植物生态学报 ›› 2024, Vol. 48 ›› Issue (6): 690-700.DOI: 10.17521/cjpe.2023.0382 cstr: 32100.14.cjpe.2023.0382
俞庆水, 倪晓凤, 吉成均, 朱江玲, 唐志尧, 方精云*()
收稿日期:
2023-12-18
接受日期:
2024-02-26
出版日期:
2024-06-20
发布日期:
2024-02-26
通讯作者:
*方精云(jyfang@urban.pku.edu.cn)
基金资助:
YU Qing-Shui, NI Xiao-Feng, JI Cheng-Jun, ZHU Jiang-Ling, TANG Zhi-Yao, FANG Jing-Yun*()
Received:
2023-12-18
Accepted:
2024-02-26
Online:
2024-06-20
Published:
2024-02-26
Contact:
*FANG Jing-Yun(jyfang@urban.pku.edu.cn)
Supported by:
摘要:
非结构性碳水化合物(NSCs)包括淀粉和可溶性糖, 两者之间的相互转化可以增强植物对环境胁迫的抵抗力。热带雨林在陆地生态系统碳库和缓解气候变化中占有重要地位, 同时也是大气氮磷沉降的热点区域。目前, 热带雨林原始林和次生林优势植物叶片NSCs对长期氮磷输入的响应尚不清楚。该研究基于海南尖峰岭原始林和次生林10年的氮磷添加实验, 探究长期氮磷输入对两种森林各8个物种叶片NSCs的影响, 并分析叶片性状、光合作用参数和土壤养分含量与NSCs的关系。研究结果表明, 次生林优势植物叶片相对于原始林优势植物叶片有更高的可溶性糖和NSCs含量。低氮添加显著降低了原始林优势植物叶片淀粉的含量, 磷添加显著增加了原始林优势植物叶片可溶性糖的含量, 氮磷同时添加提高了原始林优势植物可溶性糖与淀粉的比值, 而氮磷添加对次生林优势植物叶片NSCs含量均无显著影响。两种森林8个物种的叶片NSCs含量均与叶片pH和比叶面积负相关, 而与叶片碳含量、光合速率和光合氮利用效率正相关。次生林土壤有效氮含量、总磷含量与叶片NSCs含量显著正相关。上述结果表明热带雨林优势植物叶片NSCs受到叶片性状和土壤养分的综合影响。该研究从叶片碳经济角度揭示了原始林优势植物相对于次生林优势植物对大气氮磷沉降的响应更敏感, 并呼吁加强对热带原始雨林的保护。
俞庆水, 倪晓凤, 吉成均, 朱江玲, 唐志尧, 方精云. 10年氮磷添加对海南尖峰岭热带雨林优势植物叶片非结构性碳水化合物的影响. 植物生态学报, 2024, 48(6): 690-700. DOI: 10.17521/cjpe.2023.0382
YU Qing-Shui, NI Xiao-Feng, JI Cheng-Jun, ZHU Jiang-Ling, TANG Zhi-Yao, FANG Jing-Yun. Effects of 10-year nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in tropical rainforests in Jianfengling, Hainan. Chinese Journal of Plant Ecology, 2024, 48(6): 690-700. DOI: 10.17521/cjpe.2023.0382
因子 Factor | 原始林 Primary forest | 次生林 Secondary forest |
---|---|---|
年平均气温 Mean annual air temperature (℃) | 19.7 ± 0.9 | 20.0 ± 0.7 |
年降水量 Mean annual precipitation (mm) | 2 198 | 2 198 |
年平均相对湿度 Mean annual relative humidity (%) | 89.4 ± 0.8 | 95.0 ± 0.7 |
平均胸径 Mean diameter at breast height (cm) | 22.43 | 10.18 |
平均树高 Mean tree height (m) | 18.19 | 9.31 |
物种丰富度 Species richness | 290 | 199 |
生物量 Biomass (t·hm-2) | 476.2 ± 59.3 | 505.5 ± 55.2 |
密度(株·hm-2) Stand density (ind·hm-2) | 4 092 | 7 717 |
基面积 Basal area (m2·hm-2) | 52.3 | 45.3 |
凋落物产量 Litterfall production (Mg·hm-2·a-1) | 8.2 ± 0.4 | 8.0 ± 0.9 |
土壤pH Soil pH | 4.5 ± 0.2 | 4.4 ± 0.1 |
土壤有机碳含量 Soil organic carbon content (mg·g-1) | 21.5 ± 0.2 | 25.9 ± 1.5 |
土壤总氮含量 Soil total nitrogen content (mg·g-1) | 1.7 ± 0.2 | 2.1 ± 0.1 |
土壤总磷含量 Soil total phosphorus content (mg·g-1) | 0.13 ± 0.03 | 0.16 ± 0.03 |
表1 海南尖峰岭原始林和次生林样地基本信息(平均值±标准差)
Table 1 Stand characteristics of primary and secondary forests in Jianfengling, Hainan (mean ± SD)
因子 Factor | 原始林 Primary forest | 次生林 Secondary forest |
---|---|---|
年平均气温 Mean annual air temperature (℃) | 19.7 ± 0.9 | 20.0 ± 0.7 |
年降水量 Mean annual precipitation (mm) | 2 198 | 2 198 |
年平均相对湿度 Mean annual relative humidity (%) | 89.4 ± 0.8 | 95.0 ± 0.7 |
平均胸径 Mean diameter at breast height (cm) | 22.43 | 10.18 |
平均树高 Mean tree height (m) | 18.19 | 9.31 |
物种丰富度 Species richness | 290 | 199 |
生物量 Biomass (t·hm-2) | 476.2 ± 59.3 | 505.5 ± 55.2 |
密度(株·hm-2) Stand density (ind·hm-2) | 4 092 | 7 717 |
基面积 Basal area (m2·hm-2) | 52.3 | 45.3 |
凋落物产量 Litterfall production (Mg·hm-2·a-1) | 8.2 ± 0.4 | 8.0 ± 0.9 |
土壤pH Soil pH | 4.5 ± 0.2 | 4.4 ± 0.1 |
土壤有机碳含量 Soil organic carbon content (mg·g-1) | 21.5 ± 0.2 | 25.9 ± 1.5 |
土壤总氮含量 Soil total nitrogen content (mg·g-1) | 1.7 ± 0.2 | 2.1 ± 0.1 |
土壤总磷含量 Soil total phosphorus content (mg·g-1) | 0.13 ± 0.03 | 0.16 ± 0.03 |
固定效应 Fixed effect | 淀粉含量 Starch content | 可溶性糖含量 Soluble sugar content | 可溶性糖/淀粉 Soluble sugar/starch | 非结构性碳水化合物含量NSCs content |
---|---|---|---|---|
物种 Species | *** | *** | *** | *** |
森林类型 Forest type | ns | * | ns | ** |
氮添加 Nitrogen (N) addition | ns | ns | * | * |
磷添加 Phosphorus (P) addition | ns | ns | ns | ns |
氮添加×磷添加 N addition × P addition | ns | ns | ns | ns |
物种×森林类型 Species × forest type | ns | ** | ns | ns |
森林类型×氮添加 Forest type × N addition | ns | ns | *** | ns |
森林类型×磷添加 Forest type × P addition | ns | ** | ns | ns |
表2 海南尖峰岭植物物种、森林类型、养分添加及其相互作用对叶片非结构性碳水化合物的影响
Table 2 Effects of plant species, forest types, nutrient additions and their interactions on leaf non-structural carbohydrates (NSCs) in Jianfengling, Hainan
固定效应 Fixed effect | 淀粉含量 Starch content | 可溶性糖含量 Soluble sugar content | 可溶性糖/淀粉 Soluble sugar/starch | 非结构性碳水化合物含量NSCs content |
---|---|---|---|---|
物种 Species | *** | *** | *** | *** |
森林类型 Forest type | ns | * | ns | ** |
氮添加 Nitrogen (N) addition | ns | ns | * | * |
磷添加 Phosphorus (P) addition | ns | ns | ns | ns |
氮添加×磷添加 N addition × P addition | ns | ns | ns | ns |
物种×森林类型 Species × forest type | ns | ** | ns | ns |
森林类型×氮添加 Forest type × N addition | ns | ns | *** | ns |
森林类型×磷添加 Forest type × P addition | ns | ** | ns | ns |
图1 海南尖峰岭原始林和次生林优势植物叶片淀粉、可溶性糖和总非结构性碳水化合物含量以及可溶性糖与淀粉含量之比(平均值±标准差)。 *, p < 0.05; **, p < 0.01; ns, p > 0.05。
Fig. 1 Contents of leaf starch, soluble sugar and non-structural carbohydrates (NSCs), and ratio of soluble sugar content to starch content of dominant plants in primary and secondary forests in Jianfengling, Hainan (mean ± SD). *, p < 0.05; **, p < 0.01; ns, p > 0.05.
图2 海南尖峰岭原始林(A-D)和次生林(E-H)各处理优势植物叶片可溶性糖、淀粉和非结构性碳水化合物含量以及可溶性糖与淀粉含量之比。 *, p < 0.05。CK, 对照; N25, 氮添加(25 kg·hm-2·a-1); N50, 氮添加(50 kg·hm-2·a-1); N100, 氮添加(100 kg·hm-2·a-1) ; N50P50, 氮(50 kg·hm-2·a-1)、磷(50 kg·hm-2·a-1)同时添加; P50, 磷添加(50 kg·hm-2·a-1)。
Fig. 2 Contents of leaf soluble sugar, starch and total non-structural carbohydrates (NSCs), and ratio of soluble sugar content to starch content of dominant plants across fertilization treatments in primary (A-D) and secondary (E-H) forests in Jianfengling, Hainan. *, p < 0.05. CK, control; N25, nitrogen addition (25 kg·hm-2·a-1); N50, nitrogen addition (50 kg·hm-2·a-1); N100, nitrogen addition (100 kg·hm-2·a-1) ; N50P50, nitrogen (50 kg·hm-2·a-1) and phosphorus (50 kg·hm-2·a-1) addition; P50, phosphorus addition (50 kg·hm-2·a-1)。
图3 海南尖峰岭原始林植物叶片非结构性碳水化合物含量与叶片pH、碳含量、比叶面积、光合速率以及光合氮利用效率间的线性关系。
Fig. 3 Linear relationships between leaf non-structural carbohydrates contents (NSCs) and the leaf pH, carbon content, specific leaf area (SLA), photosynthetic rates (A) and photosynthetic nitrogen use efficiency (PNUE) across plant species of primary forest in Jianfengling, Hainan.
图4 海南尖峰岭次生林植物叶片非结构性碳水化合物含量与叶片pH、碳含量、比叶面积、光合速率以及光合氮利用效率间的线性关系。
Fig. 4 Linear relationships between leaf non-structural carbohydrates contents (NSCs) and the leaf pH, carbon content, specific leaf area (SLA), photosynthetic rates (A) and photosynthetic nitrogen use efficiency (PNUE) for all species of secondary forest in Jianfengling, Hainan.
图5 海南尖峰岭原始林优势植物叶片非结构性碳水化合物含量与土壤化学性质间的关系。
Fig. 5 Relationship between leaf non-structural carbohydrates contents (NSCs) of dominant plants and soil chemical properties in primary forest in Jianfengling, Hainan.
图6 海南尖峰岭次生林优势植物叶片非结构性碳水化合物含量与土壤化学性质之间的关系。
Fig. 6 Linear relationships between leaf non-structural carbohydrates contents (NSCs) of dominant plants and soil chemical properties in secondary forest in Jianfengling, Hainan
[1] | Adams HD, Germino MJ, Breshears DD, Barron-Gafford GA, Guardiola-Claramonte M, Zou CB, Huxman TE (2013). Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytologist, 197, 1142-1151. |
[2] | Chapin III FS, Schulze E, Mooney HA (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21, 423-447. |
[3] | Chen YQ, Wang YY, Yu YH, Wen ZJ, Peng ZT, Zhou Q, Mo QF (2022). Seasonal changes of leaf non-structural carbohydrate of plants in different layers and its responses to nitrogen and phosphorus additions in a secondary tropical forest. Acta Ecologica Sinica, 42, 255-265. |
[陈轶群, 王艺颖, 于耀泓, 温珍杰, 彭钟通, 周庆, 莫其锋 (2022). 热带次生林不同林层植物叶片非结构性碳水化合物的季节变化及其对氮磷添加的响应. 生态学报, 42, 255-265.] | |
[4] | Cornelissen JHC, Sibma F, Broekman RA, Thompson K (2011). Leaf pH as a plant trait: species- driven rather than soil-driven variation. Functional Ecology, 25, 449-455. |
[5] | Cunha HFV, Andersen KM, Lugli LF, Santana FD, Aleixo IF, Moraes AM, Garcia S, Di Ponzio R, Mendoza EO, Brum B, Rosa JS, Cordeiro AL, Portela BTT, Ribeiro G, Coelho SD, et al. (2022). Direct evidence for phosphorus limitation on Amazon forest productivity. Nature, 608, 558-562. |
[6] |
Dietze MC, Sala AN, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014). Nonstructural carbon in woody plants. Annual Review of Plant Biology, 65, 667-687.
DOI PMID |
[7] | Du E, de Vries W, Han W, Liu X, Yan Z, Jiang Y (2016). Imbalanced phosphorus and nitrogen deposition in China’s forests. Atmospheric Chemistry and Physics, 16, 8571-8579. |
[8] | Du EZ, Zhou Z, Li P, Hu XY, Ma YC, Wang W, Zheng CY, Zhu JX, He JS, Fang JY (2013). NEECF: a project of nutrient enrichment experiments in China’s forests. Journal of Plant Ecology, 6, 428-435. |
[9] | Du Y, Lu RL, Xia JY (2020). Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants. Functional Ecology, 34, 1525-1536. |
[10] | DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356. |
[11] |
Gu B, Chang J, Min Y, Ge Y, Zhu Q, Galloway JN, Peng C (2013). The role of industrial nitrogen in the global nitrogen biogeochemical cycle. Scientific Reports, 3, 2579. DOI: 10.1038/srep02579.
PMID |
[12] |
Hartmann H, Trumbore S (2016). Understanding the roles of nonstructural carbohydrates in forest trees—From what we can measure to what we want to know. New Phytologist, 211, 386-403.
DOI PMID |
[13] |
He WQ, Liu HY, Qi Y, Liu F, Zhu XR (2020). Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration. Global Change Biology, 26, 3627-3638.
DOI PMID |
[14] |
Lewis SL, Edwards DP, Galbraith D (2015). Increasing human dominance of tropical forests. Science, 349, 827-832.
DOI PMID |
[15] | Liu WD, Su JR, Li SF, Lang XD, Huang XB, Zhang ZJ (2017). Variation of non-structural carbohydrates for the dominant species in a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province. Scientia Silvae Sinicae, 53(6), 1-9. |
[刘万德, 苏建荣, 李帅锋, 郎学东, 黄小波, 张志钧 (2017). 云南普洱季风常绿阔叶林主要树种非结构性碳水化合物变异分析. 林业科学, 53(6), 1-9.] | |
[16] | Ma SH (2020). Effects of Nitrogen and Phosphorus Addition on Main Processes of Carbon Cycle in Tropical Montane Rainforests in Jianfengling, Hainan Island, China. PhD dissertation, Peking University, Beijing. |
[马素辉 (2020). 氮和磷添加对海南尖峰岭热带山地雨林碳循环主要过程的影响. 博士学位论文, 北京大学, 北京]. | |
[17] | Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. |
[18] |
Sulpice R, Flis A, Ivakov AA, Apelt F, Krohn N, Encke B, Abel C, Feil R, Lunn JE, Stitt M (2014). Arabidopsis coordinates the diurnal regulation of carbon allocation and growth across a wide range of photoperiods. Molecular Plant, 7, 137-155.
DOI PMID |
[19] |
Thalmann M, Santelia D (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytologist, 214, 943-951.
DOI PMID |
[20] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737-750. |
[21] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
PMID |
[22] | Wang HF, He BX, Zeng LH, Zhou Q, Zhong WH (2008). Studies on the distribution, types and area of the tropical secondary forests in China. Forestry Science and Technology of Guangdong Province, 24(2), 65-73. |
[王洪峰, 何波祥, 曾令海, 周庆, 钟伟华 (2008). 中国热带次生林分布、类型与面积研究. 广东林业科技, 24(2), 65-73.] | |
[23] | Wang R, Balkanski Y, Boucher O, Ciais P, Peñuelas J, Tao S (2015). Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nature Geoscience, 8, 48-54. |
[24] |
Würth MKR, Peláez-Riedl S, Wright SJ, Körner C (2005). Non-structural carbohydrate pools in a tropical forest. Oecologia, 143, 11-24.
DOI PMID |
[25] | Xu H, Li YD, Liu S, Zang R, He F, Spence JR (2015). Partial recovery of a tropical rain forest a half-century after clear-cut and selective logging. Journal of Applied Ecology, 52, 1044-1052. |
[26] | Yu G, Jia Y, He N, Zhu J, Chen Z, Wang Q, Piao S, Liu X, He H, Guo X, Wen Z, Li P, Ding G, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429. |
[27] | Yu QS, Ma SH, Ni XF, Jiang L, Zhou Z, Zhu JL, Ji CJ, Tang ZY, Cheng XL, Fang JY (2023). A test of the mycorrhizal- associated nutrient economy framework in two types of tropical rainforests under nutrient enrichments. Forest Ecosystems, 10, 100083. DOI: 10.1016/j.fecs.2022.100083. |
[28] | Yu Q, Ma S, Ni X, Ni X, Guo Z, Tan X, Zhong M, Abu Hanif M, Zhu J, Ji C, Zhu B, Fang J (2022a). Long-term phosphorus addition inhibits phosphorus transformations involved in soil arbuscular mycorrhizal fungi and acid phosphatase in two tropical rainforests. Geoderma, 425, 116076. DOI: 10.1016/j.geoderma.2022.116076. |
[29] | Yu QS, Ni XF, Cheng XL, Ma SH, Tian D, Zhu B, Zhu JL, Ji CJ, Tang ZY, Fang JY (2022b). Foliar phosphorus allocation and photosynthesis reveal plants’ adaptative strategies to phosphorus limitation in tropical forests at different successional stages. Science of the Total Environment, 846, 157456. DOI: 10.1016/j.scitotenv.2022.157456. |
[30] |
Zhang G, Maillard P, Mao Z, Brancheriau L, Engel J, Gérard B, Fortunel C, Maeght JL, Martínez-Vilalta J, Ramel M, Nourissier-Mountou S, Fourtier S, Stokes A (2022). Non-structural carbohydrates and morphological traits of leaves, stems and roots from tree species in different climates. BMC Research Notes, 15, 251. DOI: 10.1186/s13104-022-06136-7.
PMID |
[31] | Zhao YH, Zhang L, Chen YF, Liu XJ, Xu W, Pan YP, Duan L (2017). Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmospheric Environment, 153, 32-40. |
[32] |
Zhou Z, Jiang L, Du EZ, Hu HF, Li YD, Chen DX, Fang JY (2013). Temperature and substrate availability regulate soil respiration in the tropical mountain rainforests, Hainan Island, China. Journal of Plant Ecology, 6, 325-334.
DOI |
[1] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[2] | 张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[3] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[4] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[5] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[6] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[7] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[8] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[9] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[10] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[11] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[12] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[13] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[14] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[15] | 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19