植物生态学报 ›› 2023, Vol. 47 ›› Issue (11): 1540-1550.DOI: 10.17521/cjpe.2022.0460
收稿日期:
2022-11-14
接受日期:
2023-05-10
出版日期:
2023-11-20
发布日期:
2023-06-25
通讯作者:
王兴昌 ORCID:0000-0002-6502-1422; (基金资助:
LIU Yan-Jie1, LIU Yu-Long2, WANG Chuan-Kuan1, WANG Xing-Chang1,*()
Received:
2022-11-14
Accepted:
2023-05-10
Online:
2023-11-20
Published:
2023-06-25
Contact:
WANG Xing-Chang(Supported by:
摘要:
为阐明复叶树种叶成本-效益关系和叶碳经济, 该研究测定了帽儿山森林生态站5个典型羽状复叶木本树种的叶片和叶轴性状, 通过标准主轴回归和方差分析研究不同复叶树种的叶片和叶轴之间的异速生长关系。主要结果: 叶面积与叶轴质量之间存在显著的异速生长关系, 异速生长指数更接近于West, Brown and Enquist (WBE)模型的理论值(3/4), 不符合几何相似模型的理论值(2/3)。但叶片质量与叶轴质量之间大多为等速生长关系。叶面积、叶片质量与叶轴长度之间均存在显著的异速生长关系, 5个树种的共同异速生长指数分别为1.853和2.322。叶轴质量与叶轴长度为显著的异速生长关系, 异速生长指数普遍大于2, 表明叶轴长度增长实现的空间扩展收益增长低于叶轴质量成本增长速度。叶面积与叶片质量、复叶质量之间显著的异速生长关系表明复叶的收益递减规律。二回羽状复叶(楤木(Aralia elata))比一回羽状复叶具有更高的碳收益投资比。这些结果表明, 羽状复叶树种叶片与叶轴之间表现为明显的异速生长关系, 适宜生长较长的叶轴满足光截获需求, 但叶轴伸长导致的投资成本快速增加限制了复叶面积的扩展。
刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较. 植物生态学报, 2023, 47(11): 1540-1550. DOI: 10.17521/cjpe.2022.0460
LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China. Chinese Journal of Plant Ecology, 2023, 47(11): 1540-1550. DOI: 10.17521/cjpe.2022.0460
变量 Variable (y-x) | 树种 Species | 决定系数 Determination coefficient (R2) | 斜率 Slope [95% CI] | 截距 Intercept [95% CI] |
---|---|---|---|---|
叶片面积-叶轴质量 Lamina area-rachis mass | FM | 0.923 | 0.832a [0.767, 0.901] | 2.888a [2.844, 2.932] |
JM | 0.938 | 0.841a [0.783, 0.904] | 2.899a [2.868, 2.930] | |
PA | 0.801 | 0.693b [0.609, 0.789] | 2.814a [2.746, 2.882] | |
MA | 0.686 | 0.833ab [0.708, 0.979] | 2.788a [2.684, 2.893] | |
AE | 0.946 | 0.712b [0.666, 0.762] | 2.947a [2.913, 2.980] | |
叶片质量-叶轴质量 Lamina mass-rachis mass | FM | 0.952 | 0.994b [0.933, 1.059] | 0.766a [0.724, 0.808] |
JM | 0.967 | 1.048a [0.994, 1.104] | 0.671a [0.643, 0.699] | |
PA | 0.822 | 0.842b [0.745, 0.952] | 0.655a [0.577, 0.733] | |
MA | 0.848 | 1.044ab [0.933, 1.169] | 0.698a [0.607, 0.789] | |
AE | 0.970 | 0.952b [0.906, 1.001] | 0.209a [0.176, 0.242] | |
叶片面积-叶轴长度 Lamina area-rachis length | FM | 0.844 | 1.950a [1.739, 2.186] | -0.092b [-0.388, 0.204] |
JM | 0.920 | 1.790a [1.649, 1.943] | 0.027a [-0.196, 0.251] | |
PA | 0.703 | 1.555a [1.328, 1.820] | 0.308a [-0.012, 0.629] | |
MA | 0.700 | 2.004a [1.710, 2.349] | -0.317c [-0.715, 0.083] | |
AE | 0.912 | 1.919a [1.761, 2.091] | -0.342c [-0.656, -0.028] | |
叶片质量-叶轴长度 Lamina mass-rachis length | FM | 0.840 | 2.320a [2.067, 2.605] | -2.786b [-3.139, -2.426] |
JM | 0.853 | 2.232a [1.999, 2.491] | -2.909c [-3.286, -2.532] | |
PA | 0.572 | 1.887a [1.563, 2.279] | -2.378a [-2.853, -1.919] | |
MA | 0.449 | 2.509a [2.026, 3.106] | -3.205ac [-3.864, -2.515] | |
AE | 0.837 | 2.572a [2.288, 2.890] | -4.206d [-4.772, -3.626] |
表1 东北温带森林5个树种叶片大小-叶轴大小的标准主轴回归分析
Table 1 Standard major axis regression analysis of leaf size versus rachis length for the five species in a temperate forest of northeast China
变量 Variable (y-x) | 树种 Species | 决定系数 Determination coefficient (R2) | 斜率 Slope [95% CI] | 截距 Intercept [95% CI] |
---|---|---|---|---|
叶片面积-叶轴质量 Lamina area-rachis mass | FM | 0.923 | 0.832a [0.767, 0.901] | 2.888a [2.844, 2.932] |
JM | 0.938 | 0.841a [0.783, 0.904] | 2.899a [2.868, 2.930] | |
PA | 0.801 | 0.693b [0.609, 0.789] | 2.814a [2.746, 2.882] | |
MA | 0.686 | 0.833ab [0.708, 0.979] | 2.788a [2.684, 2.893] | |
AE | 0.946 | 0.712b [0.666, 0.762] | 2.947a [2.913, 2.980] | |
叶片质量-叶轴质量 Lamina mass-rachis mass | FM | 0.952 | 0.994b [0.933, 1.059] | 0.766a [0.724, 0.808] |
JM | 0.967 | 1.048a [0.994, 1.104] | 0.671a [0.643, 0.699] | |
PA | 0.822 | 0.842b [0.745, 0.952] | 0.655a [0.577, 0.733] | |
MA | 0.848 | 1.044ab [0.933, 1.169] | 0.698a [0.607, 0.789] | |
AE | 0.970 | 0.952b [0.906, 1.001] | 0.209a [0.176, 0.242] | |
叶片面积-叶轴长度 Lamina area-rachis length | FM | 0.844 | 1.950a [1.739, 2.186] | -0.092b [-0.388, 0.204] |
JM | 0.920 | 1.790a [1.649, 1.943] | 0.027a [-0.196, 0.251] | |
PA | 0.703 | 1.555a [1.328, 1.820] | 0.308a [-0.012, 0.629] | |
MA | 0.700 | 2.004a [1.710, 2.349] | -0.317c [-0.715, 0.083] | |
AE | 0.912 | 1.919a [1.761, 2.091] | -0.342c [-0.656, -0.028] | |
叶片质量-叶轴长度 Lamina mass-rachis length | FM | 0.840 | 2.320a [2.067, 2.605] | -2.786b [-3.139, -2.426] |
JM | 0.853 | 2.232a [1.999, 2.491] | -2.909c [-3.286, -2.532] | |
PA | 0.572 | 1.887a [1.563, 2.279] | -2.378a [-2.853, -1.919] | |
MA | 0.449 | 2.509a [2.026, 3.106] | -3.205ac [-3.864, -2.515] | |
AE | 0.837 | 2.572a [2.288, 2.890] | -4.206d [-4.772, -3.626] |
图1 东北温带森林5个树种叶片大小与叶轴长度之间的关系。AE, 楤木; FM, 水曲柳; JM, 胡桃楸; MA, 朝鲜槐; PA, 黄檗。
Fig. 1 Relationships between leaf size and rachis length for the five species in a temperate forest of northeast China. AE, Aralia elata; FM, Fraxinus mandschurica; JM, Juglans mandshurica; MA, Maackia amurensis; PA, Phellodendron amurense.
图2 东北温带森林5个树种叶轴生物量分配的比较。AE, 楤木; FM, 水曲柳; JM, 胡桃楸; MA, 朝鲜槐; PA, 黄檗。误差线分别表示10%和90%分位数, “箱子”两端分别表示四分位数, 横线表示中位数。不同小写字母表示树种间差异显著(p < 0.05)。
Fig. 2 Comparisons of the biomass allocation of rachis biomass to the total compound-leaf for the five species in a temperate forest of northeast China. AE, Aralia elata; FM, Fraxinus mandschurica; JM, Juglans mandshurica; MA, Maackia amurensis; PA, Phellodendron amurense. The error bars represent the 10% and 90% percentiles, respectively, and the ends of the box represent the quartiles with the horizontal line being the median. Different lowercase letters indicate significant difference between species (p < 0.05).
变量 Variable (y-x) | 树种 Species | 决定系数 Determination coefficient (R2) | 斜率 Slope [95% CI] | 截距 Intercept [95% CI] |
---|---|---|---|---|
叶轴质量-叶轴长度 Rachis mass-rachis length | FM | 0.912 | 2.337ab [2.144, 2.547] | -3.573 [-3.841, -3.305] |
JM | 0.910 | 2.126b [1.946, 2.324] | -3.413 [-3.701, -3.125] | |
PA | 0.752 | 2.243ab [1.942, 2.590] | -3.614 [-4.036, -3.191] | |
MA | 0.618 | 2.401ab [2.009, 2.870] | -3.721 [-4.256, -3.183] | |
AE | 0.907 | 2.696a [2.468, 2.946] | -4.620 [-5.074, -4.165] |
表2 东北温带森林5个树种叶轴质量与叶轴长度的标准主轴回归分析
Table 2 Standard major axis regression analysis of rachis mass versus rachis length for the five typical species in a temperate forest of northeast China
变量 Variable (y-x) | 树种 Species | 决定系数 Determination coefficient (R2) | 斜率 Slope [95% CI] | 截距 Intercept [95% CI] |
---|---|---|---|---|
叶轴质量-叶轴长度 Rachis mass-rachis length | FM | 0.912 | 2.337ab [2.144, 2.547] | -3.573 [-3.841, -3.305] |
JM | 0.910 | 2.126b [1.946, 2.324] | -3.413 [-3.701, -3.125] | |
PA | 0.752 | 2.243ab [1.942, 2.590] | -3.614 [-4.036, -3.191] | |
MA | 0.618 | 2.401ab [2.009, 2.870] | -3.721 [-4.256, -3.183] | |
AE | 0.907 | 2.696a [2.468, 2.946] | -4.620 [-5.074, -4.165] |
图3 东北温带森林5个树种叶面积与叶片质量的关系。AE, 楤木; FM, 水曲柳; JM, 胡桃楸; MA, 朝鲜槐; PA, 黄檗。
Fig. 3 Relationships between lamina area and lamina mass for the five species in a temperate forest of northeast China. AE, Aralia elata; FM, Fraxinus mandschurica; JM, Juglans mandshurica; MA, Maackia amurensis; PA, Phellodendron amurense.
图4 东北温带森林5个树种叶片比叶质量(LMA) (A)与复叶LMA (B)的比较。AE, 楤木; FM, 水曲柳; JM, 胡桃楸; MA, 朝鲜槐; PA, 黄檗。误差线分别表示10%和90%分位数, “箱子”两端分别表示四分位数, 横线表示中位数。不同小写字母表示不同树种间差异显著(p < 0.05, n = 50)。
Fig. 4 Comparisons of lamina mass per area (LMA) (A) and compound-leaf LMA (B) among the five species in a temperate forest of northeast China. AE, Aralia elata; FM, Fraxinus mandschurica; JM, Juglans mandshurica; MA, Maackia amurensis; PA, Phellodendron amurense. The error bars represent the 10% and 90% percentiles, respectively, and the ends of the box represent the quartiles with the horizontal line being the median. Different lowercase letters represent significant difference among species (p < 0.05, n = 50).
变量 Variable (y-x) | 物种 Species | 相关系数Correlation coefficient (r) | p |
---|---|---|---|
比叶质量-复叶质量 Lamina mass per area-compound-leaf mass | FM | 0.548** | <0.001 |
JM | 0.665** | <0.001 | |
PA | 0.483** | <0.001 | |
MA | 0.436** | 0.002 | |
AE | 0.955** | <0.001 | |
比叶质量-叶片面积 Lamina mass per area-lamina area | FM | 0.249 | 0.081 |
JM | 0.555** | <0.001 | |
PA | 0.099 | 0.494 | |
MA | -0.135 | 0.349 | |
AE | 0.814** | <0.001 | |
比叶质量-叶轴质量 Lamina mass per area-rachis mass | FM | 0.437** | 0.002 |
JM | 0.574** | <0.001 | |
PA | 0.322* | 0.023 | |
MA | 0.234 | 0.102 | |
AE | 0.916** | <0.001 | |
复叶比叶质量-复叶质量 Compound-leaf mass per area-compound-leaf mass | FM | 0.546** | <0.001 |
JM | 0.666** | <0.001 | |
PA | 0.519** | <0.001 | |
MA | 0.419** | 0.002 | |
AE | 0.949** | <0.001 | |
复叶比叶质量-叶片面积 Compound-leaf mass per area-lamina area | FM | 0.267 | 0.061 |
JM | 0.559** | <0.001 | |
PA | 0.136 | 0.345 | |
MA | -0.155 | 0.282 | |
AE | 0.842** | <0.001 | |
复叶比叶质量-叶轴质量 Compound-leaf mass per area-rachis mass | FM | 0.470** | 0.001 |
JM | 0.599** | <0.001 | |
PA | 0.416** | 0.003 | |
MA | 0.256 | 0.063 | |
AE | 0.949** | <0.001 |
表3 东北温带森林5个树种叶片比叶质量(LMA)、复叶LMA与复叶大小(复叶质量、叶面积和叶轴质量)之间的相关性分析
Table 3 Correlation analysis of lamina mass per area (LMA), compound-leaf LMA, and compound-leaf size (compound-leaf mass, lamina area and rachis mass) for the five species in a temperate forest of northeast China
变量 Variable (y-x) | 物种 Species | 相关系数Correlation coefficient (r) | p |
---|---|---|---|
比叶质量-复叶质量 Lamina mass per area-compound-leaf mass | FM | 0.548** | <0.001 |
JM | 0.665** | <0.001 | |
PA | 0.483** | <0.001 | |
MA | 0.436** | 0.002 | |
AE | 0.955** | <0.001 | |
比叶质量-叶片面积 Lamina mass per area-lamina area | FM | 0.249 | 0.081 |
JM | 0.555** | <0.001 | |
PA | 0.099 | 0.494 | |
MA | -0.135 | 0.349 | |
AE | 0.814** | <0.001 | |
比叶质量-叶轴质量 Lamina mass per area-rachis mass | FM | 0.437** | 0.002 |
JM | 0.574** | <0.001 | |
PA | 0.322* | 0.023 | |
MA | 0.234 | 0.102 | |
AE | 0.916** | <0.001 | |
复叶比叶质量-复叶质量 Compound-leaf mass per area-compound-leaf mass | FM | 0.546** | <0.001 |
JM | 0.666** | <0.001 | |
PA | 0.519** | <0.001 | |
MA | 0.419** | 0.002 | |
AE | 0.949** | <0.001 | |
复叶比叶质量-叶片面积 Compound-leaf mass per area-lamina area | FM | 0.267 | 0.061 |
JM | 0.559** | <0.001 | |
PA | 0.136 | 0.345 | |
MA | -0.155 | 0.282 | |
AE | 0.842** | <0.001 | |
复叶比叶质量-叶轴质量 Compound-leaf mass per area-rachis mass | FM | 0.470** | 0.001 |
JM | 0.599** | <0.001 | |
PA | 0.416** | 0.003 | |
MA | 0.256 | 0.063 | |
AE | 0.949** | <0.001 |
[1] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91-100.
DOI PMID |
[2] |
Castorena M, Olson ME, Enquist BJ, Fajardo A (2022). Toward a general theory of plant carbon economics. Trends in Ecology & Evolution, 37, 829-837.
DOI URL |
[3] |
Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153.
DOI URL |
[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[4] |
Dong HJ, Wang XC, Yuan DY, Liu D, Liu YL, Sang Y, Wang XC (2022). Radial distribution differences of non-structural carbohydrates in stems of tree species of different wood in a temperate forest. Chinese Journal of Plant Ecology, 46, 722-734.
DOI URL |
[董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春 (2022). 温带不同材性树种树干非结构性碳水化合物的径向分配差异. 植物生态学报, 46, 722-734.]
DOI |
|
[5] |
Duan CY, Li MY, Fang LD, Cao Y, Wu DD, Liu H, Ye Q, Hao GY (2022). Greater hydraulic safety contributes to higher growth resilience to drought across seven pine species in a semi-arid environment. Tree Physiology, 42, 727-739.
DOI URL |
[6] |
Efroni I, Eshed Y, Lifschitz E (2010). Morphogenesis of simple and compound leaves: a critical review. The Plant Cell, 22, 1019-1032.
DOI PMID |
[7] |
Enquist BJ (2002). Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiology, 22, 1045-1064.
PMID |
[8] |
Enquist BJ, Niklas KJ (2001). Invariant scaling relations across tree-dominated communities. Nature, 410, 655-660.
DOI URL |
[9] |
Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520.
PMID |
[10] | Enquist BJ, West GB, Charnov EL, Brown JH (1999). Allometric scaling of production and life-history variation in vascular plants. Nature, 401, 907-911. |
[11] |
Fajardo A, Mora JP, Robert E (2020). Corner’s rules pass the test of time: little effect of phenology on leaf-shoot and other scaling relationships. Annals of Botany, 126, 1129-1139.
DOI URL |
[12] | Feng YL, Cao KF, Feng ZL, Ma L (2002). Acclimation of lamina mass per unit area, photosynthetic characteristics and dark respiration to growth light regimes in four tropical rainforest species. Acta Ecologica Sinica, 22, 901-910. |
[冯玉龙, 曹坤芳, 冯志立, 马玲 (2002). 四种热带雨林树种幼苗比叶重, 光合特性和暗呼吸对生长光环境的适应. 生态学报, 22, 901-910.] | |
[13] | Givnish TJ (1984). Leaf and canopy adaptations in tropical forests//Medina E, Mooney HA, Vázquez-Yánes C. Physiological Ecology Plants of the Wet Tropics. Springer, Dordrecht, the Netherlands. 51-84. |
[14] | Guo X, Niklas KJ, Li Y, Shi P, Schrader J (2022). Diminishing returns: a comparison between fresh mass vs. area and dry mass vs. area in deciduous species. Frontiers in Plant Science, 13, 832300. DOI: 10.3389/fpls.2022.832300. |
[15] | Han WX, Fang JY (2008). Review on the mechanism models of allometric scaling laws: 3/4 vs. 2/3 power. Journal of Plant Ecology (Chinese Version), 32, 951-960. |
[韩文轩, 方精云 (2008). 幂指数异速生长机制模型综述. 植物生态学报, 32, 951-960.]
DOI |
|
[16] |
Hao GY, Sack L, Wang AY, Cao KF, Goldstein G (2010). Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Functional Ecology, 24, 731-740.
DOI URL |
[17] |
He JZ, Cao P, Zheng YM (2013). Metabolic scaling theory and its application in microbial ecology. Acta Ecologica Sinica, 33, 2645-2655.
DOI URL |
[贺纪正, 曹鹏, 郑袁明 (2013). 代谢异速生长理论及其在微生物生态学领域的应用. 生态学报, 33, 2645-2655.] | |
[18] |
Huang YX, Lechowicz MJ, Zhou DW, Price CA (2016). Evaluating general allometric models: interspecific and intraspecific data tell different stories due to interspecific variation in stem tissue density and leaf size. Oecologia, 180, 671-684.
DOI PMID |
[19] |
Li GY, Yang DM, Sun SC (2008). Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude. Functional Ecology, 22, 557-564.
DOI URL |
[20] | Li JM, Ye YY, Liu JC (2021). Analysis of leaf biomass allocation and allometric growth of several common single-leaf and compound-leaf tree species in the Chongqing area. Plant Science Journal, 39, 76-84. |
[李金明, 叶玉媛, 刘锦春 (2021). 重庆地区几种常见单叶与复叶树种叶内生物量分配及异速生长分析. 植物科学学报, 39, 76-84.] | |
[21] |
Li L, Jin GZ, Liu ZL (2022). Variations and correlations of lamina and petiole traits of three broadleaved species in a broadleaved Korean pine forest. Chinese Journal of Plant Ecology, 46, 687-699.
DOI |
[李露, 金光泽, 刘志理 (2022). 阔叶红松林3种阔叶树种柄叶性状变异与相关性. 植物生态学报, 46, 687-699.]
DOI |
|
[22] | Li Y, Li HT, Jin DM, Sun SC (2007). Application of WBE model to ecology: a review. Acta Ecologica Sinica, 27, 3018-3031. |
[李妍, 李海涛, 金冬梅, 孙书存 (2007). WBE模型及其在生态学中的应用: 研究概述. 生态学报, 27, 3018-3031.] | |
[23] |
Li YQ, Wang ZH (2021). Leaf morphological traits: ecological function, geographic distribution and drivers. Chinese Journal of Plant Ecology, 45, 1154-1172.
DOI URL |
[李耀琪, 王志恒 (2021). 植物叶片形态的生态功能、地理分布与成因. 植物生态学报, 45, 1154-1172.]
DOI |
|
[24] |
Liu MX, Liang GL (2016). Research progress on leaf mass per area. Chinese Journal of Plant Ecology, 40, 847-860.
DOI URL |
[刘明秀, 梁国鲁 (2016). 植物比叶质量研究进展. 植物生态学报, 40, 847-860.]
DOI |
|
[25] |
Liu ZG, Zhao M, Zhang HX, Ren TT, Liu CC, He NP (2023). Divergent response and adaptation of specific leaf area to environmental change at different spatio-temporal scales jointly improve plant survival. Global Chang Biology, 29, 1144-1159.
DOI URL |
[26] |
Maenpuen P, Katabuchi M, Onoda Y, Zhou C, Zhang JL, Chen YJ (2022). Sources and consequences of mismatch between leaf disc and whole-leaf leaf mass per area (LMA). American Journal of Botany, 109, 1242-1250.
DOI PMID |
[27] |
Malhado ACM, Whittaker RJ, Malhi Y, Ladle RJ ter Steege H, Phillips O, Aragão LEOC, Baker TR, Arroyo L, Almeida S, Higuchi N, Killeen TJ, Monteagudo A, Pitman NCA, Prieto A, et al.(2010). Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography, 19, 852-862.
DOI URL |
[28] | Milla R, Reich PB (2007). The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 274, 2109-2115. |
[29] |
Niinemets Ü, Kull O (1999). Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees. Tree Physiology, 19, 349-358.
PMID |
[30] |
Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F (2007). Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Annals of Botany, 100, 283-303.
PMID |
[31] |
Niinemets Ü, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171, 91-104.
PMID |
[32] |
Niklas KJ (1992). Petiole mechanics, light interception by Lamina, and “economy in design”. Oecologia, 90, 518-526.
DOI PMID |
[33] | Niklas KJ (1994). Plant Allometry: the Scaling of Form and Process. University of Chicago Press, Chicago. |
[34] |
Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. New Phytologist, 143, 19-31.
DOI URL |
[35] |
Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007). “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 104, 8891-8896.
PMID |
[36] |
Pan SA, Peng GQ, Yang DM (2015). Biomass allocation strategies within a leaf: implication for leaf size optimization. Chinese Journal of Plant Ecology, 39, 971-979.
DOI URL |
[潘少安, 彭国全, 杨冬梅 (2015). 从叶内生物量分配策略的角度理解叶大小的优化. 植物生态学报, 39, 971-979.]
DOI |
|
[37] |
Pickup M, Westoby M, Basden A (2005). Dry mass costs of deploying leaf area in relation to leaf size. Functional Ecology, 19, 88-97.
DOI URL |
[38] |
Price CA, Gilooly JF, Allen AP, Weitz JS, Niklas KJ (2010). The metabolic theory of ecology: prospects and challenges for plant biology. New Phytologist, 188, 696-710.
DOI PMID |
[39] |
Song J, Trueba S, Yin XH, Cao KF, Brodribb TJ, Hao GY (2022). Hydraulic vulnerability segmentation in compound- leaved trees: evidence from an embolism visualization technique. Plant Physiology, 189, 204-214.
DOI PMID |
[40] |
Song J, Yang D, Niu CY, Zhang WW, Wang M, Hao GY (2018). Correlation between leaf size and hydraulic architecture in five compound-leaved tree species of a temperate forest in NE China. Forest Ecology and Management, 418, 63-72.
DOI URL |
[41] | Sun H (2018). Effects of Biophysical Constraints, Biotic Factors, Climate and Phylogeny on Forest Plant Allometries Across Northeast China. PhD dissertation, Beijing Forestry University, Beijing. |
[孙晗 (2018). 生物物理限制、生物因子、气候及谱系关系对中国东北地区森林植物相关关系的影响. 博士学位论文, 北京林业大学, 北京.] | |
[42] |
Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
PMID |
[43] |
Takenaka A (1994). Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecological Research, 9, 109-114.
DOI URL |
[44] |
Wang BY, Ma HJ, Su TW, Liu T, Wang Q (2012). Physiological response and acclimation to changes in light regimes in two tropical rainforest species. Plant Physiology Journal, 48, 232-240.
DOI URL |
[王博轶, 马洪军, 苏腾伟, 刘涛, 王齐 (2012). 两种热带雨林树苗对环境光强变化的生理响应和适应机制. 植物生理学报, 48, 232-240.] | |
[45] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
DOI PMID |
[46] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinements Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14, 411-421.
DOI URL |
[47] | Xu SS, Li Y, Wang GX (2014). Scaling relationships between leaf mass and total plant mass across Chinese forests. PLoS ONE, 9, e95938. DOI: 10.1371/journal.pone.0095938. |
[48] |
Xun YH, Di XY, Jin GZ (2020). Vertical variation and economic strategy of leaf trait of major tree species in a typical mixed broadleaved-Korean pine forest. Chinese Journal of Plant Ecology, 44, 730-741.
DOI URL |
[荀彦涵, 邸雪颖, 金光泽 (2020). 典型阔叶红松林主要树种叶性状的垂直变异及经济策略. 植物生态学报, 44, 730-741.] | |
[49] |
Yang D, Zhang YJ, Song J, Niu CY, Hao GY (2019). Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: evidence from trees in Northeast China. Tree Physiology, 39, 729-739.
DOI PMID |
[50] |
Yang DM, Li GY, Sun SC (2009). The effects of leaf size, leaf habit, and leaf form on leaf/stem relationships in plant twigs of temperate woody species. Journal of Vegetation Science, 20, 359-366.
DOI URL |
[51] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 31, 702-713. |
[杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
[52] |
Yao J, Li Y, Wei LP, Jiang SS, Yang S, Hou JH (2013). Changes of allometric relationships among leaf traits in different ontogenetic stages of Acer mono from different types of forests in Donglingshan of Beijing. Acta Ecologica Sinica, 33, 3907-3915.
DOI URL |
[姚婧, 李颖, 魏丽萍, 蒋思思, 杨松, 侯继华 (2013). 东灵山不同林型五角枫叶性状异速生长关系随发育阶段的变化. 生态学报, 33, 3907-3915.] | |
[53] | Yang L, Wang MT, Chen XP, Sun J, Zhong QL, Cheng DL (2020). Relationship between leaf area and leaf biomass of different canopies in subtropical evergreen forest. Acta Ecologica Sinica, 40, 7745-7754. |
[杨力, 王满堂, 陈晓萍, 孙俊, 钟全林, 程栋梁 (2020). 亚热带常绿林不同冠层小枝叶面积-叶生物量关系研究. 生态学报, 40, 7745-7754.] | |
[54] |
Ye YH, Kitayama K, Onoda Y (2022). A cost-benefit analysis of leaf carbon economy with consideration of seasonal changes in leaf traits for sympatric deciduous and evergreen congeners: implications for their coexistence. New Phytologist, 234, 1047-1058.
DOI PMID |
[55] | Zhang HY, Chen LM (2016). Comparison of biomass allocation between lamina and rachis in the “three hardwood species” of northeast China. Journal of Northeast Forestry University, 44(6), 33-35. |
[张海燕, 陈立明 (2016). 东北“三大硬阔”叶片和叶轴质量分配比较. 东北林业大学学报, 44(6), 33-35.] | |
[56] |
Zhu JD, Meng TT, Ni J, Su HX, Xie ZQ, Zhang SR, Zheng YR, Xiao CW (2011). Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types. Chinese Journal of Plant Ecology, 35, 687-698.
DOI |
[祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 张守仁, 郑元润, 肖春旺 (2011). 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异. 植物生态学报, 35, 687-698.] |
[1] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[2] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[3] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[4] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[5] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[6] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[7] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[8] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[9] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[10] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[11] | 李耀琪, 王志恒. 植物叶片形态的生态功能、地理分布与成因[J]. 植物生态学报, 2021, 45(10): 1154-1172. |
[12] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[13] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[14] | 陈国鹏, 杨克彤, 王立, 王飞, 曹秀文, 陈林生. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J]. 植物生态学报, 2020, 44(10): 1040-1049. |
[15] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19