植物生态学报 ›› 2024, Vol. 48 ›› Issue (2): 192-200.DOI: 10.17521/cjpe.2023.0147 cstr: 32100.14.cjpe.2023.0147
收稿日期:
2023-05-28
接受日期:
2023-08-15
出版日期:
2024-02-28
发布日期:
2024-02-28
通讯作者:
* (基金资助:
HAN Da-Yong1(), LI Hai-Yan2, ZHANG Wei1, YANG Yun-Fei1,2,*(
)
Received:
2023-05-28
Accepted:
2023-08-15
Online:
2024-02-28
Published:
2024-02-28
Contact:
* (Supported by:
摘要:
衰老是植物重要的生活史阶段, 植物不同器官养分贮藏力及活动力是判断个体衰老的重要依据。目前对于无性系植物不同龄级分株在衰老过程中贮藏器官的贮藏力与活动力的变化规律尚不清楚。全叶马兰(Aster pekinensis)是根蘖型无性系植物, 在东北草原, 全叶马兰种群主要由3个龄级的分株组成。该研究分析了全叶马兰种群中3个龄级分株(1a、2a和3a分株)的茎基部、根颈和主根中可溶性碳水化合物(WSC)含量在贮藏器官间、龄级间的差异及季节变化规律。结果表明: 在枯黄期, 全叶马兰种群3个龄级分株中主根的WSC含量普遍大于根颈, 根颈和主根的WSC含量均为1a、2a分株显著高于3a分株, 1a分株茎基部的WSC含量显著低于2a和3a分株。在整个生长季内, 随着生长进程, 全叶马兰种群1a分株根颈始终获得养分的优先分配, 其WSC含量呈指数形式的持续积累过程, 2a和3a分株根颈及3个龄级分株主根在WSC运转上均为先消耗再积累, 其WSC含量均呈二次曲线节律消长。全叶马兰3个龄级分株普遍为主根的贮藏力大于根颈, 而根颈的活动力大于主根。幼龄分株养分贮藏力和活动力最强, 壮龄分株无衰老迹象, 老龄分株明显衰老, 其养分贮藏力和活动力均显著下降。该研究为了解WSC含量的时空变化与植物种群个体衰老过程的关系提供了一种定性与定量相结合分析的新思路。
韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程. 植物生态学报, 2024, 48(2): 192-200. DOI: 10.17521/cjpe.2023.0147
HAN Da-Yong, LI Hai-Yan, ZHANG Wei, YANG Yun-Fei. Nutrient transportation and aging process of ramets in Aster pekinensis populations on Songnen grassland, China. Chinese Journal of Plant Ecology, 2024, 48(2): 192-200. DOI: 10.17521/cjpe.2023.0147
图1 不同生育期全叶马兰分株各器官中可溶性碳水化合物(WSC)含量在龄级之间的比较(平均值±标准误)。A, 茎基部。B, 根颈。C, 主根。D, 3个器官的平均。EF, 初花期; ER, 返青初期; MR, 乳熟期; RS, 完熟期; RV, 旺盛营养生长期; YL, 枯黄期。不同小写字母代表同一生育期不同龄级之间差异显著(p < 0.05); ns, p > 0.05。
Fig. 1 Comparisons on the water soluble carbohydrates (WSC) contents among three age classes in the storage organs of ramets in Aster pekinensis populations at different growth stages (mean ± SE). A, Stem bases. B, Root collars. C, Taproots. D, Average of three storage organs of each age class ramet. EF, early flowering stage; ER, early resprouting stage; MR, milk ripening stage; RS, ripening stage; RV, rapid vegetative growth stage; YL, yellow leaves stage. Different lowercase letters indicate a significant difference among different age classes at the same growth stage (p < 0.05); ns, p > 0.05.
图2 不同生育期全叶马兰各龄级分株的可溶性碳水化合物(WSC)含量在器官之间的比较(平均值±标准误)。A, 1a龄级。B, 2a龄级。C, 3a龄级。D, 3个龄级的平均值。不同小写字母代表同一生育期不同器官之间差异显著(p < 0.05); ns, p > 0.05。EF, 初花期; ER, 返青初期; MR, 乳熟期; RS, 完熟期; RV, 旺盛营养生长期; YL, 枯黄期。
Fig. 2 Comparisons of the water soluble carbohydrates (WSC) contents among storage organs with different age classes in Aster pekinensis populations at different growth stages (mean ± SE). A, 1a age class. B, 2a age class. C, 3a age class. D, Average of three age class ramets. Different lowercase letters indicate a significant difference among different organs at the same growth stage (p < 0.05); ns, p > 0.05. EF, early flowering stage; ER, early resprouting stage; MR, milk ripening stage; RS, ripening stage; RV, rapid vegetative growth stage; YL, yellow leaves stage.
贮藏器官 Storage organ | 龄级 Age class | n | 方程 Equation | 参数 Parameter | R2 | p | ||
---|---|---|---|---|---|---|---|---|
a | b/b1 | b2 | ||||||
茎基部 Stem base | 1a | 24 | E | 1.054 3 | 0.010 1 | - | 0.417 5 | <0.01 |
2a | 24 | E | 0.679 9 | 0.017 0 | - | 0.779 1 | <0.01 | |
3a | 24 | E | 1.071 2 | 0.013 3 | - | 0.659 9 | <0.01 | |
平均 Mean | 24 | E | 0.911 0 | 0.013 8 | - | 0.703 0 | <0.01 | |
根颈 Root collar | 1a | 24 | E | 3.146 1 | 0.005 4 | - | 0.430 3 | <0.01 |
2a | 24 | Q | 5.915 1 | -0.084 4 | 0.000 6 | 0.618 5 | <0.01 | |
3a | 24 | Q | 3.560 9 | -0.018 6 | 0.000 2 | 0.269 5 | <0.01 | |
平均 Mean | 24 | Q | 4.437 9 | -0.032 6 | 0.000 3 | 0.533 0 | <0.01 | |
主根 Taproot | 1a | 24 | Q | 12.597 0 | -0.121 9 | 0.000 7 | 0.450 0 | <0.01 |
2a | 24 | Q | 11.237 0 | -0.127 4 | 0.000 8 | 0.638 3 | <0.01 | |
3a | 24 | Q | 7.805 1 | -0.071 6 | 0.000 5 | 0.361 9 | <0.01 | |
平均 Mean | 24 | Q | 10.744 0 | -0.102 2 | 0.000 6 | 0.593 2 | <0.01 |
表1 全叶马兰分株贮藏器官可溶性碳水化合物(WSC)含量(y, %)与生长时间(x, d)的回归方程参数及其显著性检验
Table 1 Parameters of regression equations and their significance tests of the water soluble carbohydrates (WSC) contents (y, %) in Aster pekinensis storage organs of three age classes ramets with the growth times (x, d)
贮藏器官 Storage organ | 龄级 Age class | n | 方程 Equation | 参数 Parameter | R2 | p | ||
---|---|---|---|---|---|---|---|---|
a | b/b1 | b2 | ||||||
茎基部 Stem base | 1a | 24 | E | 1.054 3 | 0.010 1 | - | 0.417 5 | <0.01 |
2a | 24 | E | 0.679 9 | 0.017 0 | - | 0.779 1 | <0.01 | |
3a | 24 | E | 1.071 2 | 0.013 3 | - | 0.659 9 | <0.01 | |
平均 Mean | 24 | E | 0.911 0 | 0.013 8 | - | 0.703 0 | <0.01 | |
根颈 Root collar | 1a | 24 | E | 3.146 1 | 0.005 4 | - | 0.430 3 | <0.01 |
2a | 24 | Q | 5.915 1 | -0.084 4 | 0.000 6 | 0.618 5 | <0.01 | |
3a | 24 | Q | 3.560 9 | -0.018 6 | 0.000 2 | 0.269 5 | <0.01 | |
平均 Mean | 24 | Q | 4.437 9 | -0.032 6 | 0.000 3 | 0.533 0 | <0.01 | |
主根 Taproot | 1a | 24 | Q | 12.597 0 | -0.121 9 | 0.000 7 | 0.450 0 | <0.01 |
2a | 24 | Q | 11.237 0 | -0.127 4 | 0.000 8 | 0.638 3 | <0.01 | |
3a | 24 | Q | 7.805 1 | -0.071 6 | 0.000 5 | 0.361 9 | <0.01 | |
平均 Mean | 24 | Q | 10.744 0 | -0.102 2 | 0.000 6 | 0.593 2 | <0.01 |
图3 不同龄级全叶马兰分株茎基部、根颈和主根可溶性碳水化合物(WSC)含量季节变化的观测值和拟合方程曲线。
Fig. 3 Observed values and the fitting curves of seasonal changes in the water soluble carbohydrates (WSC) contents in the stem base, the root collar and the taproot of different age classes ramets in Aster pekinensis populations.
[1] | Ba L, Wang DL, Cao YH (2005). Effects of mowing treatment on the growth and specific interaction between Leymus chinensis and Kalimeris integrifolia in the Songnen Plains. Acta Agrestia Sinica, 13, 278-281. |
[2] |
[巴雷, 王德利, 曹勇宏 (2005). 刈割对羊草和全叶马兰生长与种间关系的影响. 草地学报, 13, 278-281.]
DOI |
[3] | Bai YF, Xu ZX, Duan CQ, Li DX (1996). A study on the distribution of carbohydrate reserves in the plants of typical steppe. Grassland of China, 18, 7-9. |
[白永飞, 许志信, 段淳清, 李德新 (1996). 典型草原主要牧草植株贮藏碳水化合物分布部位的研究. 中国草地, 18, 7-9.] | |
[4] | Breeze E, Harrison E, Page T, Warner N, Shen C, Zhang C, Buchanan-Wollaston V (2008). Transcriptional regulation of plant senescence: from functional genomics to systems biology. Plant Biology, 10, 99-109. |
[5] | Ding XM, Yang YF (2007). Variations of water-soluble carbohydrate contents in different age class modules of Leymus chinensis populations in sandy and saline-alkaline soil on the Songnen Plains of China. Journal of Integrative Plant Biology, 49, 576-581. |
[6] | Dong M (2011). Clonal Plant Ecology. Science Press, Beijing. 79-93. |
[董鸣 (2011). 克隆植物生态学. 科学出版社, 北京. 79-93.] | |
[7] | Doust JL, Doust LL (1988). Plant Reproductive Ecology: Patterns and Strategies. Oxford University Press, New York. 246-263. |
[8] | Du HM, Wang DL, Sun W (2002). A comparative study on photosynthesis and transpiration of Kelimeris integrifolia in summer and autumn on Songnen grasslands of China. Chinese Journal of Applied Ecology, 13, 1600-1604. |
[杜红梅, 王德利, 孙伟 (2002). 松嫩草地全叶马兰夏季与秋季光合及蒸腾作用的比较. 应用生态学报, 13, 1600-1604.] | |
[9] | Fulkerson WJ, Donaghy DJ (2001). Plant-soluble carbohydrate reserves and senescence-key criteria for developing an effective grazing management system for ryegrass-based pastures: a review. Australian Journal of Experimental Agriculture, 41, 261-275. |
[10] | Han DY, Yang YX, Yang YF, Li JD, Yang Y (2012). Spatial patterns of plant species diversity in a degraded successional series of fragmented Leymus chinensis meadow in Songnen Plain of Northeast China. Chinese Journal of Applied Ecology, 23, 666-672. |
[韩大勇, 杨永兴, 杨允菲, 李建东, 杨杨 (2012). 松嫩平原破碎化羊草草甸退化演替系列植物多样性的空间格局. 应用生态学报, 23, 666-672.] | |
[11] | Harper JL (1977). Population Biology of Plants. Academic Press, New York. 5-30. |
[12] | Huang XL (2012). Plant Developmental Biology. Science Press, Beijing. 2-13. |
[黄学林 (2012). 植物发育生物学.科学出版社, 北京. 2-13.] | |
[13] |
Huffaker RC (1990). Proteolytic activity during senescence of plants. New Phytologist, 116, 199-231.
PMID |
[14] |
KlimešováJ, Nobis MP, Herben T (2015). Senescence, ageing and death of the whole plant: morphological prerequisites and constraints of plant immortality. New Phytologist, 206, 14-18.
DOI PMID |
[15] | Li JD, Zheng HY (1997). The Saline Grassland Restoration and the Biological Ecological Mechanisms on the Songnen Plain. Science Press, Beijing. |
[李建东, 郑慧莹 (1997). 松嫩平原盐碱化草地治理及其生物生态机理. 科学出版社, 北京.] | |
[16] |
Masuko T, Minami A, Iwasaki N, Majima T, Nishimura SI, Lee YC (2005). Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Analytical Biochemistry, 339, 69-72.
DOI PMID |
[17] | McGrath S, Hodkinson TR, Frohlich A, Grant J, Barth S (2014). Seasonal and genetic variations in water-soluble carbohydrates and other quality traits in ecotypes and cultivars of perennial ryegrass (Lolium perenne L.). Plant Genetic Resources, 12, 236-247. |
[18] |
Newell EA, Mulkey SS, Wright JS (2002). Seasonal patterns of carbohydrate storage in four tropical tree species. Oecologia, 131, 333-342.
DOI PMID |
[19] | Niklas KJ, Cobb ED (2017). The evolutionary ecology (evo- eco) of plant asexual reproduction. Evolutionary Ecology, 31, 317-332. |
[20] | Pan QM, Han XG, Bai YF, Yang JC (2002). Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chinese Bulletin of Botany, 19, 30-38. |
[潘庆民, 韩兴国, 白永飞, 杨景成 (2002). 植物非结构性贮藏碳水化合物的生理生态学研究进展. 植物学通报, 19, 30-38.] | |
[21] | Phillips N, Reynolds A, Di Profio F (2015). Nonstructural carbohydrate concentrations in dormant grapevine scionwood and rootstock impact propagation success and vine growth. HortTechnology, 25, 536-550. |
[22] |
Ranwala AP, Miller WB (2008). Analysis of nonstructural carbohydrates in storage organs of 30 ornamental geophytes by high-performance anion-exchange chromatography with pulsed amperometric detection. New Phytologist, 180, 421-433.
DOI PMID |
[23] | Robins JG, Bushman BS, Escribano S, Jensen KB (2015). Heterosis for protein, digestibility, fiber, and water soluble carbohydrates in nine sources of orchardgrass germplasm. Euphytica, 204, 503-511. |
[24] | Sanada Y, Takai T, Yamada T (2007). Ecotypic variation of water-soluble carbohydrate concentration and winter hardiness in cocksfoot (Dactylis glomerata L.). Euphytica, 153, 267-280. |
[25] | Shi LX, Guo JX (2006). Changes in photosynthetic and growth characteristics of Leymus chinensis community along the retrogression on the Songnen grassland in northeastern China. Photosynthetica, 44, 542-547. |
[26] | Silvertown JW (1982). Introduction to Plant Population Ecology. Longman Press, London. 3-20. |
[27] | Suzuki JI, Stuefer J (1999). On the ecological and evolutionary significance of storage in clonal plants. Plant Species Biology, 14, 11-17. |
[28] | Tamura Y, Moriyama M (2001). Nonstructural carbohydrate reserves in roots and the ability of temperate perennial grasses to overwinter in early growth stages. Plant Production Science, 4, 56-61. |
[29] | Thomas H, Huang L, Young M, Ougham H (2009). Evolution of plant senescence. BMC Evolutionary Biology, 9, 163. DOI: 10.1186/1471-2148-9-163. |
[30] | Thomas H, Ougham H (2016). Introduction to a Virtual Issue on plant senescence. New Phytologist, 212, 531-536. |
[31] | Volaire F, Lelièvre F (1997). Production, persistence, and water-soluble carbohydrate accumulation in 21 contrasting populations of Dactylis glomerata L. subjected to severe drought in the south of France. Australian Journal of Agricultural Research, 48, 933-944. |
[32] | Wang SY, Yang YF, Zhi H (2017). Water-soluble carbohydrates of root components and activity rhythms at vegetative growth stage of Artemisia scoparia in northeastern grassland of China. PLoS ONE, 12, 0176667. DOI: 10.1371/journal.pone.0176667. |
[33] | Wang ZW (2007). Temporal variation of water-soluble carbohydrate in the rhizome clonal grass Leymus chinensis in response to defoliation. Journal of Plant Ecology (Chinese Version), 31, 673-679. |
[34] | White LM (1973). Carbohydrate reserves of grasses: a review. Journal of Range Management, 26, 13-18. |
[35] |
Wyka T (1999). Carbohydrate storage and use in an alpine population of the perennial herb, Oxytropis sericea. Oecologia, 120, 198-208.
DOI PMID |
[36] | Xu ZX, Bai YF (1994). The study on changing patterns of carbohydrate reserves in Inner Mongolia steppe rangeland. Acta Prataculturae Sinica, 3(4), 27-31. |
[许志信, 白永飞 (1994). 干草原牧草贮藏碳水化合物含量变化规律的研究. 草业学报, 3(4), 27-31.] | |
[37] | Yang YF, Li JD (2003). Growth strategies of different age classes of ramets in Kalimeris integrifolia population at the Songnen Plains of China. Chinese Journal of Applied Ecology, 14, 2171-2175. |
[杨允菲, 李建东 (2003). 松嫩平原全叶马兰种群不同龄级分株的生长策略. 应用生态学报, 14, 2171-2175.] | |
[38] | Yang YF, Wang SZ, Li JD (2003). Development and age structure of ramets of Kalimeris integrifolia populations in the Songnen Plains, Northeast China. Acta Botanica Sinica, 45, 158-163. |
[39] | Zhang ZL, Qu WJ (2003). Guide to Plant Physiology Experiment. 3rd ed. Higher Education Press, Beijing. 127-128. |
[张志良, 瞿伟菁 (2003). 植物生理学实验指导. 3版. 高等教育出版社, 北京. 127-128.] | |
[40] | Zheng HY, Li JD (1993). The Grassland Vegetation and Its Utilization and Conservation on the Songnen Plains. Science Press, Beijing. 45-108. |
[郑慧莹, 李建东 (1993). 松嫩平原的草地植被及其利用保护. 科学出版社, 北京. 45-108.] |
[1] | 唐罗忠, 刘志龙, 虞木奎, 方升佐, 赵丹, 王子寅. 两种立地条件下麻栎人工林地上部分养分的积累和分配[J]. 植物生态学报, 2010, 34(6): 661-670. |
[2] | 王正文. 根茎克隆植物羊草体内可溶性碳水化合物的时间变异及其对去叶干扰的响应[J]. 植物生态学报, 2007, 31(4): 673-679. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19