235.29 | <0.01 | 20.13 | <0.01 |
D10 | 90.49 | <0.01 | 197.33 | <0.01 | 22.34 | <0.01 |
树叶生物量占比 Proportion of leaf biomass | 7.09 | <0.01 | 75.61 | <0.01 | 13.93 | <0.01 |
树枝生物量占比 Proportion of branch biomass | 51.71 | <0.01 | 36.73 | <0.01 | 9.59 | <0.01 |
树干生物量占比 Proportion of stem biomass | 84.32 | <0.01 | 165.94 | <0.01 | 22.68 | <0.01 |
树根生物量占比 Proportion of root biomass | 47.24 | <0.01 | 107.10 | <0.01 | 14.81 | <0.01 |
地上生物量占比 Proportion of aboveground biomass | 47.26 | <0.01 | 107.11 | <0.01 | 14.88 | <0.01 |
根冠比 Root to shoot ratio | 49.98 | <0.01 | 91.53 | <0.01 | 16.14 | <0.01 |
表2 落叶松径向生长特征的双因素方差分析
Table 2 Two-way analysis of variance of radial growth characteristics of Larix gmelinii
参数 Parameter | 处理 Treatment | 地点 Site | 处理 × 地点 Treatment × site | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
DBH | 81.22 | <0.01 | 235.29 | <0.01 | 20.13 | <0.01 |
D10 | 90.49 | <0.01 | 197.33 | <0.01 | 22.34 | <0.01 |
树叶生物量占比 Proportion of leaf biomass | 7.09 | <0.01 | 75.61 | <0.01 | 13.93 | <0.01 |
树枝生物量占比 Proportion of branch biomass | 51.71 | <0.01 | 36.73 | <0.01 | 9.59 | <0.01 |
树干生物量占比 Proportion of stem biomass | 84.32 | <0.01 | 165.94 | <0.01 | 22.68 | <0.01 |
树根生物量占比 Proportion of root biomass | 47.24 | <0.01 | 107.10 | <0.01 | 14.81 | <0.01 |
地上生物量占比 Proportion of aboveground biomass | 47.26 | <0.01 | 107.11 | <0.01 | 14.88 | <0.01 |
根冠比 Root to shoot ratio | 49.98 | <0.01 | 91.53 | <0.01 | 16.14 | <0.01 |
图1 落叶松胸径(DBH)和树干距地面10 cm处直径(D10)在处理间和来源地点间比较(平均值±标准误, n = 4)。DL, 带岭; HH, 黑河; SL, 松岭; TH, 塔河。不同小写字母表示帽儿山同质园内地点间差异显著(p < 0.05), 不同大写字母表示移栽来源地间差异显著(p < 0.05), *表示处理效应显著(p < 0.05)。
Fig. 1 Comparison of stem diameter at breast height (DBH) and at 10 cm from the ground (D10) of Larix gmelinii among treatments and sites (mean ± SE, n = 4). DL, Dailing; HH, Heihe; SL, Songling; TH, Tahe. Different lowercase letters indicate significant differences between trees in the common garden (p < 0.05), different uppercase letters indicate significant differences between trees at original sites (p < 0.05), * indicates significant effects of treatment on DBH and D10 (p < 0.05).
图2 落叶松径向生长的相对增长率和单位增温相对增长率。D10, 树干距地面10 cm处直径; DBH, 胸径。
Fig. 2 Relative increasing rate and relative increasing rate per centigrade of radial growth of Larix gmelinii. D10, diameter at 10 cm from the ground; DBH, diameter at breast height.
来源 Origin | 处理(胸径范围) Treatment (DBH range) | 组分 Component | a | b | R2 |
---|---|---|---|---|---|
带岭 Dailing | 来源地 | 总体 Total | 1.582 | 2.798 | 0.975 |
Original site (8.85-15.40 cm) | 地上部分 Aboveground | 1.496 | 2.853 | 0.976 | |
根 Root | 1.288 | 1.901 | 0.921 | ||
干 Stem | 1.477 | 2.799 | 0.952 | ||
枝 Branch | 0.138 | 3.242 | 0.986 | ||
叶 Leaf | 0.057 | 2.959 | 0.955 | ||
同质园 | 总体 Total | 1.883 | 2.469 | 0.995 | |
Common garden (6.90-18.85 cm) | 地上部分 Aboveground | 1.779 | 2.539 | 0.995 | |
根 Root | 1.723 | 1.482 | 0.996 | ||
干 Stem | 1.778 | 2.495 | 0.994 | ||
枝 Branch | -0.089 | 3.074 | 0.971 | ||
叶 Leaf | 0.152 | 2.852 | 0.945 | ||
黑河 Heihe | 来源地 | 总体 Total | 1.709 | 2.685 | 0.977 |
Original site (6.73-17.00 cm) | 地上部分 Aboveground | 1.631 | 2.730 | 0.975 | |
根 Root | 1.145 | 2.105 | 0.999 | ||
干 Stem | 1.574 | 2.724 | 0.963 | ||
枝 Branch | 0.327 | 2.926 | 0.971 | ||
叶 Leaf | 0.423 | 2.648 | 0.995 | ||
同质园 | 总体 Total | 1.808 | 2.512 | 0.960 | |
Common garden (6.60-16.90 cm) | 地上部分 Aboveground | 1.764 | 2.529 | 0.960 | |
根 Root | 0.860 | 2.237 | 0.948 | ||
干 Stem | 1.695 | 2.538 | 0.957 | ||
枝 Branch | 0.719 | 2.464 | 0.944 | ||
叶 Leaf | 0.482 | 2.504 | 0.962 | ||
松岭 Songling | 来源地 | 总体 Total | 2.138 | 2.192 | 0.962 |
Original site (4.41-8.00 cm) | 地上部分 Aboveground | 1.955 | 2.346 | 0.964 | |
根 Root | 1.990 | 1.244 | 0.812 | ||
干 Stem | 1.863 | 2.328 | 0.957 | ||
枝 Branch | 1.103 | 2.390 | 0.971 | ||
叶 Leaf | 0.670 | 2.493 | 0.956 | ||
同质园 | 总体 Total | 2.103 | 2.132 | 0.945 | |
Common garden (5.90-13.50 cm) | 地上部分 Aboveground | 2.001 | 2.194 | 0.948 | |
根 Root | 1.638 | 1.490 | 0.870 | ||
干 Stem | 1.890 | 2.222 | 0.946 | ||
枝 Branch | 1.081 | 2.215 | 0.939 | ||
叶 Leaf | 1.148 | 1.809 | 0.894 | ||
塔河 Tahe | 来源地 | 总体 Total | 2.861 | 0.974 | 0.886 |
Original site (1.61-4.30 cm) | 地上部分 Aboveground | 2.628 | 1.195 | 0.878 | |
根 Root | 2.504 | 0.484b | 0.882 | ||
干 Stem | 2.343 | 1.378 | 0.829 | ||
枝 Branch | 2.025 | 0.978b | 0.784 | ||
叶 Leaf | 1.897 | 0.974 | 0.838 | ||
同质园 | 总体 Total | 2.503 | 1.737 | 0.949 | |
Common garden (3.50-11.20 cm) | 地上部分 Aboveground | 2.320 | 1.865 | 0.954 | |
根 Root | 2.266 | 1.056a | 0.887 | ||
干 Stem | 2.188 | 1.901 | 0.952 | ||
枝 Branch | 1.254 | 2.018a | 0.917 | ||
叶 Leaf | 1.669 | 1.395 | 0.911 |
表3 落叶松生物量组分与胸径之间的异速生长方程
Table 3 Allometric equations relating biomass components to diameter at breast height of Larix gmelinii
来源 Origin | 处理(胸径范围) Treatment (DBH range) | 组分 Component | a | b | R2 |
---|---|---|---|---|---|
带岭 Dailing | 来源地 | 总体 Total | 1.582 | 2.798 | 0.975 |
Original site (8.85-15.40 cm) | 地上部分 Aboveground | 1.496 | 2.853 | 0.976 | |
根 Root | 1.288 | 1.901 | 0.921 | ||
干 Stem | 1.477 | 2.799 | 0.952 | ||
枝 Branch | 0.138 | 3.242 | 0.986 | ||
叶 Leaf | 0.057 | 2.959 | 0.955 | ||
同质园 | 总体 Total | 1.883 | 2.469 | 0.995 | |
Common garden (6.90-18.85 cm) | 地上部分 Aboveground | 1.779 | 2.539 | 0.995 | |
根 Root | 1.723 | 1.482 | 0.996 | ||
干 Stem | 1.778 | 2.495 | 0.994 | ||
枝 Branch | -0.089 | 3.074 | 0.971 | ||
叶 Leaf | 0.152 | 2.852 | 0.945 | ||
黑河 Heihe | 来源地 | 总体 Total | 1.709 | 2.685 | 0.977 |
Original site (6.73-17.00 cm) | 地上部分 Aboveground | 1.631 | 2.730 | 0.975 | |
根 Root | 1.145 | 2.105 | 0.999 | ||
干 Stem | 1.574 | 2.724 | 0.963 | ||
枝 Branch | 0.327 | 2.926 | 0.971 | ||
叶 Leaf | 0.423 | 2.648 | 0.995 | ||
同质园 | 总体 Total | 1.808 | 2.512 | 0.960 | |
Common garden (6.60-16.90 cm) | 地上部分 Aboveground | 1.764 | 2.529 | 0.960 | |
根 Root | 0.860 | 2.237 | 0.948 | ||
干 Stem | 1.695 | 2.538 | 0.957 | ||
枝 Branch | 0.719 | 2.464 | 0.944 | ||
叶 Leaf | 0.482 | 2.504 | 0.962 | ||
松岭 Songling | 来源地 | 总体 Total | 2.138 | 2.192 | 0.962 |
Original site (4.41-8.00 cm) | 地上部分 Aboveground | 1.955 | 2.346 | 0.964 | |
根 Root | 1.990 | 1.244 | 0.812 | ||
干 Stem | 1.863 | 2.328 | 0.957 | ||
枝 Branch | 1.103 | 2.390 | 0.971 | ||
叶 Leaf | 0.670 | 2.493 | 0.956 | ||
同质园 | 总体 Total | 2.103 | 2.132 | 0.945 | |
Common garden (5.90-13.50 cm) | 地上部分 Aboveground | 2.001 | 2.194 | 0.948 | |
根 Root | 1.638 | 1.490 | 0.870 | ||
干 Stem | 1.890 | 2.222 | 0.946 | ||
枝 Branch | 1.081 | 2.215 | 0.939 | ||
叶 Leaf | 1.148 | 1.809 | 0.894 | ||
塔河 Tahe | 来源地 | 总体 Total | 2.861 | 0.974 | 0.886 |
Original site (1.61-4.30 cm) | 地上部分 Aboveground | 2.628 | 1.195 | 0.878 | |
根 Root | 2.504 | 0.484b | 0.882 | ||
干 Stem | 2.343 | 1.378 | 0.829 | ||
枝 Branch | 2.025 | 0.978b | 0.784 | ||
叶 Leaf | 1.897 | 0.974 | 0.838 | ||
同质园 | 总体 Total | 2.503 | 1.737 | 0.949 | |
Common garden (3.50-11.20 cm) | 地上部分 Aboveground | 2.320 | 1.865 | 0.954 | |
根 Root | 2.266 | 1.056a | 0.887 | ||
干 Stem | 2.188 | 1.901 | 0.952 | ||
枝 Branch | 1.254 | 2.018a | 0.917 | ||
叶 Leaf | 1.669 | 1.395 | 0.911 |
图4 落叶松各组分生物量占比率在处理间和地点间比较(平均值±标准误, n = 10)。DL, 带岭; HH, 黑河; SL, 松岭; TH, 塔河。不同小写字母表示帽儿山同质园内地点间差异显著(p < 0.05), 不同大写字母表示移栽来源地间差异显著(p < 0.05), *表示处理效应显著(p < 0.05)。
Fig. 4 Comparison of biomass proportion of each component of Larix gmelinii by treatment and sites (mean ± SE, n = 10). DL, Dailing; HH, Heihe; SL, Songling; TH, Tahe. Different lowercase letters indicate significant differences between trees in the common garden (p < 0.05), different uppercase letters indicate significant differences between trees at original sites (p < 0.05), * indicates significant effects of treatment on biomass proportion (p < 0.05).
[1] | Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684. |
[2] |
Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528-532.
DOI PMID |
[3] |
Atkin OK, Tjoelker MG (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 8, 343-351.
PMID |
[4] | Chang YX, Chen ZJ, Zhang XL, Bai XP, Zhao XP, Li JX, Lu X (2017). Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming. Chinese Journal of Plant Ecology, 41, 279-289. |
[常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭 (2017). 气候变暖下大兴安岭落叶松径向生长对温度的响应. 植物生态学报, 41, 279-289.]
DOI |
|
[5] | D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008). On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Global and Planetary Change, 60, 289-305. |
[6] | Dawes MA, Philipson CD, Fonti P, Bebi P, Hättenschwiler S, Hagedorn F, Rixen C (2015). Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation. Global Change Biology, 21, 2005-2021. |
[7] |
Dieleman WIJ, Vicca S, Dijkstra FA, Hagedorn F, Hovenden MJ, Larsen KS, Morgan JA, Volder A, Beier C, Dukes JS, King J, Leuzinger S, Linder S, Luo Y, Oren R, et al. (2012). Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Global Change Biology, 18, 2681-2693.
DOI PMID |
[8] | Gruber A, Oberhuber W, Wieser G (2018). Nitrogen addition and understory removal but not soil warming increased radial growth of Pinus cembra at treeline in the central Austrian Alps. Frontiers in Plant Science, 9, 711. DOI: 10.3389/fpls.2018.00711. |
[9] | Han S, Lee SJ, Yoon TK, Han S, Lee J, Kim S, Hwang J, Cho MS, Son Y (2015). Species-specific growth and photosynthetic responses of first-year seedlings of four coniferous species to open-field experimental warming. Turkish Journal of Agriculture and Forestry, 39, 342-349. |
[10] | Jarvis P, Linder S (2000). Constraints to growth of boreal forests. Nature, 405, 904-905. |
[11] | Jia B, Sun H, Shugart HH, Xu Z, Zhang P, Zhou G (2021). Growth variations of Dahurian larch plantations across northeast China: understanding the effects of temperature and precipitation. Journal of Environmental Management, 292, 112739. DOI: 10.1016/j.jenvman.2021.112739. |
[12] |
Ju YL, Wang CK, Wang N, Quan XK (2022). Transplanting larch trees into warmer areas increases the photosynthesis and its temperature sensitivity. Tree Physiology, 42, 2521-2533.
DOI PMID |
[13] |
Kasurinen A, Biasi C, Holopainen T, Rousi M, Mäenpää M, Oksanen E (2012). Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Tree Physiology, 32, 737-751.
DOI PMID |
[14] | Kumarathunge DP, Drake JE, Tjoelker MG, López R, Pfautsch S, Vårhammar A, Medlyn BE (2020). The temperature optima for tree seedling photosynthesis and growth depend on water inputs. Global Change Biology, 26, 2544-2560. |
[15] | Li F, Zhou GS, Cao MC (2006). Responses of Larix gmelinii geographical distribution to future climate change: a simulation study. Chinese Journal of Applied Ecology, 17, 2255-2260. |
[李峰, 周广胜, 曹铭昌 (2006). 兴安落叶松地理分布对气候变化响应的模拟. 应用生态学报, 17, 2255-2260.] | |
[16] | Li W, Wang CK, Zhang QZ (2015). Differentiation of stand individuals impacts allometry and biomass allocation of Larix gmelinii trees. Acta Ecologica Sinica, 35, 1679-1687. |
[李巍, 王传宽, 张全智 (2015). 林木分化对兴安落叶松异速生长方程和生物量分配的影响. 生态学报, 35, 1679-1687.] | |
[17] |
Lin DL, Xia JY, Wan SQ (2010). Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist, 188, 187-198.
DOI PMID |
[18] | National Forestry and Grassland Administration (2019). China Forest Resourses Report 2014-2018. China Forestry Publishing House, Beijing. |
[ 国家林业和草原局 (2019). 中国森林资源报告2014- 2018. 中国林业出版社, 北京.] | |
[19] | Nissinen K, Virjamo V, Kilpeläinen A, Ikonen VP, Pikkarainen L, Ärväs IL, Kirsikka-aho S, Peltonen A, Sobuj N, Sivadasan U, Zhou X, Ge Z, Salminen T, Julkunen- Tiitto R, Peltola H (2020). Growth responses of boreal Scots pine, Norway spruce and silver birch seedlings to simulated climate warming over three growing seasons in a controlled field experiment. Forests, 11, 943. DOI: 10.3390/f11090943. |
[20] | Prior LD, Bowman DMJS (2014). Big Eucalypts grow more slowly in a warm climate: evidence of an interaction between tree size and temperature. Global Change Biology, 20, 2793-2799. |
[21] |
Pumpanen J, Heinonsalo J, Rasilo T, Villemot J, Ilvesniemi H (2012). The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings. Tree Physiology, 32, 724-736.
DOI PMID |
[22] | Reich PB, Bermudez R, Montgomery RA, Rich RL, Rice KE, Hobbie SE, Stefanski A (2022). Even modest climate change may lead to major transitions in boreal forests. Nature, 608, 540-545. |
[23] | Reich PB, Sendall KM, Rice KR, Rich RL, Stefanski A, Hobbie SE, Montgomery RA (2015). Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nature Climate Change, 5, 148-152. |
[24] | Reich PB, Sendall KM, Stefanski A, Wei X, Rich RL, Montgomery RA (2016). Boreal and temperate trees show strong acclimation of respiration to warming. Nature, 531, 633-636. |
[25] |
Sendall KM, Reich PB, Zhao C, Hou J, Wei X, Stefanski A, Rice KR, Rich RL, Montgomery RA (2015). Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Global Change Biology, 21, 1342-1357.
DOI PMID |
[26] | Štraus I, Mrak T, Ferlan M, Železnik P, Kraigher H (2015). Influence of soil temperature on growth traits of European beech seedlings. Canadian Journal of Forest Research, 45, 246-251. |
[27] |
Taeger S, Sparks TH, Menzel A (2015). Effects of temperature and drought manipulations on seedlings of Scots pine provenances. Plant Biology, 17, 361-372.
DOI PMID |
[28] | Tan ND, Li X, Wu T, Lie ZY, Liu XJ, Liu SZ, Chen P, Liu JX (2021). Effects of warming on biomass allocation patterns and nutrient accumulations of four dominant tree species in mixed forest of Dinghushan, China. Journal of Tropical and Subtropical Botany, 29, 389-400. |
[谭钠丹, 李旭, 吴婷, 列志旸, 刘旭军, 刘世忠, 陈平, 刘菊秀 (2021). 增温对鼎湖山混交林中4种优势树种生物量分配和养分积累的影响. 热带亚热带植物学报, 29, 389-400.] | |
[29] | Vospernik S, Nothdurft A (2018). Can trees at high elevations compensate for growth reductions at low elevations due to climate warming? Canadian Journal of Forest Research, 48, 650-662. |
[30] | Wan LN, Wang CK, Quan XK (2019). Effects of latitudinal transplanting on temperature sensitivity of leaf dark respiration for Larix gmelinii. Chinese Journal of Applied Ecology, 30, 1659-1666. |
[万丽娜, 王传宽, 全先奎 (2019). 纬度梯度移栽对兴安落叶松针叶暗呼吸温度敏感性的影响. 应用生态学报, 30, 1659-1666.]
DOI |
|
[31] | Wang CK (2006). Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 222, 9-16. |
[32] | Wang JC, Duan BL, Zhang YB (2012). Effects of experimental warming on growth, biomass allocation, and needle chemistry of Abies faxoniana in even-aged monospecific stands. Plant Ecology, 213, 47-55. |
[33] | Wang X, Zhang Y, McRae DJ (2009). Spatial and age- dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China. Trees, 23, 875-885. |
[34] |
Way DA, Oren R (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology, 30, 669-688.
DOI PMID |
[35] | Zhang XS (1993). A vegetation-climate classification system for global change studies in China. Quaternary Sciences, 13, 157-169. |
[张新时 (1993). 研究全球变化的植被-气候分类系统. 第四纪研究, 13, 157-169.] | |
[36] |
Zhou GY, Peng CH, Li YL, Liu SZ, Zhang QM, Tang XL, Liu JX, Yan JH, Zhang DQ, Chu GW (2013). A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China. Global Change Biology, 19, 1197-1210.
DOI PMID |
[37] | Zhou L, Zhou X, He Y, Fu Y, Du Z, Lu M, Sun X, Li C, Lu C, Liu R, Zhou G, Bai S, Thakur MP (2022). Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association. Nature Communications, 13, 4914. DOI: 10.1038/s41467-41022-32671-41469. |
[38] | Zhou YL, Dong SL, Nie SQ (1986). Ligneous Flora of Heilongjiang. Heilongjiang Science and Technology Press, Harbin. 34-37. |
[周以良, 董世林, 聂绍荃 (1986). 黑龙江树木志. 黑龙江科学出版社, 哈尔滨. 34-37.] |
[1] | 张鹏, 焦亮, 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩. 干旱强度影响祁连山西段不同海拔青海云杉的生长恢复[J]. 植物生态学报, 2024, 48(8): 977-987. |
[2] | 史倩, 同小娟, 许玲玲, 孟平, 于裴洋, 李俊, 杨铭鑫. 油松早晚材径向生长对气候因子的响应[J]. 植物生态学报, 2024, 48(8): 988-1000. |
[3] | 孙龙, 李文博, 娄虎, 于澄, 韩宇, 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(6): 770-779. |
[4] | 陈以恒, 玉素甫江•如素力, 阿卜杜热合曼•吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[7] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[8] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[9] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[10] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[11] | 王雨婷, 刘旭婧, 唐驰飞, 陈玮钰, 王美娟, 向松竹, 刘梅, 杨林森, 傅强, 晏召贵, 孟红杰. 神农架极小种群植物庙台槭群落特征及种群动态[J]. 植物生态学报, 2024, 48(1): 80-91. |
[12] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[13] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[14] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[15] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19