植物生态学报 ›› 2021, Vol. 45 ›› Issue (11): 1231-1240.DOI: 10.17521/cjpe.2021.0135
王娇1,3, 关欣1,2, 张伟东1,2, 黄苛1,2, 朱睦楠1,2, 杨庆朋1,2,*()
收稿日期:
2021-04-09
接受日期:
2021-07-08
出版日期:
2021-11-20
发布日期:
2021-09-18
通讯作者:
杨庆朋
作者简介:
* (yqp226@iae.ac.cn)基金资助:
WANG Jiao1,3, GUAN Xin1,2, ZHANG Wei-Dong1,2, HUANG Ke1,2, ZHU Mu-Nan1,2, YANG Qing-Peng1,2,*()
Received:
2021-04-09
Accepted:
2021-07-08
Online:
2021-11-20
Published:
2021-09-18
Contact:
YANG Qing-Peng
Supported by:
摘要:
大气氮(N)沉降的急剧增加可能会对植物碳(C)固定和分配产生深远影响。然而, N添加如何影响碳水化合物在植物不同器官之间的分配动态并不十分清楚。该研究利用杉木(Cunninghamia lanceolata)幼苗盆栽试验, 设置N添加处理, 测定分析幼苗非结构性碳水化合物(NSC)与结构性碳水化合物(SC)含量和库的变化, 以探讨N添加后杉木幼苗不同器官中NSC与SC的分配模式及调控机制。结果发现: (1) N添加虽然显著增加叶片净光合速率(143.96%), 但却降低了叶片中的NSC含量和库; N添加导致一年生茎的淀粉含量显著下降, 而可溶性糖含量的变化不显著, 当年生茎的NSC组分含量和库没有显著变化; 幼苗根系的NSC及其组分含量和库也有降低的趋势。(2) N添加后地下与地上生物量的比值降低22.09%, 其中SC库比值降低31.07%, 而NSC库比值无显著变化。(3) N添加使地上部分的磷(P)库显著增加, 使地下与地上P库的比值降低了57.02%, 而N库的比值无显著变化。(4) N添加后土壤pH由(4.94 ± 0.09)显著降低到(4.02 ± 0.04), 铵态N和硝态N含量分别增加7.17倍和11.55倍, 土壤有效P含量也增加了42.86%, 而土壤中脲酶(62.75%)和酸性磷酸酶(56.52%)的活性显著降低。研究表明, 低养分条件下杉木幼苗主要通过构建根系结构增加养分吸收, 而非通过向根系分配更多的NSC, 而N添加驱动的养分缓解使更多的碳水化合物分配到地上器官, 导致地上部分SC积累。
王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应. 植物生态学报, 2021, 45(11): 1231-1240. DOI: 10.17521/cjpe.2021.0135
WANG Jiao, GUAN Xin, ZHANG Wei-Dong, HUANG Ke, ZHU Mu-Nan, YANG Qing-Peng. Responses of biomass allocation patterns to nitrogen addition of Cunninghamia lanceolata seedlings. Chinese Journal of Plant Ecology, 2021, 45(11): 1231-1240. DOI: 10.17521/cjpe.2021.0135
图1 氮添加对杉木幼苗净光合速率(A)、生物量(B)及不同器官(O)生物量(C)的影响(平均值±标准误, n = 5)。CK, 对照, 不添加氮肥; N, 添加氮肥处理。CN, 当年生叶; CR, 粗根; CS, 当年生茎; FR, 细根; ON, 一年生叶; OS, 一年生茎。图中不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 1 Effect of nitrogen addition on net photosynthetic rate (A), total plant biomass (B) and biomass of different organs (O) (C) of Cunninghamia lanceolate seedlings (mean ± SE, n = 5). CK, control, no nitrogen fertilizer addition; N, nitrogen addition. CN, current-year needles; CR, coarse roots; CS, current-year stems; FR, fine roots; ON, one-year-old needles; OS, one-year- old stems. Different lowercase letters indicate significant difference between treatments (p < 0.05).
图2 氮添加对杉木幼苗不同器官(O)非结构性碳水化合物(NSC)含量(A)、可溶性糖含量(B)、淀粉(C)含量、NSC库(D)、可溶性糖库(E)和淀粉库(F)的影响(平均值±标准误, n = 5)。CN, 当年生叶; CR, 粗根; CS, 当年生茎; FR, 细根; ON, 一年生叶; OS, 一年生茎。CK, 对照, 不添加氮肥; N, 添加氮肥处理。图中不同小写字母表示同一器官内不同处理间差异显著(p < 0.05)。
Fig. 2 Effect of nitrogen addition on the concentration of non-structural carbohydrates (NSC)(A), soluble sugar (B) starch (C), and the pool sizes of non-structural carbohydrates (NSC)(D), soluble sugar (E) and starch (F) in different organs (O) of Cunninghamia lanceolate seedlings (mean ± SE, n = 5). CN, current-year needles; CR, coarse roots; CS, current-year stems; FR, fine roots; ON, one-year-old needles; OS, one-year-old stems. CK, control, no nitrogen fertilizer addition; N, nitrogen addition. The different lowercase letters of the same organs indicate significant difference between treatments (p < 0.05).
器官 Organ | NSC (mg·g-1) | 可溶性糖 Soluble sugar (mg·g-1) | 淀粉 Starch (mg·g-1) | N (mg·g-1) | P (mg·g-1) |
---|---|---|---|---|---|
CN | ↓ | ↓ | ↓ | ↑ | ↑ |
ON | ↓ | ↓ | ↓ | ↑ | ↑ |
CS | 0 | 0 | 0 | ↑ | 0 |
OS | 0 | 0 | ↓ | ↑ | ↑ |
CR | 0 | 0 | 0 | ↑ | 0 |
FR | 0 | 0 | 0 | ↑ | 0 |
表1 氮(N)添加对杉木幼苗各器官非结构性碳水化合物(NSC)、可溶性糖、淀粉、N和磷(P)含量的影响
Table 1 Effect of nitrogen (N) addition on the concentrations of non-structural carbohydrates (NSC), soluble sugar, starch, N and phosphorus (P) in different organs of Cunninghamia lanceolate seedlings
器官 Organ | NSC (mg·g-1) | 可溶性糖 Soluble sugar (mg·g-1) | 淀粉 Starch (mg·g-1) | N (mg·g-1) | P (mg·g-1) |
---|---|---|---|---|---|
CN | ↓ | ↓ | ↓ | ↑ | ↑ |
ON | ↓ | ↓ | ↓ | ↑ | ↑ |
CS | 0 | 0 | 0 | ↑ | 0 |
OS | 0 | 0 | ↓ | ↑ | ↑ |
CR | 0 | 0 | 0 | ↑ | 0 |
FR | 0 | 0 | 0 | ↑ | 0 |
图3 氮添加对杉木幼苗不同器官(O)氮(N)含量(A)、磷(P)含量(B)、N库(C)和P库(D)的影响(平均值±标准误, n = 5)。CN, 当年生叶; CR, 粗根; CS, 当年生茎; FR, 细根; ON, 一年生叶; OS, 一年生茎。CK, 对照, 不添加氮肥; N, 添加氮肥处理。图中不同小写字母表示同一器官内不同处理间差异显著(p < 0.05)。
Fig. 3 Effect of nitrogen addition on nitrogen (N) concentration (A), phosphorus (P) concentration (B), the pool sizes of N (C) and the pool sizes of P (D) in different organs (O) of Cunninghamia lanceolate seedlings (mean ± SE, n = 5). CN, current-year needles; CR, coarse roots; CS, current-year stems; FR, fine roots; ON, one-year-old needles; OS, one-year-old stems. CK, control, no nitrogen fertilizer addition; N, nitrogen addition. The different lowercase letters of the same organs indicate significant difference between treatments (p < 0.05).
图4 氮添加对杉木幼苗总生物量(A)、非结构性碳水化合物(NSC)(B)和结构性碳水化合物(SC)(C)库的地下与地上比值的影响(平均值±标准误, n = 5)。CK, 对照, 不添加氮肥; N, 添加氮肥处理。图中不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 4 Effect of nitrogen addition on the ratio of below- to aboveground total biomass (A), non-structural carbohydrates (NSC) pool size (B) and structural carbohydrates (SC) pool size (C) of Cunninghamia lanceolate seedlings (mean ± SE, n = 5). CK, control, no nitrogen fertilizer addition; N, nitrogen addition. Different lowercase letters indicate significant difference between treatments (p < 0.05).
器官 Organ | 生物量 Biomass (g) | C (g) | N (g) | P (g) | |
---|---|---|---|---|---|
NSC | SC | ||||
CN | 0 | 0 | 0 | ↑ | ↑ |
ON | 0 | 0 | 0 | 0 | 0 |
CS | 0 | 0 | 0 | ↑ | 0 |
OS | 0 | 0 | 0 | ↑ | ↑ |
CR | 0 | 0 | 0 | 0 | 0 |
FR | 0 | 0 | 0 | ↑ | 0 |
地下总量(库) Belowground (pool) | 0 | 0 | 0 | ↑ | 0 |
地上总量(库) Aboveground (pool) | 0 | 0 | 0 | ↑ | ↑ |
地下/地上(库) Belowground/Aboveground (pool) | ↓ | 0 | ↓ | 0 | ↓ |
表2 氮添加对杉木幼苗地上和地下部分生物量、非结构性碳水化合物(NSC)和结构性碳水化合物(SC)、氮(N)库和磷(P)库的影响
Table 2 Effect of nitrogen addition on the pool sizes of biomass, non-structural carbohydrates (NSC) and structural carbohydrates (SC)), nitrogen (N) and phosphorus (P) in the below- and aboveground of Cunninghamia lanceolate seedlings
器官 Organ | 生物量 Biomass (g) | C (g) | N (g) | P (g) | |
---|---|---|---|---|---|
NSC | SC | ||||
CN | 0 | 0 | 0 | ↑ | ↑ |
ON | 0 | 0 | 0 | 0 | 0 |
CS | 0 | 0 | 0 | ↑ | 0 |
OS | 0 | 0 | 0 | ↑ | ↑ |
CR | 0 | 0 | 0 | 0 | 0 |
FR | 0 | 0 | 0 | ↑ | 0 |
地下总量(库) Belowground (pool) | 0 | 0 | 0 | ↑ | 0 |
地上总量(库) Aboveground (pool) | 0 | 0 | 0 | ↑ | ↑ |
地下/地上(库) Belowground/Aboveground (pool) | ↓ | 0 | ↓ | 0 | ↓ |
图5 氮添加对杉木幼苗氮(N)库(A)和磷(P)库(B)的地下与地上比值的影响(平均值±标准误, n = 5)。CK, 对照, 不添加氮肥; N, 添加氮肥处理。图中不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 5 Effect of nitrogen addition on the ratio of below- to aboveground nitrogen (N) pool size (A) and phosphorus (P) pool size (B) of Cunninghamia lanceolate seedlings (mean ± SE, n = 5). CK, control, no nitrogen fertilizer addition; N, nitrogen addition. Different lowercase letters indicate significant difference between treatments (p < 0.05).
处理 Treatment | pH | 有效磷 AP (mg·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) |
---|---|---|---|---|
CK | 4.94 ± 0.09a | 0.28 ± 0.01b | 15.24 ± 0.49b | 4.92 ± 1.61b |
N | 4.02 ± 0.04b | 0.40 ± 0.02a | 124.51 ± 7.42a | 61.75 ± 1.36a |
表3 氮添加对土壤pH、有效磷、铵态氮和硝态氮含量的影响(平均值±标准误, n = 5)
Table 3 Effect of nitrogen addition on soil pH, available phosphorus (AP), ammonium (NH4+-N) and nitrate nitrogen (NO3--N) concentrations of soil (mean ± SE, n = 5)
处理 Treatment | pH | 有效磷 AP (mg·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) |
---|---|---|---|---|
CK | 4.94 ± 0.09a | 0.28 ± 0.01b | 15.24 ± 0.49b | 4.92 ± 1.61b |
N | 4.02 ± 0.04b | 0.40 ± 0.02a | 124.51 ± 7.42a | 61.75 ± 1.36a |
图6 氮添加对土壤脲酶(A)、亮氨酸氨基肽酶(B)、酸性磷酸酶(C)和N-乙酰氨基葡糖苷酶(D)活性的影响(平均值±标准误, n = 5)。CK, 对照, 不添加氮肥; N, 添加氮肥处理。图中不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 6 Effect of nitrogen addition on urease (A), Leucine aminopeptidase (B), acid phosphatase (C) and N-acetyl-glucosidase (NAG)(D) activity of soil (mean ± SE, n = 5). CK, control, no nitrogen fertilizer addition; N, nitrogen addition. Different lowercase letters indicate significant difference between treatments (p < 0.05).
[1] |
Ågren GI, Franklin O (2003). Root:shoot ratios, optimization and nitrogen productivity. Annals of Botany, 92, 795-800.
DOI URL |
[2] |
Ågren GI, Wetterstedt JÅM, Billberger MFK (2012). Nutrient limitation on terrestrial plant growth—Modeling the interaction between nitrogen and phosphorus. New Phytologist, 194, 953-960.
DOI URL |
[3] |
Ai ZM, Xue S, Wang GL, Liu GB (2017). Responses of non-structural carbohydrates and C:N:P stoichiometry of Bothriochloa ischaemum to nitrogen addition on the Loess Plateau, China. Journal of Plant Growth Regulation, 36, 714-722.
DOI URL |
[4] |
Alderman PD, Boote KJ, Sollenberger LE, Coleman SW (2011). Carbohydrate and nitrogen reserves relative to regrowth dynamics of ‘Tifton 85’ bermudagrass as affected by nitrogen fertilization. Crop Science, 51, 1727-1738.
DOI URL |
[5] |
Barrow NJ (2017). The effects of pH on phosphate uptake from the soil. Plant and Soil, 410, 401-410.
DOI URL |
[6] |
Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389-399.
DOI PMID |
[7] |
Canham CD, Kobe RK, Latty EF, Chazdon RL (1999). Interspecific and intraspecific variation in tree seedling survival: effects of allocation to roots versus carbohydrate reserves. Oecologia, 121, 1-11.
DOI URL |
[8] |
Casson NJ, Eimers MC, Watmough SA (2012). An assessment of the nutrient status of sugar maple in Ontario: indications of phosphorus limitation. Environmental Monitoring and Assessment, 184, 5917-5927.
DOI PMID |
[9] |
Chen J, van Groenigen KJ, Hungate BA, Terrer C, van Groenigen JW, Maestre FT, Ying SC, Luo Y, Jorgensen U, Sinsabaugh RL, Olesen JE, Elsgaard L (2020). Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Global Change Biology, 26, 5077-5086.
DOI URL |
[10] |
Dakora FD, Phillips DA (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245, 35-47.
DOI URL |
[11] |
Davidson EA (2009). The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2, 659-662.
DOI URL |
[12] |
Deng Q, Hui DF, Dennis S, Reddy KC (2017). Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Global Ecology and Biogeography, 26, 713-728.
DOI URL |
[13] |
Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014). Nonstructural carbon in woody plants. Annual Review of Plant Biology, 65, 667-687.
DOI URL |
[14] |
Dijkstra FA, Cheng WX (2007). Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecology Letters, 10, 1046-1053.
PMID |
[15] |
Feng CY, Zheng CY, Tian D (2019). Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms. Chinese Journal of Plant Ecology, 43, 185-196.
DOI URL |
[ 冯婵莹, 郑成洋, 田地 (2019). 氮添加对森林植物磷含量的影响及其机制. 植物生态学报, 43, 185-196.] | |
[16] |
Fita A, Nuez F, Picó B (2011). Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L. Euphytica, 181, 323-339.
DOI URL |
[17] |
Graham JH, Duncan LW, Eissenstat DM (1997). Carbohydrate allocation patterns in Citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonization and mycorrhizal dependency. New Phytologist, 135, 335-343.
DOI URL |
[18] |
Hartmann H, Adams HD, Hammond WM, Hoch G, Landhäusser SM, Wiley E, Zaehle S (2018). Identifying differences in carbohydrate dynamics of seedlings and mature trees to improve carbon allocation in models for trees and forests. Environmental and Experimental Botany, 152, 7-18.
DOI URL |
[19] |
Knox KJE, Clarke PJ (2005). Nutrient availability induces contrasting allocation and starch formation in resprouting and obligate seeding shrubs. Functional Ecology, 19, 690-698.
DOI URL |
[20] |
Kobe RK, Iyer M, Walters MB (2010). Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology, 91, 166-179.
DOI URL |
[21] |
Li RS, Yang QP, Zhang WD, Zheng WH, Chi YG, Xu M, Fang YT, Gessler A, Li MH, Wang SL (2017). Thinning effect on photosynthesis depends on needle ages in a Chinese fir ( Cunninghamia lanceolata) plantation. Science of the Total Environment, 580, 900-906.
DOI URL |
[22] | Li WB, Hartmann H, Adams HD, Zhang HX, Jin CJ, Zhao CY, Guan DX, Wang AZ, Yuan FH, Wu JB (2018). The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. Tree Physiology, 38, 1706-1723. |
[23] |
Li WB, Zhang HX, Huang GZ, Liu RX, Wu HJ, Zhao CY, McDowell NG (2020). Effects of nitrogen enrichment on tree carbon allocation: a global synthesis. Global Ecology and Biogeography, 29, 573-589.
DOI URL |
[24] |
Li Y, Niu SL, Yu GR (2016). Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Global Change Biology, 22, 934-943.
DOI URL |
[25] |
Liu X, Zhao WR, Meng MJ, Fu ZY, Xu LH, Zha Y, Yue JM, Zhang SF, Zhang JC (2018). Comparative effects of simulated acid rain of different ratios of SO42- to NO3- on fine root in subtropical plantation of China. Science of the Total Environment, 618, 336-346.
DOI URL |
[26] |
Lu XK, Mo JM, Gilliam FS, Zhou GY, Fang YT (2010). Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Global Change Biology, 16, 2688-2700.
DOI URL |
[27] |
Mäkelä A, Valentine HT, Helmisaari HS (2008). Optimal co-allocation of carbon and nitrogen in a forest stand at steady state. New Phytologist, 180, 114-123.
DOI URL |
[28] |
Martínez-Vilalta J, Sala A, Asensio D, Galiano L, Hoch G, Palacio S, Piper FI, Lloret F (2016). Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecological Monographs, 86, 495-516.
DOI URL |
[29] |
Mo QF, Chen YQ, Yu SQ, Fan YX, Peng ZT, Wang WJ, Li ZA, Wang FM (2020). Leaf nonstructural carbohydrate concentrations of understory woody species regulated by soil phosphorus availability in a tropical forest. Ecology and Evolution, 10, 8429-8438.
DOI URL |
[30] |
Palacio S, Hoch G, Sala A, Körner C, Millard P (2014). Does carbon storage limit tree growth? New Phytologist, 201, 1096-1100.
DOI PMID |
[31] | Portsmuth A, Niinemets Ü (2007). Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. Functional Ecology, 21, 61-77. |
[32] |
Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2008). Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Global Change Biology, 14, 142-153.
DOI URL |
[33] | Qi Y, Huang YM, Wang Y, Zhao J, Zhang JH (2011). Biomass and its allocation of four grassland species under different nitrogen levels. Acta Ecologica Sinica, 31, 5121-5129. |
[ 祁瑜, 黄永梅, 王艳, 赵杰, 张景慧 (2011). 施氮对几种草地植物生物量及其分配的影响. 生态学报, 31, 5121-5129.] | |
[34] |
Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008). Global nitrogen deposition and carbon sinks. Nature Geoscience, 1, 430-437.
DOI URL |
[35] |
Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, et al. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264.
DOI PMID |
[36] |
Sinsabaugh RL, Reynolds H, Long TM (2000). Rapid assay for amidohydrolase (urease) activity in environmental samples. Soil Biology & Biochemistry, 32, 2095-2097.
DOI URL |
[37] |
Wang B, Gong JR, Zhang ZH, Yang B, Liu M, Zhu CC, Shi JY, Zhang WY, Yue KX (2019). Nitrogen addition alters photosynthetic carbon fixation, allocation of photoassimilates, and carbon partitioning of Leymus chinensis in a temperate grassland of Inner Mongolia. Agricultural and Forest Meteorology, 279, 107743. DOI: 10.1016/j.agrformet.2019.107743.
DOI URL |
[38] |
Wiley E, Helliker B (2012). A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytologist, 195, 285-289.
DOI PMID |
[39] |
Würth MKR, Peláez-Riedl S, Wright SJ, Körner C (2005). Non-structural carbohydrate pools in a tropical forest. Oecologia, 143, 11-24.
DOI URL |
[40] | Yan LF, Yang QP, Zheng WH, Huang K, Zhao FX (2020). Responses of non-structural carbohydrates in above-ground tissues/organs and root to shading and light restoration in Cunninghamia lanceolata saplings. Acta Botanica Boreali- Occidentalia Sinica, 40, 311-318. |
[ 闫丽飞, 杨庆朋, 郑文辉, 黄苛, 赵峰侠 (2020). 杉木幼苗非结构性碳水化合物对遮阴及恢复光照的响应. 西北植物学报, 40, 311-318.] | |
[41] |
Yan ZB, Guan HY, Han WX, Han TS, Guo YL, Fang JY (2016). Reproductive organ and young tissues show constrained elemental composition in Arabidopsis thaliana. Annals of Botany, 117, 431-439.
DOI URL |
[42] |
Yang QP, Liu LL, Zhang WD, Xu M, Wang SL (2015). Different responses of stem and soil CO2 efflux to pruning in a Chinese fir (Cunninghamia lanceolata) plantation. Trees, 29, 1207-1218.
DOI URL |
[43] |
Yang QP, Zhang WD, Li RS, Xu M, Wang SL (2016). Different responses of non-structural carbohydrates in above- ground tissues/organs and root to extreme drought and re-watering in Chinese fir ( Cunninghamia lanceolata) saplings. Trees, 30, 1863-1871.
DOI URL |
[44] |
Zhang Y, Zhou ZC, Yang Q (2013a). Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions. Plant and Soil, 364, 93-104.
DOI URL |
[45] |
Zhang Y, Zhou ZC, Yang Q (2013b). Nitrogen (N) deposition impacts seedling growth of Pinus massoniana via N:P ratio effects and the modulation of adaptive responses to low P (phosphorus). PLOS ONE, 8, e79229. DOI: 10.1371/journal.pone.0079229.
DOI URL |
[46] |
Zhang YH, Loreau M, Lü XT, He NP, Zhang GM, Han XG (2016). Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Global Change Biology, 22, 1445-1455.
DOI URL |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[6] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[7] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[8] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[9] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[10] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[11] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[12] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[13] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[14] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[15] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19