植物生态学报 ›› 2021, Vol. 45 ›› Issue (8): 818-833.DOI: 10.17521/cjpe.2020.0373
所属专题: 植物功能性状
张景慧1,2,3*, 王铮1*, 黄永梅4,**(), 陈慧颖5, 李智勇1,2,3, 梁存柱1,2,3
收稿日期:
2020-11-12
修回日期:
2021-04-02
出版日期:
2021-08-20
发布日期:
2021-04-28
通讯作者:
黄永梅
作者简介:
** ymhuang@bnu.edu.cn基金资助:
ZHANG Jing-Hui1,2,3*, WANG Zheng1*, HUANG Yong-Mei4,**(), CHEN Hui-Ying5, LI Zhi-Yong1,2,3, LIANG Cun-Zhu1,2,3
Received:
2020-11-12
Revised:
2021-04-02
Online:
2021-08-20
Published:
2021-04-28
Contact:
HUANG Yong-Mei
Supported by:
摘要:
当外界环境发生变化后植物能够改变自身功能性状及时调整适应策略, 因此植物功能性状能够有效地反映植物对草地利用变化的响应, 然而在内蒙古草原从植物功能性状角度开展草地利用方式影响的研究略少。该研究以内蒙古典型草原大针茅(Stipa grandis)、羊草(Leymus chinensis)、糙隐子草(Cleistogenes squarrosa)和冷蒿(Artemisia frigida) 4种主要优势种为研究对象, 探讨在长期自由放牧、割草、短期围封和长期无干扰的影响下优势种植物功能性状的差异, 以期从功能性状视角, 揭示植物在受到外界干扰后的适应策略, 旨为天然草地的可持续管理提供基础数据支持和科学依据。结果表明: 1)除糙隐子草外, 在长期放牧后内蒙古典型草原优势植物植株高度、根长和植物碳氮含量降低, 这些性状的变化能够使植物个体小型化, 适口性降低, 表明植物通过逃避放牧的策略适应长期自由放牧的干扰; 在割草管理方式下, 优势种的高度和比叶面积有增加的趋势, 其中冷蒿的氮含量对割草响应最敏感, 其根、茎、叶中的氮含量均在割草样地最低; 围封和长期无干扰处理下植物的碳氮含量增加, 表明在干扰强度降低后, 植物通过功能性状的改变从资源获取策略向资源储藏策略转变。2)对优势种功能性状集合分析表明, 糙隐子草具有较低的植株高度和较高的比叶面积, 冷蒿具有较高的木质素含量和氮含量, 这些性状能够使两种植物被家畜采食量减少, 并保证其具有较强的再生能力, 这可能是糙隐子草和冷蒿耐牧的原因; 大针茅具有最高的植株高度、最大的叶片干物质含量, 以及最高的茎、叶纤维素含量, 说明大针茅是非常典型的竞争物种, 在干扰较低的条件下, 大针茅采取竞争策略对其他物种产生较大的竞争压力可能是其占优势的重要原因。
张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响. 植物生态学报, 2021, 45(8): 818-833. DOI: 10.17521/cjpe.2020.0373
ZHANG Jing-Hui, WANG Zheng, HUANG Yong-Mei, CHEN Hui-Ying, LI Zhi-Yong, LIANG Cun-Zhu. Effects of grassland utilization on the functional traits of dominant plants in a temperate typical steppe. Chinese Journal of Plant Ecology, 2021, 45(8): 818-833. DOI: 10.17521/cjpe.2020.0373
图1 内蒙古温带典型草原研究区实验期间月降水量和月平均气温的变化。
Fig. 1 Variations of mean monthly air temperature and monthly precipitation of the study site area in temperate typical grasslands of Nei Mongol in 2011-2014.
物种 Species | 相对生物量 Relative biomass | p | |||
---|---|---|---|---|---|
长期自由放牧 Long-term free grazing | 割草 Mowing | 短期围封 Short-term enclosed | 长期无干扰 Long-term reservation | ||
大针茅 Stipa grandis | 9.89 ± 2.58b | 7.20 ± 2.70b | 5.84 ± 1.99b | 77.80 ± 4.77a | <0.001 |
羊草 Leymus chinensis | 36.00 ± 6.88a | 12.27 ± 2.63ab | 29.21 ± 15.40a | 2.56 ± 1.93b | 0.004 |
糙隐子草 Cleistogenes squarrosa | 32.55 ± 6.65a | 35.13 ± 2.26a | 21.39 ± 5.26a | 3.53 ± 1.95b | <0.001 |
冷蒿 Artemisia frigida | 0.31 ± 0.31b | 24.94 ± 8.24a | 32.98 ± 11.02a | 3.32 ± 1.65b | 0.002 |
表1 测定植物功能性状前(2011年)各样地优势物种相对生物量(平均值±标准误)
Table 1 Relative biomass of dominant species in each sites before measuring plant functional traits (mean ± SE)
物种 Species | 相对生物量 Relative biomass | p | |||
---|---|---|---|---|---|
长期自由放牧 Long-term free grazing | 割草 Mowing | 短期围封 Short-term enclosed | 长期无干扰 Long-term reservation | ||
大针茅 Stipa grandis | 9.89 ± 2.58b | 7.20 ± 2.70b | 5.84 ± 1.99b | 77.80 ± 4.77a | <0.001 |
羊草 Leymus chinensis | 36.00 ± 6.88a | 12.27 ± 2.63ab | 29.21 ± 15.40a | 2.56 ± 1.93b | 0.004 |
糙隐子草 Cleistogenes squarrosa | 32.55 ± 6.65a | 35.13 ± 2.26a | 21.39 ± 5.26a | 3.53 ± 1.95b | <0.001 |
冷蒿 Artemisia frigida | 0.31 ± 0.31b | 24.94 ± 8.24a | 32.98 ± 11.02a | 3.32 ± 1.65b | 0.002 |
图2 不同土地利用方式下4种植物形态植物功能性状(平均值±标准误)。E, 短期围封; G, 长期自由放牧; M, 割草; R, 长期无干扰。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 2 Comparisons of morphological traits of different species under different grassland uses (mean ± SE). E, short-term enclosed; G, long-term free grazing; M, mowing; R, long-term reservation. Different lowercase letters indicate significant differences among treatments (p < 0.05).
图3 不同土地利用方式下4种植物碳氮含量(平均值±标准误)。E, 短期围封; G, 长期自由放牧; M, 割草; R, 长期无干扰。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 3 Comparisons of carbon and nitrogen concentration of different species under different grassland uses (mean ± SE). E, short-term enclosed; G, long-term free grazing; M, mowing; R, long-term reservation. Different lowercase letters indicate significant differences among treatments (p < 0.05).
图4 不同土地利用方式下4种植物纤维素和木质素含量(平均值±标准误)。E, 短期围封; G, 长期自由放牧; M, 割草; R, 长期无干扰。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 4 Comparisons of cellulose and lignin concentration of different species under different grassland uses (mean ± SE). E, short-term enclosed; G, long-term free grazing; M, mowing; R, long-term reservation. Different lowercase letters indicate significant differences among treatments (p < 0.05).
图5 长期自由放牧(G)、割草(M)与短期围封(E)下大针茅(Stipa grandis)、羊草(Leymus chinensis)、糙隐子草(Cleistogenes squarrosa)、冷蒿(Artemisia frigida)功能性状可塑性指数(PI)变化程度。LCC, 叶碳含量; LCE, 叶纤维素含量; LDMC, 叶片干物质含量; LLI, 叶木质素含量; LNC, 叶氮含量; RCC, 根碳含量; RCE, 根纤维素含量; RL, 根长; RLI, 根木质素含量; RNC, 根氮含量; R/S, 根冠比; SCC, 茎碳含量; SCE, 茎纤维素含量; S/L, 茎叶比; SLA, 比叶面积; SLI, 茎木质素含量; SNC, 茎氮含量; VH, 植株高度。
Fig. 5 Changes in the plasticity index (PI) of functional traits of Stipa grandis, Leymus chinensis, Cleistogenes squarrosa and Artemisia frigida under long-term free grazing (G), mowing (M) and short-term enclosure (E) treatments. LCC, leaf carbon concentration; LCE, leaf cellulose concentration; LDMC, leaf dry matter concentration; LLI, leaf lignin concentration; LNC, leaf nitrogen concentration; RCC, root carbon concentration; RCE, root cellulose concentration; RL, root length concentration; RLI, root lignin concentration; RNC, root nitrogen concentration; R/S, root:shoot ratio; SCC, stem carbon concentration; SCE, stem cellulose concentration; S/L, stem:leaf ratio; SLA, specific leaf area; SLI, stem lignin concentration; SNC, stem nitrogen concentration; VH, vegetation height.
图6 大针茅(Stipa grandis)、羊草(Leymus chinensis)、糙隐子草(Cleistogenes squarrosa)、冷蒿(Artemisia frigida)功能性状的主成分分析(PCA)。LCC, 叶碳含量; LCE, 叶纤维素含量; LDMC, 叶片干物质含量; LLI, 叶木质素含量; LNC, 叶氮含量; RCC, 根碳含量; RCE, 根纤维素含量; RL, 根长; RLI, 根木质素含量; RNC, 根氮含量; R/S, 根冠比; SCC, 茎碳含量; SCE, 茎纤维素含量; S/L, 茎叶比; SLA, 比叶面积; SLI, 茎木质素含量; SNC, 茎氮含量; VH, 植株高度。
Fig. 6 Principal component analysis (PCA) of functional traits of Stipa grandis, Leymus chinensis, Cleistogenes squarrosa and Artemisia frigida. LCC, leaf carbon concentration; LCE, leaf cellulose concentration; LDMC, leaf dry matter concentration; LLI, leaf lignin concentration; LNC, leaf nitrogen concentration; RCC, root carbon concentration; RCE, root cellulose concentration; RL, root length; RLI, root lignin concentration; RNC, root nitrogen concentration; R/S, root:shoot ratio; SCC, stem carbon concentration; SCE, stem cellulose concentration; S/L, stem:leaf ratio; SLA, specific leaf area; SLI, stem lignin concentration; SNC, stem nitrogen concentration; VH, vegetation height.
植物功能性状 Plant functional trait | 大针茅 Stipa grandis | 羊草 Leymus chinensis | 糙隐子草 Cleistogenes squarrosa | 冷蒿 Artemisia frigida | F | p |
---|---|---|---|---|---|---|
比叶面积 SLA (m2·kg-1) | 8.04 ± 0.23c | 9.14 ± 0.41c | 15.80 ± 0.83a | 14.02 ± 0.40b | 42.85 | <0.001 |
叶片干物质含量 LDMC (mg·g-1) | 498.11 ± 4.79a | 437.91 ± 7.55b | 446.91 ± 5.61b | 337.67 ± 6.70c | 115.03 | <0.001 |
植株高度 VH (cm) | 90.69 ± 6.57a | 32.74 ± 3.08b | 15.63 ± 0.83c | 29.27 ± 2.59b | 73.51 | <0.001 |
根长 RL (cm) | 15.36 ± 0.92ab | 13.50 ± 1.47b | 17.44 ± 1.00a | 11.62 ± 1.85b | 3.35 | 0.031 |
根冠比 R/S | 1.74 ± 0.37b | 0.72 ± 0.13b | 3.40 ± 0.63a | 0.98 ± 0.12b | 10.32 | <0.001 |
茎叶比 S/L | 0.69 ± 0.41b | 0.34 ± 0.06c | 0.97 ± 0.16a | 0.94 ± 0.16a | 2.32 | 0.094 |
根碳含量 RCC (mg·g-1) | 213.91 ± 18.41d | 327.48 ± 15.84b | 285.26 ± 10.01c | 382.30 ± 9.58a | 25.81 | <0.001 |
茎碳含量 SCC (mg·g-1) | 430.74 ± 6.61b | 420.99 ± 4.37bc | 409.31 ± 4.90c | 452.30 ± 2.01a | 14.63 | <0.001 |
叶碳含量 LCC (mg·g-1) | 443.07 ± 1.81ab | 433.98 ± 3.34b | 415.68 ± 8.34c | 449.56 ± 2.72a | 9.48 | <0.001 |
根氮含量 RNC (mg·g-1) | 5.43 ± 0.56b | 5.95 ± 0.52ab | 6.11 ± 0.29ab | 6.95 ± 0.51a | 1.70 | 0.190 |
茎氮含量 SNC (mg·g-1) | 5.28 ± 0.45c | 6.75 ± 0.51bc | 10.87 ± 0.71a | 6.99 ± 0.45b | 19.50 | <0.001 |
叶氮含量 LNC (mg·g-1) | 14.21 ± 0.62c | 17.61 ± 0.91b | 16.05 ± 0.99bc | 23.02 ± 0.88a | 19.32 | <0.001 |
根纤维素含量 RCE (%) | 12.43 ± 1.20c | 25.17 ± 0.96a | 16.75 ± 1.22b | 24.70 ± 2.01a | 19.67 | <0.001 |
茎纤维素含量 SCE (%) | 34.17 ± 1.61a | 31.25 ± 0.69ab | 27.86 ± 0.52b | 29.93 ± 2.30ab | 2.30 | 0.096 |
叶纤维素含量 LCE (%) | 25.31 ± 0.29a | 25.76 ± 0.62a | 25.94 ± 0.51a | 19.74 ± 1.05b | 18.41 | <0.001 |
根木质素含量 RLI (%) | 11.47 ± 1.38b | 11.64 ± 0.64b | 14.00 ± 1.38b | 21.42 ± 1.62a | 12.71 | <0.001 |
茎木质素含量 SLI (%) | 8.24 ± 0.45b | 5.06 ± 0.58c | 5.38 ± 0.70c | 21.59 ± 2.54a | 29.43 | <0.001 |
叶木质素含量 LLI (%) | 5.47 ± 0.28b | 4.27 ± 0.29c | 3.01 ± 0.26d | 10.64 ± 1.17a | 35.53 | <0.001 |
表2 4种优势植物功能性状统计分析(平均值±标准误)
Table 2 Values of different functional traits of four dominant species (mean ± SE)
植物功能性状 Plant functional trait | 大针茅 Stipa grandis | 羊草 Leymus chinensis | 糙隐子草 Cleistogenes squarrosa | 冷蒿 Artemisia frigida | F | p |
---|---|---|---|---|---|---|
比叶面积 SLA (m2·kg-1) | 8.04 ± 0.23c | 9.14 ± 0.41c | 15.80 ± 0.83a | 14.02 ± 0.40b | 42.85 | <0.001 |
叶片干物质含量 LDMC (mg·g-1) | 498.11 ± 4.79a | 437.91 ± 7.55b | 446.91 ± 5.61b | 337.67 ± 6.70c | 115.03 | <0.001 |
植株高度 VH (cm) | 90.69 ± 6.57a | 32.74 ± 3.08b | 15.63 ± 0.83c | 29.27 ± 2.59b | 73.51 | <0.001 |
根长 RL (cm) | 15.36 ± 0.92ab | 13.50 ± 1.47b | 17.44 ± 1.00a | 11.62 ± 1.85b | 3.35 | 0.031 |
根冠比 R/S | 1.74 ± 0.37b | 0.72 ± 0.13b | 3.40 ± 0.63a | 0.98 ± 0.12b | 10.32 | <0.001 |
茎叶比 S/L | 0.69 ± 0.41b | 0.34 ± 0.06c | 0.97 ± 0.16a | 0.94 ± 0.16a | 2.32 | 0.094 |
根碳含量 RCC (mg·g-1) | 213.91 ± 18.41d | 327.48 ± 15.84b | 285.26 ± 10.01c | 382.30 ± 9.58a | 25.81 | <0.001 |
茎碳含量 SCC (mg·g-1) | 430.74 ± 6.61b | 420.99 ± 4.37bc | 409.31 ± 4.90c | 452.30 ± 2.01a | 14.63 | <0.001 |
叶碳含量 LCC (mg·g-1) | 443.07 ± 1.81ab | 433.98 ± 3.34b | 415.68 ± 8.34c | 449.56 ± 2.72a | 9.48 | <0.001 |
根氮含量 RNC (mg·g-1) | 5.43 ± 0.56b | 5.95 ± 0.52ab | 6.11 ± 0.29ab | 6.95 ± 0.51a | 1.70 | 0.190 |
茎氮含量 SNC (mg·g-1) | 5.28 ± 0.45c | 6.75 ± 0.51bc | 10.87 ± 0.71a | 6.99 ± 0.45b | 19.50 | <0.001 |
叶氮含量 LNC (mg·g-1) | 14.21 ± 0.62c | 17.61 ± 0.91b | 16.05 ± 0.99bc | 23.02 ± 0.88a | 19.32 | <0.001 |
根纤维素含量 RCE (%) | 12.43 ± 1.20c | 25.17 ± 0.96a | 16.75 ± 1.22b | 24.70 ± 2.01a | 19.67 | <0.001 |
茎纤维素含量 SCE (%) | 34.17 ± 1.61a | 31.25 ± 0.69ab | 27.86 ± 0.52b | 29.93 ± 2.30ab | 2.30 | 0.096 |
叶纤维素含量 LCE (%) | 25.31 ± 0.29a | 25.76 ± 0.62a | 25.94 ± 0.51a | 19.74 ± 1.05b | 18.41 | <0.001 |
根木质素含量 RLI (%) | 11.47 ± 1.38b | 11.64 ± 0.64b | 14.00 ± 1.38b | 21.42 ± 1.62a | 12.71 | <0.001 |
茎木质素含量 SLI (%) | 8.24 ± 0.45b | 5.06 ± 0.58c | 5.38 ± 0.70c | 21.59 ± 2.54a | 29.43 | <0.001 |
叶木质素含量 LLI (%) | 5.47 ± 0.28b | 4.27 ± 0.29c | 3.01 ± 0.26d | 10.64 ± 1.17a | 35.53 | <0.001 |
[1] | Ansquer P, Duru M, Theau JP, Cruz P (2009). Functional traits as indicators of fodder provision over a short time scale in species-rich grasslands. Annals of Botany, 103, 117-126. |
[2] | AOAC (2000). AOAC official method 973.18 fiber (acid detergent) and lignin (H2SO4) in animal feed//Horwitz, Wed. Official Methods of Analysis of AOAC International. 17th ed. Association of Official Analytical Chemists, Gaithersburg, USA. |
[3] | Austin AT, Ballaré CL (2010). Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 107, 4618-4622. |
[4] | Bai YF, Wu JG, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG (2007). Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology, 44, 1023-1034. |
[5] | Bao YJ, Cao M, Li ZH, Guo P, Zhang J, Qin J (2019). A comparative study of the response of Leymus chinensis and Stipa grandis root characteristics to moisture gradients. Acta Ecologica Sinica, 39, 1063-1070. |
[ 鲍雅静, 曹明, 李政海, 郭鹏, 张靖, 秦洁 (2019). 羊草与大针茅根系构型对水分梯度响应的比较研究. 生态学报, 39, 1063-1070.] | |
[6] | Chen DM, Zheng SX, Shan YM, Taube F, Bai YF (2013). Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe. Functional Ecology, 27, 273-281. |
[7] | Chen HY, Zhang JH, Huang YM, Gong JR (2014). Traits related to carbon sequestration of common plant species in a Stipa grandis steppe in Nei Mongol under different land-uses. Chinese Journal of Plant Ecology, 38, 821-832. |
[ 陈慧颖, 张景慧, 黄永梅, 龚吉蕊 (2014). 内蒙古大针茅草原常见植物在不同土地利用方式下的固碳相关属性. 植物生态学报, 38, 821-832.] | |
[8] | Cingolani AM, Posse G, Collantes MB (2005). Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. Journal of Applied Ecology, 42, 4250-4259. |
[9] | Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998). Modulation of diversity by grazing and mowing in native tallgrass prairie. Science, 280, 745-747. |
[10] | Cornelissen JHC, Diez PC, Hunt R (1996). Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. Journal of Ecology, 84, 755-765. |
[11] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, Heijden MGAVD, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[12] | Daorina, Song YT, Wu yunna, Huo GW, Wang XM, Xu ZC (2016). Response of plant leaf traits to grazing intensity in Stipa krylovii steppe. Chinese Journal of Applied Ecology, 27, 2231-2238. |
[ 道日娜, 宋彦涛, 乌云娜, 霍光伟, 王晓朦, 徐志超 (2016). 克氏针茅草原植物叶片性状对放牧强度的响应. 应用生态学报, 27, 2231-2238.] | |
[13] | Díaz S, Cabido M (1997). Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science, 8, 463-474. |
[14] | Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, et al. (2004). The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295-304. |
[15] | Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171. |
[16] | Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing—A global synthesis. Global Change Biology, 13, 313-341. |
[17] | Díaz S, Noy-Meir I, Cabido M (2001). Can grazing response of herbaceous plants be predicted from simple vegetative traits? Journal of Applied Ecology, 38, 497-508. |
[18] | Fan YJ (2013). Effects of Fencing and Grazing on Plant Morphology, Community Characteristics and Carbon Balance of Kobresia pygmaea Meadow in the Three Headwater Resource Regions. PhD dissertation, Gansu Agricultural University, Lanzhou. |
[ 范月君 (2013). 围栏与放牧对三江源区高山嵩草草甸植物形态、群落特征及碳平衡的影响. 博士学位论文, 甘肃农业大学, 兰州.] | |
[19] | Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, et al. (2010). Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic and Applied Ecology, 11, 473-485. |
[20] | Frenette-Dussault C, Shipley B, Léger JF, Meziane D, Hingrat Y (2012). Functional structure of an arid steppe plant community reveals similarities with Grimeʼs C-S-R theory. Journal of Vegetation Science, 23, 208-222. |
[21] | Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637. |
[22] | Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas M-L (2001). Consistency of species ranking based on functional leaf traits. New Phytologist, 152, 69-83. |
[23] | Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, et al. (2007). Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Annals of Botany, 99, 967-985. |
[24] | Grime JP (1974). Vegetation classification by reference to strategies. Nature, 250, 26-31. |
[25] | Grime JP (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 1169-1194. |
[26] | He NP, Liu CC, Tian M, Li ML, Yang H, Yu GR, Guo DL, Smith MD, Yu Q, Hou JH (2018). Variation in leaf anatomical traits from tropical to cold-temperate forests and linkage to ecosystem functions. Functional Ecology, 32, 10-19. |
[27] | He NP, Liu CC, Zhang JH, Xu L, Yu GR (2018). Perspectives and challenges in plant traits: from organs to communities. Acta Ecologica Sinica, 38, 6787-6796. |
[ 何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞 (2018). 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 38, 6787-6796.] | |
[28] | Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K (1999). Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos, 85, 282-294. |
[29] | Hou DJ, Lu SZ, Wang J, Guo K (2020). Response of aboveground plant functional traits of Leymus chinensis to litter accumulation in fenced grasslands. Acta Ecologica Sinica, 40, 6522-6531. |
[ 侯东杰, 陆帅志, 王静, 郭柯 (2020). 典型草原围封后羊草地上功能性状对枯落物累积的响应. 生态学报, 40, 6522-6531.] | |
[30] | Hou LL, Yan RR, Zhang Y, Xin XP (2020). Effects of grazing intensity on functional traits of Leymus chinensis in meadow steppe. Scientia Agricultura Sinica, 53, 2562-2572. |
[ 侯路路, 闫瑞瑞, 张宇, 辛晓平 (2020). 放牧强度对草甸草原羊草功能性状的影响. 中国农业科学, 53, 2562-2572.] | |
[31] | Ilmarinen K, Mikola J, Nissinen K, Vestberg M (2009). Role of soil organisms in the maintenance of species-rich seminatural grasslands through mowing. Restoration Ecology, 17, 78-88. |
[32] | Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032. |
[ 金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.] | |
[33] | Kattge J, Diaz S, Lavorel S, Prentice C, Leadley P, Boenisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, et al. (2011). TRY—A global database of plant traits. Global Change Biology, 17, 2905-2935. |
[34] | Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D, Girel J, Pellet G, Douzet R (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99, 135-147. |
[35] | Li JH, Li ZQ, Wang G (2003). Effect of different grazing intensities on the nutrient contents of Artemisia frigida and Potentilla acaulis. Acta Prataculturae Sinica, 12, 30-35. |
[ 李金花, 李镇清, 王刚 (2003). 不同放牧强度对冷蒿和星毛委陵菜养分含量的影响. 草业学报, 12, 30-35.] | |
[36] | Li XL, Hou XY, Wu XH, Sarula, Ji L, Chen HJ, Liu ZY, Ding Y (2014). Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe. Chinese Journal of Plant Ecology, 38, 440-451. |
[ 李西良, 侯向阳, 吴新宏, 萨茹拉, 纪磊, 陈海军, 刘志英, 丁勇 (2014). 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 38, 440-451.] | |
[37] | Li YH (1994). Research on the grazing degradation model of the main steppe rangelands in Inner Mongolia and some considerations for the establishment of a comput-erized rangeland monitoring system. Acta Phytoecologica Sinica, 18, 68-79. |
[ 李永宏 (1994). 内蒙古草原草场放牧退化模式研究及退化监测专家系统雏议. 植物生态学报, 18, 68-79.] | |
[38] | Liu WT, Wei ZJ, Lv SJ, Wang TL, Zhang S, Hai S (2017). Effect of grazing on Stipa breviflora age dynamics and leaf traits. Acta Prataculturae Sinica, 26, 63-71. |
[ 刘文亭, 卫智军, 吕世杰, 王天乐, 张爽, 海松 (2017). 放牧调控对短花针茅种群年龄及叶性状的影响. 草业学报, 26, 63-71.] | |
[39] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica Vitae, 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[40] | Liu ZL, Wang W, Hao DY, Liang CZ (2002). Probes on the degeneration and recovery succession mechanisms of Inner Mongolia steppe. Journal of Arid Land Resources and Environment, 16, 84-91. |
[ 刘钟龄, 王炜, 郝敦元, 梁存柱 (2002). 内蒙古草原退化与恢复演替机理的探讨. 干旱区资源与环境, 16, 84-91.] | |
[41] | Ma JJ, Yao H, Feng ZY, Zhang SL (2012). Changes in plant functional groups and species diversity under three grassland using modes in typical grassland area of Inner Mongolia, China. Chinese Journal of Plant Ecology, 36, 1-9. |
[ 马建军, 姚虹, 冯朝阳, 张树礼 (2012). 内蒙古典型草原区3种不同草地利用模式下植物功能群及其多样性的变化. 植物生态学报, 36, 1-9.] | |
[42] | Melillo JM, Aber JD, Muratore JF (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626. |
[43] | Meziane D, Shipley B (1999). Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant, Cell & Environment, 22, 447-459. |
[44] | Mooney KA, Halitschke R, Kessler A, Agrawal AA (2010). Evolutionary trade-offs in plants mediate the strength of trophic cascades. Science, 327, 1642-1644. |
[45] | Odum EP (1969). The strategy of ecosystem development. Science, 164, 262-270. |
[46] | Pérez-Harguindeguy N, Díaz S, Garnier E, Jaureguiberry P, Poorter L, ter Steege H, Cornelissen JHC (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
[47] | Pérez-Harguindeguy N, Díaz S, Vendramini F, Cornelissen JHC, Gurvich DE, Cabido M (2003). Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecology, 28, 642-650. |
[48] | Poorter H, Garnier E (2007). Ecological significance of inherent variation in relative growth rate and its components//Pugnatre FI, Valladares F. Functional Plant Ecology. 2nd ed. CRC Press, London. |
[49] | Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80, 1955-1969. |
[50] | Reich PB, Walters MB, Ellsworth DS (1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365-392. |
[51] | Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734. |
[52] | Ryser P, Urbas P (2000). Ecological significance of leaf life span among Central European grass species. Oikos, 91, 41-50. |
[53] | Sabaté S, Sala A, Gracia CA (1995). Nutrient content in Quercus ilex canopies: seasonal and spatial variation within a catchment. Plant and Soil, 168, 297-304. |
[54] | Sage RF, Wedin DA, Li M (1999). The biogeography of C4 photosynthesis: patterns and controlling factors//Sage RF, Monson RK. C4 Plant Biology. Academic Press, San Diego, USA. 313-373. |
[55] | Saugier B (2001). Plant strategies, vegetation processes, and ecosystem properties. Plant Science, 161, 813. |
[56] | Saura-Mas S, Lloret F (2007). Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies. Annals of Botany, 99, 545-554. |
[57] | Shi SB, Li HM, Wang XY, Yue XG, Xu WH, Chen GC (2006). Comparative studies of photosynthetic characteristics in typical alpine plants of the Qinghai-Tibet Plateau. Journal of Plant Ecology (Chinese Version), 30, 40-46. |
[ 师生波, 李惠梅, 王学英, 岳向国, 徐文华, 陈桂琛 (2006). 青藏高原几种典型高山植物的光合特性比较. 植物生态学报, 30, 40-46.] | |
[58] | Socher SA, Prati D, Boch S, Müller J, Baumbach H, Gockel S, Hemp A, Schöening I, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze ED, Weisser WW, Fischer M (2013). Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. Basic and Applied Ecology, 14, 126-136. |
[59] | Sun M, Tian K, Zhang Y, Wang H, Guan DX, Yue HT (2017). Research on leaf functional traits and their environmental adaptation. Plant Science Journal, 35, 940-949. |
[ 孙梅, 田昆, 张贇, 王行, 管东旭, 岳海涛 (2017). 植物叶片功能性状及其环境适应研究. 植物科学学报, 35, 940-949.] | |
[60] | Talbot JM, Treseder KK (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology, 93, 345-354. |
[61] | Taylor BR, Parsons WFJ, Parkinson D (1989). Decomposition of Populus tremuloides leaf litter accelerated by addition of Alnuscrispa litter. Canadian Journal of Forest Research, 19, 674-679. |
[62] | Tong C, Wu J, Yong S, Yang J, Yong W (2004). A landscape- scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments, 59, 133-149. |
[63] | Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81, 1925-1936. |
[64] | van Soest PJ (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemists, 46, 829-835. |
[65] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[66] | Wan H, Bai Y, Schönbach P, Gierus M, Taube F (2011). Effects of grazing management system on plant community structure and functioning in a semiarid steppe: scaling from species to community. Plant and Soil, 340, 215-226. |
[67] | Wang W, Liang CZ, Liu ZL, Hao DY (2000). Analysis of the palnt individual behaviour during the degradation and restoring succession in steppe community. Acta Phytoecologica Sinica, 24, 268-274. |
[ 王炜, 梁存柱, 刘钟龄, 郝敦元 (2000). 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报, 24, 268-274.] | |
[68] | Wang W, Liu ZL, Hao DY, Liang CZ (1996). Research on the restoring succession of the degenerated grassland in Inner Mongolia—I. Basic characteristics and driving force for restoration of the degenerated grassland. Acta Phytoecologica Sinica, 20, 449-459. |
[ 王炜, 刘钟龄, 郝敦元, 梁存柱 (1996). 内蒙古草原退化群落恢复演替的研究——I. 退化草原的基本特征与恢复演替动力. 植物生态学报, 20, 449-459.] | |
[69] | Westoby M (1999). The LHS strategy scheme in relation to grazing and fire//Eldridge D, Freudenberger D. People and Rangelands Building the Future. VI International Rangeland Congress, Townsville, Australia. |
[70] | Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162. |
[71] | Wright IA, Jones JR, Parsons AJ (2001). Effects of grazing by sheep or cattle on sward structure and subsequent performance of weaned lambs. Grass and Forage Science, 56, 138-150. |
[72] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[73] | Wu GL, Du GZ, Liu ZH, Thirgood S (2009). Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 319, 115-126. |
[74] | Xing XQ, Hao BT, Qi LX, Zhang L, Baoyin TGT (2019). Effect of grazing on functional traits of Stipa krylovii. Ecology and Environmental Sciences, 28, 57-64. |
[ 邢小青, 郝匕台, 齐丽雪, 张璐, 宝音陶格涛 (2019). 放牧对克氏针茅功能性状的影响. 生态环境学报, 28, 57-64.] | |
[75] | Xu XY, Cao JJ, Yang L, Yang SR, Gong YF, Li MT (2018). Effects of grazing and enclosure on foliar and soil stoichiometry of grassland on the Qinghai-Tibetan Plateau. Chinese Journal of Ecology, 37, 1349-1355. |
[ 许雪贇, 曹建军, 杨淋, 杨书荣, 龚毅帆, 李梦天 (2018). 放牧与围封对青藏高原草地土壤和植物叶片化学计量学特征的影响. 生态学杂志, 37, 1349-1355.] | |
[76] | Zhang F, Yang Y, Qiao JR, Jia LX, Zhao TQ, Wang X, Wang YT, Zhao ML (2018). Effect of utilization on community functional diversity in Stipa grandis steppe. Grassland and Prataculture, 30, 36-43. |
[ 张峰, 杨阳, 乔荠瑢, 贾丽欣, 赵天启, 王玺, 王亚婷, 赵萌莉 (2018). 利用方式对大针茅草原群落功能多样性的影响. 草原与草业, 30, 36-43.] | |
[77] | Zhang JH, Huang YM, Chen HY, Gong JR, Qi Y, Li EG, Wu XC (2018). Response of plant functional traits at species and community levels to grazing exclusion on Inner Mongolian steppe, China. Rangeland Journal, 40, 179-189. |
[78] | Zhang JH, Huang YM, Chen HY, Yang HY (2016). Effect of disturbance removal on leaf functional traits of plants in the Inner Mongolia steppe. Acta Ecologica Sinica, 36, 5902-5911. |
[ 张景慧, 黄永梅, 陈慧颖, 杨涵越 (2016). 去除干扰对内蒙古典型草原植物叶片功能属性的影响. 生态学报, 36, 5902-5911.] | |
[79] | Zhao N, Zhao XQ, Zhao L, Xu SX, Zou XY (2016). Progress in researches of the response of plant functional traits to grazing disturbance. Chinese Journal of Ecology, 35, 1916-1926. |
[ 赵娜, 赵新全, 赵亮, 徐世晓, 邹小艳 (2016). 植物功能性状对放牧干扰的响应. 生态学杂志, 35, 1916-1926.] | |
[80] | Zhao W, Chen SP, Han XG, Lin GH (2009). Effects of long-term grazing on the morphological and functional traits of Leymus chinensis in the semiarid grassland of Inner Mongolia, China. Ecological Research, 24, 99-108. |
[81] | Zheng SX, Lan ZC, Li WH, Shao RX, Shan YM, Wan HW, Taube F, Bai YF (2011). Differential responses of plant functional trait to grazing between two contrasting dominant C3 and C4 species in a typical steppe of Inner Mongolia, China. Plant and Soil, 340, 141-155. |
[82] | Zheng SX, Ren HY, Lan ZC, Li WH, Wang KB, Bai YF (2010). Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community. Biogeosciences, 7, 1117-1132. |
[83] | Zhu JT, Zhang YJ, Wang WF, Yang X, Chen N, Shen RN, Wang L, Jiang L (2020). Species turnover drives grassland community to phylogenetic clustering over long-term grazing disturbance. Journal of Plant Ecology, 13, 157-164. |
[84] | Zirbel CR, Bassett T, Grman E, Brudvig LA (2017). Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. Journal of Applied Ecology, 54, 1070-1079. |
[1] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[4] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[5] | 何春梅, 李雨姗, 尹秋龙, 贾仕宏, 郝占庆. 秦岭皇冠暖温性落叶阔叶林优势树种的径级结构和数量特征[J]. 植物生态学报, 2023, 47(12): 1658-1667. |
[6] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[7] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[8] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[9] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[10] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[11] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[12] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[13] | 王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242-252. |
[14] | 石娇星, 许洺山, 方晓晨, 郑丽婷, 张宇, 鲍迪峰, 杨安娜, 阎恩荣. 中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J]. 植物生态学报, 2021, 45(2): 163-173. |
[15] | 潘权, 郑华, 王志恒, 文志, 杨延征. 植物功能性状对生态系统服务影响研究进展[J]. 植物生态学报, 2021, 45(10): 1140-1153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19