植物生态学报 ›› 2024, Vol. 48 ›› Issue (2): 171-179.DOI: 10.17521/cjpe.2023.0009 cstr: 32100.14.cjpe.2023.0009
茹雅倩1,2,*(), 薛建国2,*, 葛萍2,3, 李钰霖2,4, 李东旭1,2, 韩鹏2, 杨天润2,5, 储伟6, 陈章7, 张晓琳1,**(
), 李昂2,**(
), 黄建辉2,4
收稿日期:
2023-01-11
接受日期:
2023-05-30
出版日期:
2024-02-28
发布日期:
2024-02-28
通讯作者:
** (作者简介:
* 同等贡献
基金资助:
RU Ya-Qian1,2,*(), XUE Jian-Guo2,*, GE Ping2,3, LI Yu-Lin2,4, LI Dong-Xu1,2, HAN Peng2, YANG Tian-Run2,5, CHU Wei6, CHEN Zhang7, ZHANG Xiao-Lin1,**(
), LI Ang2,**(
), HUANG Jian-Hui2,4
Received:
2023-01-11
Accepted:
2023-05-30
Online:
2024-02-28
Published:
2024-02-28
Contact:
** (About author:
* Contributed equally to this work
Supported by:
摘要:
中国草地管理从应急性的围封禁牧, 逐步转向兼顾生产生态目标, 按照草畜平衡原则对放牧草地进行管理和利用。在草畜平衡载畜量下, 进一步通过科学精细的放牧管理, 实现草地的持续恢复和合理保育, 是当前草地生态系统管理的重要理论和实践问题。该研究在锡林郭勒典型草原, 以连续放牧、传统轮牧、高频轮牧为处理组, 围封不放牧为对照组, 展开为期两年的放牧实验, 以回答草畜平衡放牧强度下的高频轮牧是否更有利于维持草地植物群落结构的稳定和生产生态的协同优化。实验结果表明, 在草畜平衡条件下的高频轮牧管理, 通过延长草地的牧后恢复时间, 限制牲畜对植物物种的选择性采食, 能够提升羊草(Leymus chinensis)、针茅(Stipa spp.)等优质牧草的生物量及其在群落生物量中的占比, 同时促进成年绵羊的个体增长。该研究结果表明在草畜平衡载畜量条件下的高频轮牧管理, 能够促进草地群落植物功能群的优化, 也有利于草地生产和生态功能的协同。
茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响. 植物生态学报, 2024, 48(2): 171-179. DOI: 10.17521/cjpe.2023.0009
RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe. Chinese Journal of Plant Ecology, 2024, 48(2): 171-179. DOI: 10.17521/cjpe.2023.0009
图1 锡林郭勒盟高频轮牧实验小区分布示意图。CG, 连续放牧; CK, 围封不放牧; IG, 高频轮牧; TG, 传统轮牧。Block, 区组。
Fig. 1 Layout of plots of the experiment for intensive rotational grazing study in Xilin Gol League. CG, continuous grazing; CK, no grazing; IG, intensive rotational grazing; TG, traditional rotational grazing.
图2 不同放牧方式对植物群落生物量、丰富度、高度、盖度的影响(平均值±标准误)。CG, 连续放牧; CK, 围封不放牧; IG, 高频轮牧; TG, 传统轮牧。不同小写字母代表各处理间差异显著(p < 0.05)。
Fig. 2 Effects of different grazing managements on biomass, richness, height and coverage in plant communities (mean ± SE). CG, continuous grazing; CK, no grazing; IG, intensive rotational grazing; TG, traditional rotational grazing. Different lowercase letters indicate significant differences (p < 0.05).
图3 不同放牧方式对植物功能群生物量及其占比的影响(平均值±标准误)。CG, 连续放牧; CK, 围封不放牧; IG, 高频轮牧; TG, 传统轮牧。AB, 一、二年生植物; PB, 多年生丛生禾草; PF, 多年生杂类草; PR, 多年生根茎禾草; SS, 小灌木、半灌木。不同小写字母代表各处理间差异显著(p < 0.05)。
Fig. 3 Effects of different grazing managements on biomass and its proportion of plant functional groups (mean ± SE). CG, continuous grazing; CK, no grazing; IG, intensive rotational grazing; TG, traditional rotational grazing. AB, annuals and biennials; PB, perennial bunch grasses; PF, perennial forbs; PR, perennial rhizome grasses; SS, dwarf shrubs and semi-shrubs. Different lowercase letters indicate significant differences (p < 0.05).
图4 不同放牧方式对植物群落优势种生物量及其占比的影响(平均值±标准误)。CG, 连续放牧; CK, 围封不放牧; IG, 高频轮牧; TG, 传统轮牧。不同小写字母代表各处理间差异显著(p < 0.05)。
Fig. 4 Effects of different grazing managements on biomass and proportion of dominant species in plant communities (mean ± SE). CG, continuous grazing; CK, no grazing; IG, intensive rotational grazing; TG, traditional rotational grazing. Different lowercase letters indicate significant differences (p < 0.05).
图5 不同放牧方式对典型草原豆科、葱属、隐子草属植物生物量的影响(平均值±标准误)。CG, 连续放牧; CK, 围封不放牧; IG, 高频轮牧; TG, 传统轮牧。不同小写字母代表各处理间差异显著(p < 0.05)。
Fig. 5 Effects of different grazing managements on biomass of three indicative functional groups, Leguminosae, Allium spp. and Cleistogenes spp. in typical steppe (mean ± SE). CG, continuous grazing; CK, no grazing; IG, intensive rotational grazing; TG, traditional rotational grazing. Different lowercase letters indicate significant differences (p < 0.05).
图6 不同放牧方式对绵羊增加质量的影响(平均值±标准误)。CG, 连续放牧; IG, 高频轮牧; TG, 传统轮牧。组1, 绵羊初始体质量≥40 kg; 组2, 绵羊初始体质量<40 kg。不同小写字母代表各处理间差异显著(p < 0.05)。
Fig. 6 Effects of different grazing managements on the putting mass of sheep (mean ± SE). CG, continuous grazing; IG, intensive rotational grazing; TG, traditional rotational grazing. Group1, initial mass of sheep ≥ 40 kg; Group2, initial mass of sheep < 40 kg. Different lowercase letters indicate significant differences (p < 0.05).
[1] | Aarons SR, O’Connor CR, Hosseini HM, Gourley CJP (2009). Dung pads increase pasture production, soil nutrients and microbial biomass carbon in grazed dairy systems. Nutrient Cycling in Agroecosystems, 84, 81-92. |
[2] | Badgery WB (2017). Longer rest periods for intensive rotational grazing limit diet quality of sheep without enhancing environmental benefits. African Journal of Range & Forage Science, 34, 99-109. |
[3] | Badgery WB, Millar GD, Broadfoot K, Michalk DL, Cranney P, Mitchell D, van de Ven R (2017). Increased production and cover in a variable native pasture following intensive grazing management. Animal Production Science, 57, 1812-1823. |
[4] | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184. |
[5] |
Boone RB, Conant RT, Sircely J, Thornton PK, Herrero M (2018). Climate change impacts on selected global rangeland ecosystem services. Global Change Biology, 24, 1382-1393.
DOI PMID |
[6] | Briske DD, Bestelmeyer BT, Brown JR (2014). Savory’s unsubstantiated claims should not be confused with multipaddock grazing. Rangelands, 36, 39-42. |
[7] | Briske DD, Bestelmeyer BT, Brown JR, Fuhlendorf SD, Wayne PH (2013). The savory method can not green deserts or reverse climate change. Rangelands, 35, 72-74. |
[8] | Briske DD, Sayre NF, Huntsinger L, Fernandez-Gimenez M, Budd B, Derner JD (2011). Origin, persistence, and resolution of the rotational grazing debate: integrating human dimensions into rangeland research. Rangeland Ecology & Management, 64, 325-334. |
[9] | Calle Z, Murgueitio E, Chará J (2012). Integrating forestry, sustainable cattle-ranching and landscape restoration. Unasylva, 63, 31-40. |
[10] | Chapman DF, Parsons AJ, Cosgrove GP, Barker DJ, Marotti DM, Venning KJ, Rutter SM, Hill J, Thompson AN (2007). Impacts of spatial patterns in pasture on animal grazing behavior, intake, and performance. Crop Science, 47, 399-415. |
[11] | Cox F, Badgery WB, Kemp DR, Krebs G (2017). Seasonal diet selection by ewes grazing within contrasting grazing systems. Animal Production Science, 57, 1824-1836. |
[12] | Cutrim Jr. JA, Cavalcante ACR, Cândido MJD, Silva GL, Elvira Vieira Oliveira L, Vasconcelos ECG, Mesquita TMO (2013). Biomass flow in Tifton-85 bermudagrass canopy subjected to different management strategies under rotational grazing with dairy goats. Revista Brasileira de Zootecnia-Brazilian Journal of Animal Science, 42, 77-86. |
[13] | Dong SK, Yang MY, Ren JZ, Shang ZH, Zhao XY, Dong QM, Liu WT, Renqinduanzhi, Dou SY, Zhou XL, Tudanjia, Shi DJ (2020). Sustainable grassland management based on grazing system unit: concepts and models. Pratacultural Science, 37, 403-412. |
[董世魁, 杨明岳, 任继周, 尚占环, 赵昕月, 董全民, 刘文亭, 仁钦端治, 窦声云, 周学丽, 土旦加, 史德军 (2020). 基于放牧系统单元的草地可持续管理: 概念与模式. 草业科学, 37, 430-412.] | |
[14] | Dong YX, Li A, Xue JG, Pan QM, Huang JH (2021). Mobility loss and its restoration in China grasslands. Chinese Journal of Applied Ecology, 32, 406-411. |
[董寅肖, 李昂, 薛建国, 潘庆民, 黄建辉 (2021). 中国牧区草地移动性利用的丧失和重建. 应用生态学报, 32, 406-411.]
DOI |
|
[15] | Gao L, Zhu QF, Yan ZJ, Wang YQ, Hou XY, Dai YT (2017). Effects of grazing on plant biomass and the carbon density of vegetation and soil in the Artemisia ordosica shrubland of the Ordos Plateau. Acta Ecologica Sinica, 37, 3074-3083. |
[高丽, 朱清芳, 闫志坚, 王育青, 侯向阳, 戴雅婷 (2017). 放牧对鄂尔多斯高原油蒿草场生物量及植被-土壤碳密度的影响. 生态学报, 37, 3074-3083.] | |
[16] | Han GD, Li QF, Wei ZJ, Aotegen (2004). Response of intake and liveweight of sheep to grazing systems on a family ranch scale. Scientia Agricultura Sinica, 37, 744-750. |
[韩国栋, 李勤奋, 卫智军, 敖特根 (2004). 家庭牧场尺度上放牧制度对绵羊摄食和体重的影响. 中国农业科学, 37, 744-750.] | |
[17] | Hobbs RJ, Huenneke LF (1992). Disturbance, diversity, and invasion: implications for conservation. Conservation Biology, 6, 324-337. |
[18] |
Kemp DR, Han GD, Hou XY, Michalk DL, Hou FJ, Wu JP, Zhang YJ (2013). Innovative grassland management systems for environmental and livelihood benefits. Proceedings of the National Academy of Sciences of the United States of America, 110, 8369-8374.
DOI PMID |
[19] |
Lerner AM, Zuluaga AF, Chará J, Etter A, Searchinger T (2017). Sustainable cattle ranching in practice: moving from theory to planning in Colombia’s livestock sector. Environmental Management, 60, 176-184.
DOI PMID |
[20] | Li A, Chen S (2021). Loss of density dependence underpins decoupling of livestock population and plant biomass in intensive grazing systems. Ecological Applications, 31, e02450. DOI: 10.1002/eap.2450. |
[21] | Li A, Wang Y, Xue JG, Ren TT, Wei CZ, Tian QY, Bai WM, Bai YF, Huang JH, Jiang Y, Cheng YC, Sun HL, Xu ZW, Zhao YJ, Han XG (2019). Principles, practices and effects of ecological restoration in the wind-blown sand hazards of North China. Acta Ecologica Sinica, 39, 7452-7462. |
[李昂, 王扬, 薛建国, 任婷婷, 魏存争, 田秋英, 白文明, 白永飞, 黄建辉, 姜勇, 程玉臣, 孙海莲, 徐柱文, 赵玉金, 韩兴国 (2019). 北方风沙区生态修复的科学原理、工程实践和恢复效果. 生态学报, 39, 7452-7462.] | |
[22] | Mann C, Sherren K (2018). Holistic management and adaptive grazing: a trainers’ view. Sustainability, 10, 1848. DOI: 10.3390/su10061848. |
[23] | McCarthy B, Pierce KM, Delaby L, Brennan A, Fleming C, Horan B (2013). The effect of stocking rate and calving date on grass production, utilization and nutritive value of the sward during the grazing season. Grass and Forage Science, 68, 364-377. |
[24] | Moe SR, Wegge P (2008). Effects of deposition of deer dung on nutrient redistribution and on soil and plant nutrients on intensively grazed grasslands in lowland Nepal. Ecological Research, 23, 227-234. |
[25] | Papanastasis VP (2009). Restoration of degraded grazing lands through grazing management: Can it work? Restoration Ecology, 17, 441-445. |
[26] | Ren JZ (2012). Grazing, the basic form of grassland ecosystem and its transformation. Journal of Natural Resources, 27, 1259-1275. |
[任继周 (2012). 放牧, 草原生态系统存在的基本方式——兼论放牧的转型. 自然资源学报, 27, 1259-1275.]
DOI |
|
[27] | Savory A (1983). The savory grazing method or holistic resource management. Rangelands, 5, 155-159. |
[28] | Savory A, Parsons SD (1980). The Savory grazing method. Rangelands, 2, 234-237. |
[29] | Shen HH, Zhu YK, Zhao X, Geng XQ, Gao SQ, Fang JY (2016). Analysis of current grassland resources in China. Chinese Science Bulletin, 61, 139-154. |
[沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云 (2016). 中国草地资源的现状分析. 科学通报, 61, 139-154.] | |
[30] |
Wang L, Delgado-Baquerizo M, Wang D, Isbell F, Liu J, Feng C, Liu J, Zhong Z, Zhu H, Yuan X, Chang Q, Liu C (2019). Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proceedings of the National Academy of Sciences of the United States of America, 116, 6187-6192.
DOI PMID |
[1] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[2] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[3] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[4] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[5] | 苗百岭, 梁存柱, 史亚博, 梁茂伟, 刘钟龄. 降水变化对内蒙古典型草原地上生物量的影响[J]. 植物生态学报, 2019, 43(7): 557-565. |
[6] | 汤永康, 武艳涛, 武魁, 郭之伟, 梁存柱, 王敏杰, 常佩静. 放牧对草地生态系统服务和功能权衡关系的影响[J]. 植物生态学报, 2019, 43(5): 408-417. |
[7] | 闫宝龙, 王忠武, 屈志强, 王静, 韩国栋. 围封对内蒙古典型草原与荒漠草原植被-土壤系统碳密度的影响[J]. 植物生态学报, 2018, 42(3): 327-336. |
[8] | 李晋波, 姚楠, 赵英, 范庭, 张建国, 兰志龙, 易军, 司炳成. 不同放牧条件下锡林郭勒典型草原土壤水分分布特征及降水入渗估算[J]. 植物生态学报, 2018, 42(10): 1033-1042. |
[9] | 乔丽青, 田大栓, 万宏伟, 宝音陶格涛, 潘庆民. 不同载畜率下瓣蕊唐松草的生长和繁殖对策[J]. 植物生态学报, 2014, 38(8): 878-887. |
[10] | 李文怀, 郑淑霞, 白永飞. 放牧强度和地形对内蒙古典型草原物种多度分布的影响[J]. 植物生态学报, 2014, 38(2): 178-187. |
[11] | 杨婧, 褚鹏飞, 陈迪马, 王明玖, 白永飞. 放牧对内蒙古典型草原α、β和γ多样性的影响机制[J]. 植物生态学报, 2014, 38(2): 188-200. |
[12] | 白雪, 程军回, 郑淑霞, 詹书侠, 白永飞. 典型草原建群种羊草对氮磷添加的生理生态响应[J]. 植物生态学报, 2014, 38(2): 103-115. |
[13] | 马建军, 姚虹, 冯朝阳, 张树礼. 内蒙古典型草原区3种不同草地利用模式下植物功能群及其多样性的变化[J]. 植物生态学报, 2012, 36(1): 1-9. |
[14] | 刘珏宏, 高慧, 张丽红, 陈丽萍, 赵念席, 高玉葆. 内蒙古锡林郭勒草原大针茅-克氏针茅群落的种间关联特征分析[J]. 植物生态学报, 2010, 34(9): 1016-1024. |
[15] | 张晓娜, 哈达朝鲁, 潘庆民. 刈割干扰下内蒙古草原两种丛生禾草繁殖策略的适应性调节[J]. 植物生态学报, 2010, 34(3): 253-262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19