植物生态学报 ›› 2024, Vol. 48 ›› Issue (6): 701-718.DOI: 10.17521/cjpe.2023.0225 cstr: 32100.14.cjpe.2023.0225
江康威1, 张青青2,*(), 王亚菲3, 李宏1, 丁雨2, 杨永强1, 吐尔逊娜依•热依木2
收稿日期:
2023-08-04
接受日期:
2024-04-08
出版日期:
2024-06-20
发布日期:
2024-04-08
通讯作者:
*张青青(greener2010@sina.com)
基金资助:
JIANG Kang-Wei1, ZHANG Qing-Qing2,*(), WANG Ya-Fei3, LI Hong1, DING Yu2, YANG Yong-Qiang1, Tuerxunnayi REYIMU2
Received:
2023-08-04
Accepted:
2024-04-08
Online:
2024-06-20
Published:
2024-04-08
Contact:
*ZHANG Qing-Qing(greener2010@sina.com)
Supported by:
摘要:
放牧是导致草地生态系统发生变化的重要驱动因素, 然而在不同放牧强度下草地植物群落与功能群对土壤因子的响应是否一致目前仍不明确。该研究以天山北坡中段草地为研究对象, 基于野外植物群落调查和室内土壤分析, 分析放牧对植物群落与功能群的影响, 以此为基础进一步揭示在放牧干扰下植物群落和功能群对土壤因子响应的差异。结果表明, 轻度放牧和未放牧草地的主要优势功能群为多年生禾草和莎草, 重度放牧样地中的主要优势功能群为毒害草, 优势种为醉马草(Achnatherum inebrians)。相较于重度放牧, 轻度放牧显著提高多年生禾草、豆科植物、莎草和杂类草功能群的地上生物量, 显著降低了毒害草地上生物量。轻度放牧的物种多样性指数显著高于重度放牧; 而在功能群多样性中, 轻度放牧的Shannon-Wiener指数、Margalef指数和Pielou指数显著高于重度放牧, Simpson指数在不同放牧强度间无显著差异。冗余分析、Mantel检验以及结构方程模型的结果显示, 植物群落特征、功能群和群落多样性与土壤有机碳含量、速效氮含量、速效钾含量、全磷含量、全钾含量、土壤密度和土壤含水量均存在显著相关关系; 放牧直接对草地植物高度、盖度、密度、地上生物量、植物群落和功能群多样性产生显著的负向影响, 也可通过提高土壤密度和降低土壤养分含量从而对群落高度、盖度、密度、地上生物量、植物群落和功能群多样性产生间接的负向影响。综上, 在放牧干扰下, 土壤因子对维持天山北坡中段草地植物群落的稳定生长起到至关重要的作用, 该结果为新疆草地植物资源的合理利用提供科学依据。
江康威, 张青青, 王亚菲, 李宏, 丁雨, 杨永强, 吐尔逊娜依•热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系. 植物生态学报, 2024, 48(6): 701-718. DOI: 10.17521/cjpe.2023.0225
JIANG Kang-Wei, ZHANG Qing-Qing, WANG Ya-Fei, LI Hong, DING Yu, YANG Yong-Qiang, Tuerxunnayi REYIMU. Characteristics of plant functional groups and the relationships with soil environmental factors in middle part of northern slope of Tianshan Mountains under different grazing intensities. Chinese Journal of Plant Ecology, 2024, 48(6): 701-718. DOI: 10.17521/cjpe.2023.0225
放牧强度 Grazing intensity | 植物优势种 Dominant plant species | 高度 Height (cm) | 盖度 Coverage (%) | 地上生物量 Aboveground biomass (g·m-2) |
---|---|---|---|---|
对照 No grazing | 针茅、羊茅、草地早熟禾 Stipa capillata, Festuca ovina, Poa pratensis | 24.83 ± 2.86 | 84.20 ± 3.51 | 223.89 ± 14.36 |
轻度放牧 Light grazing | 细果薹草、针茅、无芒雀麦 Carex stenocarpa, Stipa capillata, Bromus inermis | 18.12 ± 2.15 | 92.20 ± 5.23 | 186.75 ± 16.73 |
重度放牧 Heavy grazing | 醉马草、细果薹草、平车前 Achnatherum inebrians, Carex stenocarpa, Plantago depressa | 11.53 ± 1.68 | 63.17 ± 3.76 | 78.24 ± 6.91 |
表1 天山北坡中段草地不同样地的植物组成情况(平均值±标准误)
Table 1 Species composition of different sites in grasslands in middle part of the northern slope of Tianshan Mountains (mean ± SE)
放牧强度 Grazing intensity | 植物优势种 Dominant plant species | 高度 Height (cm) | 盖度 Coverage (%) | 地上生物量 Aboveground biomass (g·m-2) |
---|---|---|---|---|
对照 No grazing | 针茅、羊茅、草地早熟禾 Stipa capillata, Festuca ovina, Poa pratensis | 24.83 ± 2.86 | 84.20 ± 3.51 | 223.89 ± 14.36 |
轻度放牧 Light grazing | 细果薹草、针茅、无芒雀麦 Carex stenocarpa, Stipa capillata, Bromus inermis | 18.12 ± 2.15 | 92.20 ± 5.23 | 186.75 ± 16.73 |
重度放牧 Heavy grazing | 醉马草、细果薹草、平车前 Achnatherum inebrians, Carex stenocarpa, Plantago depressa | 11.53 ± 1.68 | 63.17 ± 3.76 | 78.24 ± 6.91 |
图1 天山北坡放牧影响草地生态系统的实验设计。 CK, 未放牧; HG, 重度放牧; LG, 轻度放牧。
Fig. 1 Experimental design of grazing affecting grassland ecosystem in northern slope of Tianshan Mountains. CK, no grazing; HG, heavy grazing; LG, light grazing.
指标 Indicator | 测定方法 Determination method |
---|---|
土壤有机碳含量 Soil organic carbon content | 重铬酸钾-浓硫酸外加热法 Potassium dichromate-concentrated sulfuric acid external heating method |
土壤全氮含量 Soil total nitrogen content | 凯氏定氮法 Kjeldahl method |
土壤全磷含量 Soil total phosphorus content | 氢氧化钠碱熔-钼锑抗比色法 Sodium hydroxide alkali fusion-molybdenum antimony colorimetric method |
土壤全钾含量 Soil total potassium content | 氢氧化钠碱熔-火焰光度法 Sodium hydroxide alkali fusion-flame photometric method |
土壤速效氮含量 Soil available nitrogen content | 氢氧化钠碱解扩散法 Sodium hydroxide alkaline diffusion method |
土壤速效磷含量 Soil available phosphorus content | 碳酸氢钠浸提-钼锑抗比色法 Sodium bicarbonate extraction-molybdenum antimony colorimetric method |
土壤速效钾含量 Soil available potassium content | 醋酸铵浸提-火焰光度法 Ammonium acetate extraction-flame photometric method |
土壤密度 Soil density | 环刀法 Ring knife method |
土壤含水量 Soil water content | 烘干称质量法 Drying and weighing method |
土壤pH Soil pH | 电位法(水土质量比5:1) Potentiometric method (water-soil mass ratio 5:1) |
表2 天山北坡草地土壤理化指标的测定方法
Table 2 Determination methods of physical and chemical indicators of soils in northern slope of Tianshan Mountains
指标 Indicator | 测定方法 Determination method |
---|---|
土壤有机碳含量 Soil organic carbon content | 重铬酸钾-浓硫酸外加热法 Potassium dichromate-concentrated sulfuric acid external heating method |
土壤全氮含量 Soil total nitrogen content | 凯氏定氮法 Kjeldahl method |
土壤全磷含量 Soil total phosphorus content | 氢氧化钠碱熔-钼锑抗比色法 Sodium hydroxide alkali fusion-molybdenum antimony colorimetric method |
土壤全钾含量 Soil total potassium content | 氢氧化钠碱熔-火焰光度法 Sodium hydroxide alkali fusion-flame photometric method |
土壤速效氮含量 Soil available nitrogen content | 氢氧化钠碱解扩散法 Sodium hydroxide alkaline diffusion method |
土壤速效磷含量 Soil available phosphorus content | 碳酸氢钠浸提-钼锑抗比色法 Sodium bicarbonate extraction-molybdenum antimony colorimetric method |
土壤速效钾含量 Soil available potassium content | 醋酸铵浸提-火焰光度法 Ammonium acetate extraction-flame photometric method |
土壤密度 Soil density | 环刀法 Ring knife method |
土壤含水量 Soil water content | 烘干称质量法 Drying and weighing method |
土壤pH Soil pH | 电位法(水土质量比5:1) Potentiometric method (water-soil mass ratio 5:1) |
功能群 Functional group | 物种 Species | 重要值 Important values | ||
---|---|---|---|---|
CK | LG | HG | ||
多年生禾草 Perennial grasses | 羊茅 Festuca ovina | 0.058 ± 0.003a | 0.033 ± 0.004a | 0.062 ± 0.002a |
草地早熟禾 Poa pratensis | 0.171 ± 0.017a | 0.147 ± 0.019ab | 0.094 ± 0.021b | |
针茅 Stipa capillata | 0.105 ± 0.012a | 0.118 ± 0.010a | 0.066 ± 0.009a | |
无芒雀麦 Bromus inermis | 0.044 ± 0.009a | 0.061 ± 0.008a | 0.032 ± 0.005a | |
豆科 Legumes | 紫花苜蓿 Medicago sativa | 0.097 ± 0.011a | 0.070 ± 0.007a | 0.042 ± 0.007a |
黄花苜蓿 Medicago falcata | 0.068 ± 0.007a | 0.088 ± 0.009a | 0.011 ± 0.003a | |
红豆草 Onobrychis viciaefolia | 0.057 ± 0.006a | 0.042 ± 0.004a | 0.029 ± 0.004a | |
白三叶草 Trifolium repens | 0.052 ± 0.002a | 0.074 ± 0.006a | 0.054 ± 0.003a | |
蒙古黄耆 Astragalus membranaceus var. mongholicus | 0.062 ± 0.008a | 0.081 ± 0.009a | 0.048 ± 0.005a | |
莎草 Sedges | 细果薹草 Carex stenocarpa | 0.202 ± 0.013a | 0.134 ± 0.011ab | 0.083 ± 0.009b |
毒害草 Poisonous grasses | 醉马草 Achnatherum inebrians | 0.094 ± 0.008b | 0.071 ± 0.008b | 0.311 ± 0.017a |
天山橐吾 Ligularia tianschanica | 0.012 ± 0.002a | 0.032 ± 0.005a | 0.069 ± 0.006a | |
蓝刺头 Echinops sphaerocephalus | 0.013 ± 0.002a | 0.018 ± 0.002a | 0.033 ± 0.004a | |
杂类草 Forbs | 蓍 Achillea millefolium | 0.110 ± 0.009a | 0.041 ± 0.006a | 0.092 ± 0.007a |
草原糙苏 Phlomis pratensis | 0.094 ± 0.011a | 0.064 ± 0.008a | 0.022 ± 0.003a | |
平车前 Plantago depressa | 0.053 ± 0.007a | 0.021 ± 0.004a | - | |
大萼委陵菜 Potentilla conferta | 0.174 ± 0.014a | 0.047 ± 0.007b | 0.053 ± 0.005b | |
大籽蒿 Artemisia sieversiana | 0.082 ± 0.004a | 0.068 ± 0.008a | 0.074 ± 0.009a | |
点地梅 Androsace umbellata | 0.024 ± 0.005a | 0.034 ± 0.006a | 0.046 ± 0.007a | |
二裂委陵菜 Potentilla bifurca | 0.114 ± 0.009a | 0.102 ± 0.008a | 0.070 ± 0.008a | |
山野火绒草 Leontopodium campestre | 0.043 ± 0.008a | 0.091 ± 0.004a | 0.030 ± 0.007a | |
拉拉藤 Galium aparine | 0.071 ± 0.009a | 0.132 ± 0.012a | 0.068 ± 0.003a | |
草地老鹳草 Geranium pratense | 0.069 ± 0.008a | 0.073 ± 0.009a | 0.051 ± 0.005a | |
阿尔泰狗娃花 Aster altaicus | 0.015 ± 0.002a | 0.025 ± 0.004a | 0.013 ± 0.002a | |
唐松草 Thalictrum aquilegifolium | 0.027 ± 0.004a | 0.026 ± 0.005a | 0.018 ± 0.003a | |
田旋花 Convolvulus arvensis | 0.065 ± 0.007a | 0.055 ± 0.008a | 0.034 ± 0.005a | |
细裂叶莲蒿 Artemisia gmelinii | - | - | 0.045 ± 0.007 | |
葶苈 Draba nemorosa | - | 0.027 ± 0.005a | 0.039 ± 0.007a | |
勿忘草 Myosotis silvatica | 0.072 ± 0.008a | 0.067 ± 0.009a | 0.041 ± 0.008a | |
鹤虱 Lappula myosotis | 0.028 ± 0.004a | 0.043 ± 0.004a | 0.009 ± 0.001a | |
毛茛 Ranunculus japonicus | - | - | 0.037 ± 0.006 | |
天山羽衣草 Alchemilla tianschanica | 0.035 ± 0.007b | 0.089 ± 0.012a | 0.132 ± 0.011a | |
金莲花 Trollius chinensis | 0.007 ± 0.001a | 0.008 ± 0.002a | 0.015 ± 0.002a | |
新疆风铃草 Campanula albertii | - | 0.005 ± 0.001a | 0.057 ± 0.008a | |
伊犁绢蒿 Seriphidium transiliense | 0.032 ± 0.006a | 0.041 ± 0.007a | 0.025 ± 0.004a | |
蒲公英 Taraxacum mongolicum | - | 0.024 ± 0.005 | - | |
藜 Chenopodium album | - | 0.008 ± 0.002a | 0.023 ± 0.005a | |
萹蓄 Polygonum aviculare | - | 0.014 ± 0.003 | - | |
圆叶锦葵 Malva pusilla | 0.009 ± 0.003 | - | - |
表3 天山北坡中段草地不同放牧干扰下草地植物群落组成的变化(平均值±标准误)
Table 3 Changes in grassland plant community composition under different grazing disturbances in middle part of the northern slope of Tianshan Mountains (mean ± SE)
功能群 Functional group | 物种 Species | 重要值 Important values | ||
---|---|---|---|---|
CK | LG | HG | ||
多年生禾草 Perennial grasses | 羊茅 Festuca ovina | 0.058 ± 0.003a | 0.033 ± 0.004a | 0.062 ± 0.002a |
草地早熟禾 Poa pratensis | 0.171 ± 0.017a | 0.147 ± 0.019ab | 0.094 ± 0.021b | |
针茅 Stipa capillata | 0.105 ± 0.012a | 0.118 ± 0.010a | 0.066 ± 0.009a | |
无芒雀麦 Bromus inermis | 0.044 ± 0.009a | 0.061 ± 0.008a | 0.032 ± 0.005a | |
豆科 Legumes | 紫花苜蓿 Medicago sativa | 0.097 ± 0.011a | 0.070 ± 0.007a | 0.042 ± 0.007a |
黄花苜蓿 Medicago falcata | 0.068 ± 0.007a | 0.088 ± 0.009a | 0.011 ± 0.003a | |
红豆草 Onobrychis viciaefolia | 0.057 ± 0.006a | 0.042 ± 0.004a | 0.029 ± 0.004a | |
白三叶草 Trifolium repens | 0.052 ± 0.002a | 0.074 ± 0.006a | 0.054 ± 0.003a | |
蒙古黄耆 Astragalus membranaceus var. mongholicus | 0.062 ± 0.008a | 0.081 ± 0.009a | 0.048 ± 0.005a | |
莎草 Sedges | 细果薹草 Carex stenocarpa | 0.202 ± 0.013a | 0.134 ± 0.011ab | 0.083 ± 0.009b |
毒害草 Poisonous grasses | 醉马草 Achnatherum inebrians | 0.094 ± 0.008b | 0.071 ± 0.008b | 0.311 ± 0.017a |
天山橐吾 Ligularia tianschanica | 0.012 ± 0.002a | 0.032 ± 0.005a | 0.069 ± 0.006a | |
蓝刺头 Echinops sphaerocephalus | 0.013 ± 0.002a | 0.018 ± 0.002a | 0.033 ± 0.004a | |
杂类草 Forbs | 蓍 Achillea millefolium | 0.110 ± 0.009a | 0.041 ± 0.006a | 0.092 ± 0.007a |
草原糙苏 Phlomis pratensis | 0.094 ± 0.011a | 0.064 ± 0.008a | 0.022 ± 0.003a | |
平车前 Plantago depressa | 0.053 ± 0.007a | 0.021 ± 0.004a | - | |
大萼委陵菜 Potentilla conferta | 0.174 ± 0.014a | 0.047 ± 0.007b | 0.053 ± 0.005b | |
大籽蒿 Artemisia sieversiana | 0.082 ± 0.004a | 0.068 ± 0.008a | 0.074 ± 0.009a | |
点地梅 Androsace umbellata | 0.024 ± 0.005a | 0.034 ± 0.006a | 0.046 ± 0.007a | |
二裂委陵菜 Potentilla bifurca | 0.114 ± 0.009a | 0.102 ± 0.008a | 0.070 ± 0.008a | |
山野火绒草 Leontopodium campestre | 0.043 ± 0.008a | 0.091 ± 0.004a | 0.030 ± 0.007a | |
拉拉藤 Galium aparine | 0.071 ± 0.009a | 0.132 ± 0.012a | 0.068 ± 0.003a | |
草地老鹳草 Geranium pratense | 0.069 ± 0.008a | 0.073 ± 0.009a | 0.051 ± 0.005a | |
阿尔泰狗娃花 Aster altaicus | 0.015 ± 0.002a | 0.025 ± 0.004a | 0.013 ± 0.002a | |
唐松草 Thalictrum aquilegifolium | 0.027 ± 0.004a | 0.026 ± 0.005a | 0.018 ± 0.003a | |
田旋花 Convolvulus arvensis | 0.065 ± 0.007a | 0.055 ± 0.008a | 0.034 ± 0.005a | |
细裂叶莲蒿 Artemisia gmelinii | - | - | 0.045 ± 0.007 | |
葶苈 Draba nemorosa | - | 0.027 ± 0.005a | 0.039 ± 0.007a | |
勿忘草 Myosotis silvatica | 0.072 ± 0.008a | 0.067 ± 0.009a | 0.041 ± 0.008a | |
鹤虱 Lappula myosotis | 0.028 ± 0.004a | 0.043 ± 0.004a | 0.009 ± 0.001a | |
毛茛 Ranunculus japonicus | - | - | 0.037 ± 0.006 | |
天山羽衣草 Alchemilla tianschanica | 0.035 ± 0.007b | 0.089 ± 0.012a | 0.132 ± 0.011a | |
金莲花 Trollius chinensis | 0.007 ± 0.001a | 0.008 ± 0.002a | 0.015 ± 0.002a | |
新疆风铃草 Campanula albertii | - | 0.005 ± 0.001a | 0.057 ± 0.008a | |
伊犁绢蒿 Seriphidium transiliense | 0.032 ± 0.006a | 0.041 ± 0.007a | 0.025 ± 0.004a | |
蒲公英 Taraxacum mongolicum | - | 0.024 ± 0.005 | - | |
藜 Chenopodium album | - | 0.008 ± 0.002a | 0.023 ± 0.005a | |
萹蓄 Polygonum aviculare | - | 0.014 ± 0.003 | - | |
圆叶锦葵 Malva pusilla | 0.009 ± 0.003 | - | - |
图2 天山北坡中段草地不同放牧干扰下植物群落和功能群的盖度(A)、密度(B)和高度(C)对比。 CK, 未放牧; HG, 重度放牧; LG, 轻度放牧。*, p < 0.05; ns, p > 0.05。
Fig. 2 Comparison of coverage (A), density (B) and height (C) of plant communities and functional groups under different grazing disturbances in grassland in middle part of the northern slope of Tianshan Mountains. CK, no grazing; HG, heavy grazing; LG, light grazing. *, p < 0.05; ns, p > 0.05.
图3 天山北坡中段草地不同放牧干扰下植物群落和功能群地上生物量的变化。 CK, 未放牧; HG, 重度放牧; LG, 轻度放牧。*, p < 0.05; ns, p > 0.05。
Fig. 3 Changes in aboveground biomass of plant communities and functional groups under different grazing disturbances in grasslands in the middle part of the northern slope of Tianshan Mountains. CK, no grazing; HG, heavy grazing; LG, light grazing. *, p < 0.05; ns, p > 0.05.
图4 天山北坡中段草地放牧干扰下植物功能群地上生物量的变化(A, 平均值±标准误)和比例(B)。 CK, 未放牧; HG, 重度放牧; LG, 轻度放牧。不同小写字母表示不同功能群之间的差异显著(p < 0.05)。
Fig. 4 Changes (A, mean ± SE) and proportions (B) of aboveground biomass of plant functional groups under grazing disturbance in grasslands in the middle part of the northern slope of Tianshan Mountains. CK, no grazing; HG, heavy grazing; LG, light grazing. Different lowercase letters indicate significant differences between different functional groups (p < 0.05).
图5 天山北坡中段草地不同放牧干扰下植物群落(A)和功能群(B)物种多样性指数。 CK, 未放牧; HG, 重度放牧; LG, 轻度放牧。Index, 指数。*, p < 0.05; ns, p > 0.05。
Fig. 5 Comparison of species diversity indices of plant communities (A) and functional groups (B) under different grazing disturbances in grasslands in the middle part of the northern slope of Tianshan Mountains. CK, no grazing; HG, heavy grazing; LG, light grazing. *, p < 0.05; ns, p > 0.05.
土壤理化指标 Soil physical and chemical indicator | 放牧强度 Grazing intensity | ||
---|---|---|---|
CK | LG | HG | |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 94.40 ± 2.92a | 91.04 ± 3.39a | 64.05 ± 2.63b |
土壤全氮含量 Soil total nitrogen content (g·kg-1) | 2.56 ± 0.55ab | 2.96 ± 0.49a | 1.35 ± 0.46b |
土壤全磷含量 Soil total phosphorus content (g·kg-1) | 0.85 ± 0.08a | 0.88 ± 0.06a | 0.71 ± 0.03b |
土壤全钾含量 Soil total potassium content (g·kg-1) | 10.93 ± 0.57a | 9.10 ± 0.43ab | 8.15 ± 0.42b |
土壤速效氮含量 Soil available nitrogen content (mg·kg-1) | 118.46 ± 22.79ab | 129.24 ± 22.91a | 86.04 ± 21.70b |
土壤速效磷含量 Soil available phosphorus content (mg·kg-1) | 25.60 ± 1.36a | 20.29 ± 2.23ab | 13.91 ± 1.27b |
土壤速效钾含量 Soil available potassium content (mg·kg-1) | 438.78 ± 43.11a | 356.49 ± 48.51ab | 304.18 ± 45.99b |
土壤密度 Soil density (g·cm-3) | 0.65 ± 0.03b | 0.66 ± 0.01b | 0.82 ± 0.04a |
土壤含水量 Soil water content (%) | 0.47 ± 0.04ab | 0.60 ± 0.03a | 0.41 ± 0.02b |
土壤pH Soil pH | 7.71 ± 0.08a | 7.55 ± 0.15a | 7.15 ± 0.14a |
表4 天山北坡中段草地不同放牧干扰下土壤理化性质的变化(平均值±标准误)
Table 4 Changes of soil physicochemical properties under different grazing disturbances in grasslands in the middle part of the northern slope of Tianshan Mountains (mean ± SE)
土壤理化指标 Soil physical and chemical indicator | 放牧强度 Grazing intensity | ||
---|---|---|---|
CK | LG | HG | |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 94.40 ± 2.92a | 91.04 ± 3.39a | 64.05 ± 2.63b |
土壤全氮含量 Soil total nitrogen content (g·kg-1) | 2.56 ± 0.55ab | 2.96 ± 0.49a | 1.35 ± 0.46b |
土壤全磷含量 Soil total phosphorus content (g·kg-1) | 0.85 ± 0.08a | 0.88 ± 0.06a | 0.71 ± 0.03b |
土壤全钾含量 Soil total potassium content (g·kg-1) | 10.93 ± 0.57a | 9.10 ± 0.43ab | 8.15 ± 0.42b |
土壤速效氮含量 Soil available nitrogen content (mg·kg-1) | 118.46 ± 22.79ab | 129.24 ± 22.91a | 86.04 ± 21.70b |
土壤速效磷含量 Soil available phosphorus content (mg·kg-1) | 25.60 ± 1.36a | 20.29 ± 2.23ab | 13.91 ± 1.27b |
土壤速效钾含量 Soil available potassium content (mg·kg-1) | 438.78 ± 43.11a | 356.49 ± 48.51ab | 304.18 ± 45.99b |
土壤密度 Soil density (g·cm-3) | 0.65 ± 0.03b | 0.66 ± 0.01b | 0.82 ± 0.04a |
土壤含水量 Soil water content (%) | 0.47 ± 0.04ab | 0.60 ± 0.03a | 0.41 ± 0.02b |
土壤pH Soil pH | 7.71 ± 0.08a | 7.55 ± 0.15a | 7.15 ± 0.14a |
图6 放牧干扰下天山北坡中段草地土壤因子与植物群落和功能群的冗余分析(RDA) (A、C)、Mantel检验(E)、相关性分析(F)以及各因子对植物群落(B)和功能群(D)的解释度。 CK, 未放牧; HG, 重度放牧; LG, 轻度放牧。AK, 土壤速效钾含量; AN, 土壤速效氮含量; AP, 土壤速效磷含量; Coverage, 植物群落高度; Density, 植物群落密度; FB, 杂类草地上生物量; GB, 多年生禾草地上生物量; Height, 植物群落高度; LB, 豆科植物地上生物量; PB, 毒害草地上生物量; pH, 土壤pH; SB, 莎草地上生物量; SD, 土壤密度; SOC, 土壤有机碳含量; SW, 土壤含水量; TK, 土壤全钾含量; TN, 土壤全氮含量; TP, 土壤全磷含量。P-Shannon-Wiener index、P-Simpson index、P-Margalef index和P-Pielou index分别表示植物群落的Shannon-Wiener、Simpson、Margalef和Pielou指数; F-Shannon-Wiener index、F-Simpson index、F-Margalef index和F-Pielou index分别表示植物功能群的Shannon-Wiener、Simpson、Margalef和Pielou指数。*, p < 0.05
Fig. 6 Redundancy analysis (RDA) (A, C), Mantel test (E), correlation analysis (F) of soil factors and plant communities and functional groups under grazing disturbances in grassland in the middle part of the northern slope of Tianshan Mountains, as well as each factor’ degree of explanation on plant communities (B) and functional groups (D). CK, no grazing; HG, heavy grazing; LG, light grazing. AK, soil available potassium content; AN, soil available nitrogen content; AP, soil available phosphorus content; Coverage, plant community coverage; Density, plant community density; FB, abovegrounal biomass of forbs; GB, aboveground biomass of perennial grasses; Height, plant community height; LB, aboveground biomass of legumes; PB, abovegrounal biomass of poisonous grasses; pH, soil pH; SB, aboveground biomass of sedges; SD, soil density; SW, soil water content; SOC, soil organic carbon content; TK, soil total potassium content; TN, soil total nitrogen content; TP, soil total phosphorus content. P-Shannon-Wiener index, P-Simpson index, P-Margalef index and P-Pielou index indicate the Shannon-Wiener, Simpson, Margalef and Pielou indices of plant communities, respectively; F-Shannon-Wiener index, F-Simpson index, F-Margalef index and F-Pielou index indicate the Shannon-Wiener, Simpson, Margalef and Pielou indices of plant functional groups, respectively. *, p < 0.05.
图7 放牧干扰下天山北坡中段草地土壤因子对草地植物群落基本特征(A)、地上生物量(B)、群落多样性(C)和功能群多样性(D)的影响。 黑线代表正向影响, 灰线代表负向影响。实线箭头表示显著效应, 虚线箭头表示无显著效应, 箭头旁边的数字表示标准化路径系数。CFI, 比较拟合指数; RMSEA, 近似均方根误差。多样性指数前面的P和F分别表示植物群落和植物功能群。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 7 Effects of soil factors on plant community basic characteristics (A), above-ground biomass (B), community diversity (C) and functional group diversity (D) under grazing disturbance in grassland in the middle section of the Tianshan Mountains. Black and gray lines represent positive and negative effects, respectively. Solid lines and dashed arrows indicate significant effects (*, p < 0.05; **, p < 0.01; ***, p < 0.001), and dashed arrows indicate no significant effects (p > 0.05). Numbers next to arrows indicate standardized path coefficients. CFI, comparative fit index; RMSEA, root mean square error of approximation. P and F in front of diversity indices represent plant community and plant functional group. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
[1] | Aarons SR, O’Connor CR, Hosseini HM, Gourley CJP (2009). Dung pads increase pasture production, soil nutrients and microbial biomass carbon in grazed dairy systems. Nutrient Cycling in Agroecosystems, 84, 81-92. |
[2] |
Bagchi S, Ritchie ME (2010). Herbivore effects on above- and belowground plant production and soil nitrogen availability in the Trans-Himalayan shrub-steppes. Oecologia, 164, 1075-1082.
DOI PMID |
[3] | Bai Z, Li YL, Shi CJ, Zhang TR, Suriguga, Zhang L, Li YH (2020). Effects of different grazing seasons on plant communities in the vegetation green-up and peak growing seasons of a typical steppe. Chinese Journal of Grassland, 42(2), 67-75. |
[白正, 李艳龙, 石椿珺, 张桐瑞, 苏日古嘎, 张乐, 李永宏 (2020). 季节放牧对典型草原植物群落不同生长季特征的影响. 中国草地学报, 42(2), 67-75.] | |
[4] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agricultural Press, Beijing. 72-75. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京. 72-75.] | |
[5] | Bao XX, Lian Y, Yi J, Zhang RX (2014). Effects of grazing on plant functional group characteristics in Stipa klemenzii desert steppe in China and Mongolia. Chinese Journal of Ecology, 33, 2966-2972. |
[包秀霞, 廉勇, 易津, 张瑞霞 (2014). 放牧方式对中国和蒙古小针茅荒漠草原植物功能群特征的影响. 生态学杂志, 33, 2966-2972.] | |
[6] |
Bever JD, Platt TG, Morton ER (2012). Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annual Review of Microbiology, 66, 265-283.
DOI PMID |
[7] | Bröcher M, Ebeling A, Hertzog L, Roscher C, Weisser W, Meyer ST (2023). Effects of plant diversity on species- specific herbivory: patterns and mechanisms. Oecologia, 201, 1053-1066. |
[8] | Chen HC, Li XD, Li FX, Zhou BR, Li CY (2013). Change of soil temperature and soil moisture content in typical degenerated steppe in Maduo County in the headstream region of the Yellow River. Arid Zone Research, 30, 35-40. |
[陈海存, 李晓东, 李凤霞, 周秉荣, 李昌玉 (2013). 黄河源玛多县退化草地土壤温湿度变化特征. 干旱区研究, 30, 35-40.] | |
[9] |
Connell JH (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1310.
DOI PMID |
[10] | Creed RP, Cherry RP, Pflaum JR, Wood CJ (2009). Dominant species can produce a negative relationship between species diversity and ecosystem function. Oikos, 118, 723-732. |
[11] |
Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, Jordano P, Pearse WD (2013). Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3, 2958-2975.
DOI PMID |
[12] | Duan CW, Li XL, Chai Y, Xu WY, Su LL, Ma PP, Yang XG (2022). Effects of different rehabilitation measures on plant community and soil nutrient of degraded alpine meadow in the Yellow River Source. Acta Ecologica Sinica, 42, 7652-7662. |
[段成伟, 李希来, 柴瑜, 徐文印, 苏乐乐, 马盼盼, 杨鑫光 (2022). 不同修复措施对黄河源退化高寒草甸植物群落与土壤养分的影响. 生态学报, 42, 7652-7662.] | |
[13] | Duan MJ, Gao QZ, Wan YF, Li YE, Guo YQ, Danjiu LB, Luosang JC (2010). Effect of grazing on community characteristics and species diversity of Stipa purpurea alpine grassland in Northern Tibet. Acta Ecologica Sinica, 30, 3892-3900. |
[段敏杰, 高清竹, 万运帆, 李玉娥, 郭亚奇, 旦久罗布, 洛桑加措 (2010). 放牧对藏北紫花针茅高寒草原植物群落特征的影响. 生态学报, 30, 3892-3900.] | |
[14] |
Evju M, Austrheim G, Halvorsen R, Mysterud A (2009). Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem. Oecologia, 161, 77-85.
DOI PMID |
[15] | Ferraro DO, Oesterheld M (2002). Effect of defoliation on grass growth—A quantitative review. Oikos, 98, 125-133. |
[16] |
Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, et al. (2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340. DOI: 10.1038/ncomms2328.
PMID |
[17] | Gao SB, Liu L, Wang YK, Li JP, Zhao NX, Gao YB (2017). The annual variation of effects under different grassland utilization types on typical steppe species interactions in Inner Mongolia. Acta Ecologica Sinica, 37, 6562-6570. |
[高韶勃, 刘磊, 王宇坤, 李静鹏, 赵念席, 高玉葆 (2017). 不同利用方式下内蒙古典型草原群落物种相互关系的年际变化. 生态学报, 37, 6562-6570.] | |
[18] | Hendricks HH, Bond WJ, Midgley JJ, Novellie PA (2005). Plant species richness and composition a long livestock grazing intensity gradients in a Namaqualand (South Africa) protected area. Plant Ecology, 176, 19-33. |
[19] |
Hu Y, Zhu XP, Jia HT, Han DL, Hu BA, Li DP (2018). Effects of fencing on ecosystem carbon exchange at meadow steppe in the northern slope of the Tianshan Mountains. Chinese Journal of Plant Ecology, 42, 372-381.
DOI |
[胡毅, 朱新萍, 贾宏涛, 韩东亮, 胡保安, 李典鹏 (2018). 围栏封育对天山北坡草甸草原生态系统碳交换的影响. 植物生态学报, 42, 372-381.]
DOI |
|
[20] | Janssens F, Peeters A, Tallowin JRB, Bakker JP, Bekker RM, Fillat F, Oomes MJM (1998). Relationship between soil chemical factors and grassland diversity. Plant and Soil, 202, 69-78. |
[21] | Jin MM, Xu ZR, Cheng SK (2020). Response of vegetation and soil to different grazing intensities of alpine grassland in Northern Tibet. Acta Ecologica Sinica, 40, 8753-8762. |
[靳茗茗, 徐增让, 成升魁 (2020). 藏北高寒草地植被和土壤对不同放牧强度的响应. 生态学报, 40, 8753-8762.] | |
[22] | Jin SL, Diao ZY, Lv SH, Wang X, Ma P, Zheng ZR (2022). Response characteristics of plant functional groups to enclosure and grazing in Hulunbuir grassland. Journal of Arid Land Resources and Environment, 36, 151-158. |
[靳三玲, 刁兆岩, 吕世海, 王旭, 马普, 郑志荣 (2022). 呼伦贝尔草原植物功能群对围封及放牧的响应特征. 干旱区资源与环境, 36, 151-158.] | |
[23] |
Laca EA, Sokolow S, Galli JR, Cangiano CA (2010). Allometry and spatial scales of foraging in mammalian herbivores. Ecology Letters, 13, 311-320.
DOI PMID |
[24] | Li B (1997). Grassland degradation in Northern China and its control countermeasures. Scientia Agricultura Sinica, 30(6), 27-29. |
[李博 (1997). 中国北方草地退化及其防治对策. 中国农业科学, 30(6), 27-29.] | |
[25] | Li H, Zhang QQ, Jiang KW, Li L, Wang YM, Tuerxunnayi R (2021). effects of different grazing intensities on soil bacterial community characteristics in mountain meadow. Chinese Journal of Grassland, 43(11), 37-44. |
[李宏, 张青青, 江康威, 李骊, 王雅梅, 吐尔逊娜依•热依木 (2021). 山地草甸不同放牧强度对土壤细菌群落特征的影响. 中国草地学报, 43(11), 37-44.] | |
[26] | Li JW, Pei JH, Han GD, He BY, Li C (2023). Effect of abnormal precipitation on the diversity of plant functional groups on the desert steppe under different stocking rates. Acta Prataculturae Sinica, 32(11), 212-222. |
[李江文, 裴婧宏, 韩国栋, 何邦印, 李彩 (2023). 基于植物功能性状分析异常降水对不同载畜率下荒漠草原功能群多样性的影响. 草业学报, 32(11), 212-222.]
DOI |
|
[27] |
Li L, Zhang Y, Chen N, Qi QS, Lu XX, Liu Y, Fan YW (2021). Seasonal variations and driving factors of phytoplankton functional groups in the Longfeng wetland, Daqing City. Chinese Journal of Ecology, 40, 2850-2859.
DOI |
[李磊, 张莹, 陈宁, 齐青松, 陆欣鑫, 刘妍, 范亚文 (2021). 大庆龙凤湿地浮游植物功能类群季节变化及其驱动因子. 生态学杂志, 40, 2850-2859.] | |
[28] | Li Y, Wang J, Shen CC, Wang JC, Singh BK, Ge Y (2022). Plant diversity improves resistance of plant biomass and soil microbial communities to drought. Journal of Ecology, 110, 1656-1672. |
[29] | Liao HX, Luo WB, Peng SL, Callaway RM (2015). Plant diversity, soil biota and resistance to exotic invasion. Diversity and Distributions, 21, 826-835. |
[30] | Lin L, Zhang DG, Cao GM, Ouyang JZ, Liu SL, Zhang FW, Li YK, Guo XW (2016). Plant functional groups numerical characteristics responses to different grazing intensities under different community succession stages of alpine Kobresia meadow in spring. Acta Ecologica Sinica, 36, 8034-8043. |
[林丽, 张德罡, 曹广民, 欧阳经政, 刘淑丽, 张法伟, 李以康, 郭小伟 (2016). 高寒嵩草草甸植物群落数量特征对不同利用强度的短期响应. 生态学报, 36, 8034-8043.] | |
[31] |
Liu J, Wu PT, Wang YB, Zhao XN, Sun SK, Cao XC (2014). Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China. Journal of the Science of Food and Agriculture, 94, 2992-3000.
DOI PMID |
[32] | Liu MX, Che YD, Li LR, Jiao J, Xiao W (2017). Redundancy analysis of leaf traits and environmental factors of alpine meadow in Southern Gansu Province. Chinese Journal of Ecology, 36, 2473-2480. |
[刘旻霞, 车应弟, 李俐蓉, 焦娇, 肖卫 (2017). 甘南高寒草甸微地形上植物叶片特征与环境因子的冗余分析. 生态学杂志, 36, 2473-2480.] | |
[33] | Liu WT, Wei ZJ, Lü SJ, Wang TL, Zhang S (2017). The impacts of grazing on plant diversity in Stipa breviflora desert grassland. Acta Ecologica Sinica, 37, 3394-3402. |
[刘文亭, 卫智军, 吕世杰, 王天乐, 张爽 (2017). 放牧对短花针茅荒漠草原植物多样性的影响. 生态学报, 37, 3394-3402.] | |
[34] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[35] | Martinsen V, Mulder J, Austrheim G, Mysterud A (2011). Carbon storage in low-alpine grassland soils: effects of different grazing intensities of sheep. European Journal of Soil Science, 62, 822-833. |
[36] | Mipam TD, Zhong LL, Liu JQ, Miehe G, Tian LM (2019). Productive overcompensation of alpine meadows in response to yak grazing in the eastern Qinghai-Tibet Plateau. Frontiers in Plant Science, 10, 925. DOI: 10.3389/fpls.2019.00925. |
[37] |
Orford KA, Murray PJ, Vaughan IP, Memmott J (2016). Modest enhancements to conventional grassland diversity improve the provision of pollination services. Journal of Applied Ecology, 53, 906-915.
PMID |
[38] | Pei W, Chen Q, Zhang LZ, Jia LY (2021). Effects of grazing, water and nitrogen on soil aggregates in Inner Mongolia grassland. Acta Agrestia Sinica, 29, 1499-1506. |
[裴雯, 陈清, 张洛梓, 贾丽英 (2021). 放牧、水分和氮素对内蒙古草原土壤团聚体的影响. 草地学报, 29, 1499-1506.]
DOI |
|
[39] | Perrings C, Walker B (1997). Biodiversity, resilience and the control of ecological-economic systems: the case of fire-driven rangelands. Ecological Economics, 22, 73-83. |
[40] | Qi ZC, Chang PJ, Li YS, Tian XM, Li XD, Guo D, Niu DC (2021). Effects of grazing intensity on soil aggregates composition, stability, nutrients and C/N in desert shrubland. Arid Zone Research, 38, 87-94. |
[祁正超, 常佩静, 李永善, 田雪梅, 李旭东, 郭丁, 牛得草 (2021). 放牧对荒漠灌丛草地土壤团聚体组成及其稳定性的影响. 干旱区研究, 38, 87-94.] | |
[41] | Reynolds HL, Packer A, Bever JD, Clay K (2003). Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology, 84, 2281-2291. |
[42] | Schimel JP, Bennett J (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85, 591-602. |
[43] | Shelby RA, Olsovska J, Havlicek V, Flieger M (1997). Analysis of ergot alkaloids in endophyte-infected tall fescue by liquid chromatography/electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 45, 4674-4679. |
[44] | Song DH, Zhang XN, Yang JF, Tian JY (2023). Traits of different functional groups of desert plants and their relationship with soil environment. Acta Ecologica Sinica, 43, 7403-7411 |
[宋丹鸿, 张雪妮, 杨继粉, 田景烨 (2023). 荒漠植物不同功能群性状特征及其与土壤环境的关系. 生态学报, 43, 7403-7411.] | |
[45] | Song LY, Gong JR, Zhang ZH, Zhang WY, Zhang SQ, Dong JJ, Dong XD, Hu YX, Liu YY (2023). Changes in plant phosphorus demand and supply relationships in response to different grazing intensities affect the soil organic carbon stock of a temperate steppe. Science of the Total Environment, 876, 163225. DOI: 10.1016/j.scitotenv.2023.163225. |
[46] | Subinuer W, Tuerxunnayi R, Yu ZW, Xia TT, Shi XS, Liu GS, Yeerkejiang K, Yasen S (2023). The responses of mountain meadow plant and insect diversity to grazing intensity. Chinese Journal of Grassland, 45(3), 20-29. |
[ 苏比努尔•吾麦尔江, 吐尔逊娜依•热依木, 于昭文, 夏停停, 史学书, 刘桂松, 叶尔克江•库腊勒贝克, 牙森•沙力 (2023). 山地草甸草地植物与昆虫多样性对放牧强度的响应. 中国草地学报, 45(3), 20-29.] | |
[47] | Suding KN, Lavorel S, Chapin III FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas ML (2008). Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology, 14, 1125-1140. |
[48] | Tälle M, Deák B, Poschlod P, Valkó O, Westerberg L, Milberg P (2016). Grazing vs. mowing: a meta-analysis of biodiversity benefits for grassland management. Agriculture, Ecosystems & Environment, 222, 200-212. |
[49] | Tate KW, Dudley DM, McDougald NK, George MR (2004). Effect of canopy and grazing on soil bulk density. Rangeland Ecology & Management, 57, 411-417. |
[50] | Tong C, Wu J, Yong S, Yang J, Yong W (2004). A landscape- scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments, 59, 133-149. |
[51] | Tong SP, Miao YJ, Bian BY, Jia SG, Guan FC, Guo HB, Yang GZ (2018). Effects of different restoration measures on productivity and diversity of grassland communities in northern Tibet. Acta Agrestia Sinica, 26, 1078-1083. |
[仝淑萍, 苗彦军, 边步云, 贾书刚, 关法春, 郭红宝, 杨光宗 (2018). 不同恢复措施对藏北草地群落生产力和多样性影响的研究. 草地学报, 26, 1078-1083.]
DOI |
|
[52] |
van der Heijden MGA, Bardgett RD, van Straalen NM (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310.
DOI PMID |
[53] | van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, van de Voorde TFJ, Wardle DA (2013). Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology, 101, 265-276. |
[54] |
Vandvik V, Althuizen IHJ, Jaroszynska F, Krüger LC, Lee HN, Goldberg DE, Klanderud K, Olsen SL, Telford RJ, Östman SAH, Busca S, Dahle IJ, Egelkraut DD, Geange SR, Gya R, et al. (2022). The role of plant functional groups mediating climate impacts on carbon and biodiversity of alpine grasslands. Scientific Data, 9, 451. DOI: 10.1038/s41597-022-01559-0.
PMID |
[55] | Wang C, Jia HJ, Wei JX, Yang WL, Gao Y, Liu QF, Ge DY, Wu NC (2021). Phytoplankton functional groups as ecological indicators in a subtropical estuarine river delta system. Ecological Indicators, 126, 107651. DOI: 10.1016/j.ecolind.2021.107651. |
[56] | Wang CT, Long RJ, Wang QL, Cao GM, Shi JJ, Du YG (2008). Response of plant diversity and productivity to soil resources changing under grazing disturbance on an alpine meadow. Acta Ecologica Sinica, 28, 4144-4152. |
[王长庭, 龙瑞军, 王启兰, 曹广民, 施建军, 杜岩功 (2008). 放牧扰动下高寒草甸植物多样性、生产力对土壤养分条件变化的响应. 生态学报, 28, 4144-4152.] | |
[57] | Wang HS, Song ML, Wang YQ, Kazhuocairang, Luo JW, Luozangangmao (2022). Effects of different restoration methods on Ligularia virgaurea and toxic weed dominated degraded grassland community. Chinese Journal of Grassland, 44, 32-39. |
[王宏生, 宋梅玲, 王玉琴, 卡着才让, 罗俊文, 洛藏昂毛 (2022). 不同恢复措施对黄帚橐吾及毒害草型退化草地群落的影响. 中国草地学报, 44, 32-39.] | |
[58] | Wang JF, Han DY, Wang JB, Fu XL, Zhu DG, Liu YN, Cao HJ, Huang QY, Xie LH, Zhong HX, Sui X, Ni HW (2017). Variations in plant species composition and diversity of Calamagrostis angustifolia community along soil water level gradient in the Sanjiang Plain. Acta Ecologica Sinica, 37, 3515-3524. |
[王继丰, 韩大勇, 王建波, 付晓玲, 朱道光, 刘赢男, 曹宏杰, 黄庆阳, 谢立红, 钟海秀, 隋心, 倪红伟 (2017). 三江平原湿地小叶章群落沿土壤水分梯度物种组成及多样性变化. 生态学报, 37, 3515-3524.] | |
[59] | Wang XF, Ma Y, Zhang GF, Lin D, Zhang DG (2021). Relationship between plant community diversity and ecosystem multifunctionality during alpine meadow degradation. Acta Agrestia Sinica, 29, 1053-1060. |
[王晓芬, 马源, 张格非, 林栋, 张德罡 (2021). 高寒草甸退化阶段植物群落多样性与系统多功能性的联系. 草地学报, 29, 1053-1060.]
DOI |
|
[60] | Wen L, Dong SK, Li YY, Wang XX, Li XY, Shi JJ, Dong QM (2013). The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau. Plant and Soil, 368, 329-340. |
[61] | Wen L, Dong SK, Zhu L, Shi JJ, Liu DM, Wang YL, Ma YS (2011). The effect of natural factors and disturbance intensity on spacial heterogeneity of plant diversity in alpine meadow. Acta Ecologica Sinica, 31, 1844-1854. |
[温璐, 董世魁, 朱磊, 施建军, 刘德梅, 王彦龙, 马玉寿 (2011). 环境因子和干扰强度对高寒草甸植物多样性空间分异的影响. 生态学报, 31, 1844-1854.] | |
[62] | Wiesmeier M, Barthold F, Blank B, Kögel-Knabner I (2011). Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant and Soil, 340, 7-24. |
[63] | Wright SJ (2005). Tropical forests in a changing environment. Trends in Ecology & Evolution, 20, 553-560. |
[64] | Xi NX, Zhang YY, Zhou SR (2023). Plant-soil feedbacks in community ecology. Chinese Journal of Plant Ecology, 47, 170-182. |
[席念勋, 张原野, 周淑荣 (2023). 群落生态学中的植物-土壤反馈研究. 植物生态学报, 47, 170-182.]
DOI |
|
[65] | Yan RR, Zhang Y, Xin XP, Wei ZJ, Wurenqiqige, Guo ML (2020). Effects of mowing disturbance on grassland plant functional groups and diversity in Leymus chinensis meadow steppe. Scientia Agricultura Sinica, 53, 2573-2583. |
[闫瑞瑞, 张宇, 辛晓平, 卫智军, 乌仁其其格, 郭美兰 (2020). 刈割干扰对羊草草甸草原植物功能群及多样性的影响. 中国农业科学, 53, 2573-2583.]
DOI |
|
[66] | Yang LM, Han M, Li JD (2001). Plant diversity change in grassland communities along a grazing disturbance gradient in the Northeast China transect. Acta Phytoecologica Sinica, 25, 110-114. |
[杨利民, 韩梅, 李建东 (2001). 中国东北样带草地群落放牧干扰植物多样性的变化. 植物生态学报, 25, 110-114.] | |
[67] | Yang W, Zheng ZM, Zheng C, Lu KH, Ding DW, Zhu JY (2018). Temporal variations in a phytoplankton community in a subtropical reservoir: an interplay of extrinsic and intrinsic community effects. Science of the Total Environment, 612, 720-727. |
[68] | Yang Y, Wei W, Wang L, Liu ZM (2023). Relationship between plant diversity, productivity and environmental factors at a transect scale in the dryland of China. Acta Ecologica Sinica, 43, 1563-1571. |
[杨永, 卫伟, 王琳, 刘泽漫 (2023). 中国旱区样带尺度植物多样性和生产力与环境因子的关系. 生态学报, 43, 1563-1571.] | |
[69] | Yang ZP, Minggagud H, Baoyin T, Li FY (2020). Plant production decreases whereas nutrients concentration increases in response to the decrease of mowing stubble height. Journal of Environmental Management, 253, 109745. DOI: 10.1016/j.jenvman.2019.109745. |
[70] | Yi XS, Li GS, Yin YY (2012). The impacts of grassland vegetation degradation on soil hydrological and ecological effects in the source region of the Yellow River—A case study in Junmuchang region of Maqin Country. Procedia Environmental Sciences, 13, 967-981. |
[71] | Yu ZH, Lyu GY, Wang XY, Xu XB, Jia DX, Wang CJ (2022). Effects of different grazing intensities on soil carbon and nitrogen and their stable isotopes in Inner Mongolian desert grasslands. Acta Agrestia Sinica, 30, 544-552. |
[于志慧, 吕广一, 王新雅, 徐学宝, 贾东璇, 王成杰 (2022). 放牧强度对内蒙古荒漠草原土壤碳氮及其稳定同位素的影响. 草地学报, 30, 544-552.]
DOI |
|
[72] | Yuan S, Fu HP, Wu XD, Xing A, Gan HJ, Yue XX (2017). Response of dominant desert rodent species to grazing disturbances: a structural equation modeling analysis. Acta Ecologica Sinica, 37, 4795-4806. |
[袁帅, 付和平, 武晓东, 兴安, 甘红军, 岳秀贤 (2017). 基于结构方程模型分析荒漠啮齿动物优势种对不同放牧干扰的响应. 生态学报, 37, 4795-4806.] | |
[73] |
Zavaleta ES, Hulvey KB (2004). Realistic species losses disproportionately reduce grassland resistance to biological invaders. Science, 306, 1175-1177.
PMID |
[74] | Zhang Q, Ma L, Zhang ZH, Xu WH, Zhou BR, Song MH, Qiao AH, Wang F, She YD, Yang XY, Guo J, Zhou HK (2019). Ecological restoration of degraded grassland in Qinghai- Tibet alpine region: degradation status, restoration measures, effects and prospects. Acta Ecologica Sinica, 39, 7441-7451. |
[张骞, 马丽, 张中华, 徐文华, 周秉荣, 宋明华, 乔安海, 王芳, 佘延娣, 杨晓渊, 郭婧, 周华坤 (2019). 青藏高寒区退化草地生态恢复:退化现状、恢复措施、效应与展望. 生态学报, 39, 7441-7451.] | |
[75] | Zhang R, Tian D, Chen HYH, Seabloom EW, Han G, Wang S, Yu G, Li Z, Niu S (2022). Biodiversity alleviates the decrease of grassland multifunctionality under grazing disturbance: a global meta-analysis. Global Ecology and Biogeography, 31, 155-167. |
[76] | Zhang WJ, Xue X, Peng F, You QG, Hao AH (2019). Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 20, e00774. DOI: 10.1016/j.gecco.2019.e00774. |
[77] |
Zhang Y, Hou LL, Yan RR, Xin XP (2020). Effects of grazing intensity on plant community characteristics and nutrient quality of herbage in a meadow steppe. Scientia Agricultura Sinica, 53, 2550-2561.
DOI |
[张宇, 侯路路, 闫瑞瑞, 辛晓平 (2020). 放牧强度对草甸草原植物群落特征及营养品质的影响. 中国农业科学, 53, 2550-2561.]
DOI |
|
[78] | Zhang Z, Li YH, Ding Y, Li F, Sun J, Li XL (2020). Responses of plant community diversity and functional community characteristics of typical grassland to grazing factors. Chinese Journal of Grassland, 42(5), 48-54. |
[张振, 李元恒, 丁勇, 李芳, 孙娟, 李西良 (2020). 典型草原群落及功能群物种多样性对放牧因素分解的响应. 中国草地学报, 42(5), 48-54.] | |
[79] | Zhao LP, Wang D, Liang FH, Liu Y, Wu GL (2019). Grazing exclusion promotes grasses functional group dominance via increasing of bud banks in steppe community. Journal of Environmental Management, 251, 109589. DOI: 10.1016/j.jenvman.2019.109589. |
[80] | Zhao N, Zhao XQ, Zhao L, Xu SX, Zou XY (2016). Progress in researches of the response of plant functional traits to grazing disturbance. Chinese Journal of Ecology, 35, 1916-1926. |
[赵娜, 赵新全, 赵亮, 徐世晓, 邹小艳 (2016). 植物功能性状对放牧干扰的响应. 生态学杂志, 35, 1916-1926.] | |
[81] | Zhu AM, Han GD, Kang J, Zhao K, Zhu Y, Wang ZW (2019). Effects of long-term grazing on characteristics of plant functional groups in Stipa breviflora desert steppe. Acta Agrestia Sinica, 27, 1459-1466. |
[朱爱民, 韩国栋, 康静, 赵坤, 朱毅, 王忠武 (2019). 长期放牧对短花针茅荒漠草原植物功能群特征的影响. 草地学报, 27, 1459-1466.]
DOI |
[1] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[2] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[5] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[8] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[9] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[10] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[11] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[12] | 黄侩侩, 胡刚, 庞庆玲, 张贝, 何业涌, 胡聪, 徐超昊, 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[13] | 宗宁, 石培礼, 赵广帅, 郑莉莉, 牛犇, 周天财, 侯阁. 降水量变化对藏北高寒草地养分限制的影响[J]. 植物生态学报, 2021, 45(5): 444-455. |
[14] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
[15] | 李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略[J]. 植物生态学报, 2020, 44(6): 642-653. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19