植物生态学报 ›› 2024, Vol. 48 ›› Issue (4): 508-522.DOI: 10.17521/cjpe.2022.0485 cstr: 32100.14.cjpe.2022.0485
付粱晨1,2, 丁宗巨1, 唐茂1,2, 曾辉2, 朱彪1,*()()
收稿日期:
2022-12-01
接受日期:
2023-06-01
出版日期:
2024-04-20
发布日期:
2024-05-11
通讯作者:
* (biaozhu@pku.edu.cn)
基金资助:
FU Liang-Chen1,2, DING Zong-Ju1, TANG Mao1,2, ZENG Hui2, ZHU Biao1,*()()
Received:
2022-12-01
Accepted:
2023-06-01
Online:
2024-04-20
Published:
2024-05-11
Contact:
* (biaozhu@pku.edu.cn)
Supported by:
摘要:
为了探究木本植物根际效应的季节动态及其驱动因素, 以北京市东灵山地区两种主要植被类型——白桦(Betula platyphylla)林和蒙古栎(Quercus mongolica)林中的优势树种为研究对象, 于2017年的春(5月)、夏(7月)、秋(9月)、冬(12月) 4个季节分别测定根际土壤与非根际土壤的理化性质、微生物生物量、碳矿化速率及净氮矿化速率、胞外酶活性和矢量特征以及植物的根系、叶片功能性状, 分析根际效应的季节变化动态。结果发现: (1)土壤pH及铵态氮含量、微生物生物量、碳氮矿化速率、胞外酶活性和矢量特征指标在根际土壤与非根际土壤之间存在显著差异, 根际效应主要呈现为正效应, 即根际土壤高于非根际土壤。(2)根际效应存在显著的季节动态, 表现为秋季的根际效应最强。(3)根际效应与植物根系和叶片功能性状之间存在显著相关关系。细根生物量与可提取有机碳、土壤总碳、总氮含量的根际效应显著正相关; 叶干物质含量、叶碳氮比与微生物生物量碳含量、微生物生物量氮含量、碳矿化速率、酸性磷酸酶活性的根际效应显著正相关。研究结果表明, 植物功能性状对于植物的根际效应具有重要作用; 在东灵山的温带落叶阔叶林, 可能由于秋季植物地下碳输入量最高, 导致根际微生物数量和活性增加, 从而出现秋季微生物生物量及活性的根际效应高于其他季节的现象。
付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态. 植物生态学报, 2024, 48(4): 508-522. DOI: 10.17521/cjpe.2022.0485
FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing. Chinese Journal of Plant Ecology, 2024, 48(4): 508-522. DOI: 10.17521/cjpe.2022.0485
白桦林 Betula platyphylla forest | 蒙古栎林 Quercus mongolica forest | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | ||||
SWC (%) | r | 42.11 ± 2.97a | 45.71 ± 1.39a | 18.77 ± 1.04b | 45.74 ± 5.75a | 17.11 ± 0.39c | 30.75 ± 1.18a | 13.32 ± 0.80d | 26.13 ± 1.46b | ||
b | 43.62 ± 2.20a | 44.85 ± 1.21a | 16.84 ± 0.76b | 46.25 ± 7.61a | 20.96 ± 3.26b | 29.76 ± 1.62a | 12.60 ± 0.84c | 24.33 ± 1.85ab | |||
pH | r | 5.48 ± 0.08c | 5.97 ± 0.19b | 6.45 ± 0.16a | 5.89 ± 0.07bc | 5.64 ± 0.07b | 5.55 ± 0.13b | 6.20 ± 0.17a | 5.57 ± 0.19b | ||
b | 6.41 ± 0.06a | 6.39 ± 0.24a | 6.65 ± 0.14a | 6.46 ± 0.13a | 6.34 ± 0.08a | 5.82 ± 0.06b | 6.44 ± 0.13a | 5.55 ± 0.21b | |||
EOC content (mg·kg-1) | r | 1 420.02 ± 212.81a | 1 552.22 ± 143.35a | 741.49 ± 125.89b | 491.32 ± 110.09b | 955.42 ± 77.67a | 1 092.27 ± 81.65a | 494.17 ± 43.51b | 263.94 ± 20.23c | ||
b | 1 175.09 ± 138.55a | 1 289.81 ± 96.76a | 485.55 ± 69.81b | 437.68 ± 74.89b | 922.87 ± 113.96a | 1 092.05 ± 102.71a | 404.52 ± 45.92b | 242.67 ± 13.41b | |||
TC content (mg·g-1) | r | 65.97 ± 6.84a | 63.22 ± 3.51a | 58.08 ± 5.95a | 88.08 ± 20.58a | 37.54 ± 1.03a | 35.58 ± 1.36a | 39.83 ± 3.33a | 35.97 ± 2.61a | ||
b | 58.99 ± 5.69ab | 55.09 ± 2.39b | 46.01 ± 4.06b | 86.64 ± 18.54a | 35.73 ± 1.74a | 33.94 ± 2.37a | 38.47 ± 3.58a | 34.64 ± 2.60a | |||
TN content (mg·g-1) | r | 5.16 ± 0.43a | 5.19 ± 0.32a | 4.54 ± 0.43a | 6.65 ± 1.49a | 3.18 ± 0.06a | 2.95 ± 0.14a | 3.27 ± 0.24a | 3.01 ± 0.23a | ||
b | 4.73 ± 0.42ab | 4.55 ± 0.23ab | 3.79 ± 0.27b | 6.65 ± 1.38a | 3.12 ± 0.19a | 2.85 ± 0.23a | 3.15 ± 0.27a | 2.91 ± 0.22a | |||
Soil C:N | r | 12.74 ± 0.35ab | 12.19 ± 0.15b | 12.76 ± 0.13ab | 13.10 ± 0.35a | 11.81 ± 0.32a | 12.07 ± 0.30a | 12.16 ± 0.23a | 11.96 ± 0.13a | ||
b | 12.45 ± 0.13b | 12.11 ± 0.10b | 12.10 ± 0.21b | 12.96 ± 0.13a | 11.48 ± 0.30a | 11.97 ± 0.31a | 12.19 ± 0.16a | 11.91 ± 0.08a | |||
ETN content (mg·kg-1) | r | 138.18 ± 16.83a | 135.56 ± 10.73a | 50.48 ± 11.13b | 67.00 ± 15.17b | 86.18 ± 5.38b | 100.25 ± 2.12a | 31.80 ± 2.50c | 31.89 ± 1.82c | ||
b | 100.97 ± 11.66a | 110.43 ± 5.31a | 39.88 ± 5.38b | 59.03 ± 8.36b | 82.00 ± 8.12a | 93.73 ± 4.49a | 28.51 ± 1.57b | 33.99 ± 0.88b | |||
NH4+-N content (μg·g-1) | r | 15.14 ± 1.34ab | 11.63 ± 1.15ab | 9.55 ± 1.24b | 19.79 ± 4.99a | 11.43 ± 0.54ab | 15.41 ± 2.54a | 8.53 ± 0.58b | 7.52 ± 0.42b | ||
b | 5.08 ± 0.36b | 7.75 ± 0.68a | 6.86 ± 1.01ab | 7.18 ± 0.72ab | 6.10 ± 0.97b | 10.12 ± 1.34a | 5.02 ± 0.12b | 6.29 ± 0.71b | |||
NO3--N content (μg·g-1) | r | 2.94 ± 0.32bc | 5.82 ± 1.46b | 0.12 ± 0.02c | 12.43 ± 2.72a | 1.31 ± 0.28b | 4.57 ± 0.74a | 0.07 ± 0.00b | 3.98 ± 0.31a | ||
b | 5.99 ± 0.76b | 7.31 ± 0.87b | 0.00 ± 0.00c | 16.42 ± 3.43a | 2.60 ± 0.67b | 5.99 ± 0.85a | 0.00 ± 0.00c | 5.14 ± 1.15a | |||
MBC content (mg·kg-1) | r | 1 224.41 ± 71.60a | 1 456.06 ± 115.29a | 1 202.39 ± 118.77a | 1 362.10 ± 290.82a | 509.07 ± 60.41c | 732.73 ± 39.53b | 920.16 ± 73.95a | 447.73 ± 40.34c | ||
b | 1 222.59 ± 140.84a | 1 160.56 ± 72.54ab | 692.14 ± 66.88b | 1 048.46 ± 295.22ab | 648.17 ± 104.11a | 608.29 ± 54.09ab | 405.67 ± 46.44b | 487.32 ± 71.78ab | |||
MBN content (mg·kg-1) | r | 210.49 ± 5.73a | 225.58 ± 19.78a | 86.91 ± 11.09b | 137.24 ± 29.16b | 66.34 ± 5.34b | 105.61 ± 7.91a | 62.91 ± 9.23b | 40.69 ± 4.47c | ||
b | 187.31 ± 26.82a | 187.49 ± 19.21a | 67.81 ± 7.86b | 140.38 ± 41.66ab | 93.36 ± 14.70a | 100.08 ± 6.35a | 36.12 ± 0.86b | 51.42 ± 9.80b | |||
MBC:MBN | r | 5.82 ± 0.31c | 6.48 ± 0.24c | 14.03 ± 0.90a | 9.90 ± 0.07b | 7.77 ± 0.91c | 7.00 ± 0.35c | 15.12 ± 1.16a | 11.10 ± 0.62b | ||
b | 6.66 ± 0.41b | 6.27 ± 0.29b | 10.38 ± 0.87a | 7.95 ± 0.72b | 7.03 ± 0.74b | 6.07 ± 0.38b | 11.18 ± 1.12a | 9.80 ± 0.68a | |||
Cmin (mg·g-1·d-1) | r | 0.21 ± 0.02a | 0.17 ± 0.01a | 0.04 ± 0.01c | 0.10 ± 0.01b | 0.14 ± 0.01a | 0.12 ± 0.02a | 0.02 ± 0.00b | 0.04 ± 0.00b | ||
b | 0.21 ± 0.02a | 0.16 ± 0.02b | 0.02 ± 0.00c | 0.05 ± 0.01c | 0.18 ± 0.01a | 0.11 ± 0.01b | 0.02 ± 0.00c | 0.03 ± 0.00c | |||
Nmin (μg·g-1·d-1) | r | 5.01 ± 0.72a | 1.89 ± 0.29b | 0.98 ± 0.21b | 1.62 ± 0.35b | 1.02 ± 0.30a | 0.85 ± 0.23ab | 0.33 ± 0.08b | 0.90 ± 0.12ab | ||
b | 3.23 ± 0.42a | 1.85 ± 0.26b | 0.81 ± 0.11c | 1.68 ± 0.23b | 1.38 ± 0.26a | 1.02 ± 0.37ab | 0.33 ± 0.06b | 1.07 ± 0.08ab | |||
r | 6.80 ± 1.58b | 21.89 ± 5.09a | 14.84 ± 1.97ab | 8.17 ± 1.61b | 2.68 ± 0.73b | 8.42 ± 0.59a | 6.48 ± 0.81a | 2.07 ± 0.43b | |||
BG activity (nmol·g-1·h-1) | b | 13.34 ± 2.19b | 26.06 ± 4.15a | 16.24 ± 2.72b | 12.19 ± 1.84b | 4.95 ± 0.80c | 12.94 ± 1.27a | 8.07 ± 0.93b | 3.26 ± 0.53c | ||
NAG activity (nmol·g-1·h-1) | r | 5.28 ± 0.60c | 24.51 ± 3.21a | 17.09 ± 1.63b | 6.65 ± 1.63c | 4.49 ± 0.68b | 11.79 ± 0.57a | 10.17 ± 2.57a | 2.74 ± 0.25b | ||
b | 6.62 ± 0.73c | 22.55 ± 1.14a | 14.37 ± 2.54b | 6.02 ± 1.07c | 4.73 ± 0.70b | 10.59 ± 1.03a | 8.68 ± 1.76a | 2.95 ± 0.40b | |||
AP activity (nmol·g-1·h-1) | r | 26.79 ± 0.60b | 56.05 ± 5.74a | 36.61 ± 3.30b | 26.93 ± 3.61b | 19.43 ± 1.11c | 48.05 ± 1.25a | 32.79 ± 3.03b | 20.54 ± 1.60c | ||
b | 29.90 ± 1.20b | 57.40 ± 11.50a | 32.49 ± 2.06b | 25.01 ± 1.76b | 22.56 ± 1.91b | 43.32 ± 4.59a | 25.08 ± 1.78b | 25.63 ± 1.42b | |||
POX+PER activity (μmol·g-1·h-1) | r | 22.87 ± 1.69a | 10.10 ± 2.03b | 8.55 ± 1.06b | 11.23 ± 1.26b | 21.98 ± 3.58a | 14.08 ± 0.74b | 12.22 ± 1.58b | 13.07 ± 1.05b | ||
b | 24.52 ± 0.67a | 10.50 ± 1.54b | 8.23 ± 1.66b | 11.79 ± 1.08b | 21.06 ± 4.10a | 12.97 ± 0.76bc | 6.14 ± 0.92c | 15.83 ± 2.96ab | |||
Vector length | r | 0.58 ± 0.05a | 0.54 ± 0.06a | 0.55 ± 0.03a | 0.61 ± 0.01a | 0.38 ± 0.06a | 0.44 ± 0.03a | 0.44 ± 0.05a | 0.43 ± 0.04a | ||
b | 0.73 ± 0.03a | 0.63 ± 0.06a | 0.62 ± 0.05a | 0.75 ± 0.01a | 0.54 ± 0.03a | 0.60 ± 0.01a | 0.55 ± 0.01a | 0.53 ± 0.06a | |||
Vector angle | r | 70.62 ± 2.37a | 59.84 ± 3.90bc | 58.25 ± 2.46c | 67.96 ± 1.82ab | 72.20 ± 2.91ab | 70.31 ± 0.30b | 67.60 ± 1.87b | 77.84 ± 1.83a | ||
b | 65.54 ± 1.54a | 59.08 ± 4.07a | 58.22 ± 1.98a | 64.48 ± 1.98a | 70.67 ± 2.47b | 67.21 ± 1.37bc | 63.50 ± 2.85c | 77.77 ± 1.45a |
表1 北京东灵山白桦林和蒙古栎林土壤理化性质、微生物生物量、碳氮矿化速率、胞外酶活性及矢量特征基本信息(平均值±标准误, n = 4)
Table 1 Soil physiochemical properties, microbial biomass, carbon and nitrogen mineralization rates, soil extracellular enzyme activities and vector characteristics of Betula platyphylla forest and Quercus mongolica forest in Dongling Mountain, Beijing (mean ± SE, n = 4)
白桦林 Betula platyphylla forest | 蒙古栎林 Quercus mongolica forest | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | ||||
SWC (%) | r | 42.11 ± 2.97a | 45.71 ± 1.39a | 18.77 ± 1.04b | 45.74 ± 5.75a | 17.11 ± 0.39c | 30.75 ± 1.18a | 13.32 ± 0.80d | 26.13 ± 1.46b | ||
b | 43.62 ± 2.20a | 44.85 ± 1.21a | 16.84 ± 0.76b | 46.25 ± 7.61a | 20.96 ± 3.26b | 29.76 ± 1.62a | 12.60 ± 0.84c | 24.33 ± 1.85ab | |||
pH | r | 5.48 ± 0.08c | 5.97 ± 0.19b | 6.45 ± 0.16a | 5.89 ± 0.07bc | 5.64 ± 0.07b | 5.55 ± 0.13b | 6.20 ± 0.17a | 5.57 ± 0.19b | ||
b | 6.41 ± 0.06a | 6.39 ± 0.24a | 6.65 ± 0.14a | 6.46 ± 0.13a | 6.34 ± 0.08a | 5.82 ± 0.06b | 6.44 ± 0.13a | 5.55 ± 0.21b | |||
EOC content (mg·kg-1) | r | 1 420.02 ± 212.81a | 1 552.22 ± 143.35a | 741.49 ± 125.89b | 491.32 ± 110.09b | 955.42 ± 77.67a | 1 092.27 ± 81.65a | 494.17 ± 43.51b | 263.94 ± 20.23c | ||
b | 1 175.09 ± 138.55a | 1 289.81 ± 96.76a | 485.55 ± 69.81b | 437.68 ± 74.89b | 922.87 ± 113.96a | 1 092.05 ± 102.71a | 404.52 ± 45.92b | 242.67 ± 13.41b | |||
TC content (mg·g-1) | r | 65.97 ± 6.84a | 63.22 ± 3.51a | 58.08 ± 5.95a | 88.08 ± 20.58a | 37.54 ± 1.03a | 35.58 ± 1.36a | 39.83 ± 3.33a | 35.97 ± 2.61a | ||
b | 58.99 ± 5.69ab | 55.09 ± 2.39b | 46.01 ± 4.06b | 86.64 ± 18.54a | 35.73 ± 1.74a | 33.94 ± 2.37a | 38.47 ± 3.58a | 34.64 ± 2.60a | |||
TN content (mg·g-1) | r | 5.16 ± 0.43a | 5.19 ± 0.32a | 4.54 ± 0.43a | 6.65 ± 1.49a | 3.18 ± 0.06a | 2.95 ± 0.14a | 3.27 ± 0.24a | 3.01 ± 0.23a | ||
b | 4.73 ± 0.42ab | 4.55 ± 0.23ab | 3.79 ± 0.27b | 6.65 ± 1.38a | 3.12 ± 0.19a | 2.85 ± 0.23a | 3.15 ± 0.27a | 2.91 ± 0.22a | |||
Soil C:N | r | 12.74 ± 0.35ab | 12.19 ± 0.15b | 12.76 ± 0.13ab | 13.10 ± 0.35a | 11.81 ± 0.32a | 12.07 ± 0.30a | 12.16 ± 0.23a | 11.96 ± 0.13a | ||
b | 12.45 ± 0.13b | 12.11 ± 0.10b | 12.10 ± 0.21b | 12.96 ± 0.13a | 11.48 ± 0.30a | 11.97 ± 0.31a | 12.19 ± 0.16a | 11.91 ± 0.08a | |||
ETN content (mg·kg-1) | r | 138.18 ± 16.83a | 135.56 ± 10.73a | 50.48 ± 11.13b | 67.00 ± 15.17b | 86.18 ± 5.38b | 100.25 ± 2.12a | 31.80 ± 2.50c | 31.89 ± 1.82c | ||
b | 100.97 ± 11.66a | 110.43 ± 5.31a | 39.88 ± 5.38b | 59.03 ± 8.36b | 82.00 ± 8.12a | 93.73 ± 4.49a | 28.51 ± 1.57b | 33.99 ± 0.88b | |||
NH4+-N content (μg·g-1) | r | 15.14 ± 1.34ab | 11.63 ± 1.15ab | 9.55 ± 1.24b | 19.79 ± 4.99a | 11.43 ± 0.54ab | 15.41 ± 2.54a | 8.53 ± 0.58b | 7.52 ± 0.42b | ||
b | 5.08 ± 0.36b | 7.75 ± 0.68a | 6.86 ± 1.01ab | 7.18 ± 0.72ab | 6.10 ± 0.97b | 10.12 ± 1.34a | 5.02 ± 0.12b | 6.29 ± 0.71b | |||
NO3--N content (μg·g-1) | r | 2.94 ± 0.32bc | 5.82 ± 1.46b | 0.12 ± 0.02c | 12.43 ± 2.72a | 1.31 ± 0.28b | 4.57 ± 0.74a | 0.07 ± 0.00b | 3.98 ± 0.31a | ||
b | 5.99 ± 0.76b | 7.31 ± 0.87b | 0.00 ± 0.00c | 16.42 ± 3.43a | 2.60 ± 0.67b | 5.99 ± 0.85a | 0.00 ± 0.00c | 5.14 ± 1.15a | |||
MBC content (mg·kg-1) | r | 1 224.41 ± 71.60a | 1 456.06 ± 115.29a | 1 202.39 ± 118.77a | 1 362.10 ± 290.82a | 509.07 ± 60.41c | 732.73 ± 39.53b | 920.16 ± 73.95a | 447.73 ± 40.34c | ||
b | 1 222.59 ± 140.84a | 1 160.56 ± 72.54ab | 692.14 ± 66.88b | 1 048.46 ± 295.22ab | 648.17 ± 104.11a | 608.29 ± 54.09ab | 405.67 ± 46.44b | 487.32 ± 71.78ab | |||
MBN content (mg·kg-1) | r | 210.49 ± 5.73a | 225.58 ± 19.78a | 86.91 ± 11.09b | 137.24 ± 29.16b | 66.34 ± 5.34b | 105.61 ± 7.91a | 62.91 ± 9.23b | 40.69 ± 4.47c | ||
b | 187.31 ± 26.82a | 187.49 ± 19.21a | 67.81 ± 7.86b | 140.38 ± 41.66ab | 93.36 ± 14.70a | 100.08 ± 6.35a | 36.12 ± 0.86b | 51.42 ± 9.80b | |||
MBC:MBN | r | 5.82 ± 0.31c | 6.48 ± 0.24c | 14.03 ± 0.90a | 9.90 ± 0.07b | 7.77 ± 0.91c | 7.00 ± 0.35c | 15.12 ± 1.16a | 11.10 ± 0.62b | ||
b | 6.66 ± 0.41b | 6.27 ± 0.29b | 10.38 ± 0.87a | 7.95 ± 0.72b | 7.03 ± 0.74b | 6.07 ± 0.38b | 11.18 ± 1.12a | 9.80 ± 0.68a | |||
Cmin (mg·g-1·d-1) | r | 0.21 ± 0.02a | 0.17 ± 0.01a | 0.04 ± 0.01c | 0.10 ± 0.01b | 0.14 ± 0.01a | 0.12 ± 0.02a | 0.02 ± 0.00b | 0.04 ± 0.00b | ||
b | 0.21 ± 0.02a | 0.16 ± 0.02b | 0.02 ± 0.00c | 0.05 ± 0.01c | 0.18 ± 0.01a | 0.11 ± 0.01b | 0.02 ± 0.00c | 0.03 ± 0.00c | |||
Nmin (μg·g-1·d-1) | r | 5.01 ± 0.72a | 1.89 ± 0.29b | 0.98 ± 0.21b | 1.62 ± 0.35b | 1.02 ± 0.30a | 0.85 ± 0.23ab | 0.33 ± 0.08b | 0.90 ± 0.12ab | ||
b | 3.23 ± 0.42a | 1.85 ± 0.26b | 0.81 ± 0.11c | 1.68 ± 0.23b | 1.38 ± 0.26a | 1.02 ± 0.37ab | 0.33 ± 0.06b | 1.07 ± 0.08ab | |||
r | 6.80 ± 1.58b | 21.89 ± 5.09a | 14.84 ± 1.97ab | 8.17 ± 1.61b | 2.68 ± 0.73b | 8.42 ± 0.59a | 6.48 ± 0.81a | 2.07 ± 0.43b | |||
BG activity (nmol·g-1·h-1) | b | 13.34 ± 2.19b | 26.06 ± 4.15a | 16.24 ± 2.72b | 12.19 ± 1.84b | 4.95 ± 0.80c | 12.94 ± 1.27a | 8.07 ± 0.93b | 3.26 ± 0.53c | ||
NAG activity (nmol·g-1·h-1) | r | 5.28 ± 0.60c | 24.51 ± 3.21a | 17.09 ± 1.63b | 6.65 ± 1.63c | 4.49 ± 0.68b | 11.79 ± 0.57a | 10.17 ± 2.57a | 2.74 ± 0.25b | ||
b | 6.62 ± 0.73c | 22.55 ± 1.14a | 14.37 ± 2.54b | 6.02 ± 1.07c | 4.73 ± 0.70b | 10.59 ± 1.03a | 8.68 ± 1.76a | 2.95 ± 0.40b | |||
AP activity (nmol·g-1·h-1) | r | 26.79 ± 0.60b | 56.05 ± 5.74a | 36.61 ± 3.30b | 26.93 ± 3.61b | 19.43 ± 1.11c | 48.05 ± 1.25a | 32.79 ± 3.03b | 20.54 ± 1.60c | ||
b | 29.90 ± 1.20b | 57.40 ± 11.50a | 32.49 ± 2.06b | 25.01 ± 1.76b | 22.56 ± 1.91b | 43.32 ± 4.59a | 25.08 ± 1.78b | 25.63 ± 1.42b | |||
POX+PER activity (μmol·g-1·h-1) | r | 22.87 ± 1.69a | 10.10 ± 2.03b | 8.55 ± 1.06b | 11.23 ± 1.26b | 21.98 ± 3.58a | 14.08 ± 0.74b | 12.22 ± 1.58b | 13.07 ± 1.05b | ||
b | 24.52 ± 0.67a | 10.50 ± 1.54b | 8.23 ± 1.66b | 11.79 ± 1.08b | 21.06 ± 4.10a | 12.97 ± 0.76bc | 6.14 ± 0.92c | 15.83 ± 2.96ab | |||
Vector length | r | 0.58 ± 0.05a | 0.54 ± 0.06a | 0.55 ± 0.03a | 0.61 ± 0.01a | 0.38 ± 0.06a | 0.44 ± 0.03a | 0.44 ± 0.05a | 0.43 ± 0.04a | ||
b | 0.73 ± 0.03a | 0.63 ± 0.06a | 0.62 ± 0.05a | 0.75 ± 0.01a | 0.54 ± 0.03a | 0.60 ± 0.01a | 0.55 ± 0.01a | 0.53 ± 0.06a | |||
Vector angle | r | 70.62 ± 2.37a | 59.84 ± 3.90bc | 58.25 ± 2.46c | 67.96 ± 1.82ab | 72.20 ± 2.91ab | 70.31 ± 0.30b | 67.60 ± 1.87b | 77.84 ± 1.83a | ||
b | 65.54 ± 1.54a | 59.08 ± 4.07a | 58.22 ± 1.98a | 64.48 ± 1.98a | 70.67 ± 2.47b | 67.21 ± 1.37bc | 63.50 ± 2.85c | 77.77 ± 1.45a |
白桦 Betula platyphylla | 蒙古栎 Quercus mongolica | |||||||
---|---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | |
SLA (m2·kg-1) | 33.1 ± 1.6a | 29.1 ± 2.1a | 22.5 ± 0.8b | NA | 20.4 ± 1.3a | 16.4 ± 0.8b | 16.1 ± 0.3b | NA |
LDMC (g·g-1) | 0.189 ± 0.005b | 0.173 ± 0.008b | 0.261 ± 0.010a | NA | 0.217 ± 0.010b | 0.214 ± 0.004b | 0.348 ± 0.004a | NA |
Leaf C content (mg·g-1) | NA | 481 ± 7a | 491 ± 2a | NA | 458 ± 1c | 480 ± 3a | 467 ± 2b | NA |
Leaf N content (mg·g-1) | NA | 27.4 ± 1.0a | 21.2 ± 0.7b | NA | 56.1 ± 0.7a | 27.5 ± 0.6b | 21.2 ± 0.6c | NA |
Leaf C:N | NA | 17.7 ± 0.8b | 23.2 ± 0.8a | NA | 8.2 ± 0.1c | 17.5 ± 0.3b | 22.1 ± 0.5a | NA |
Fine root biomass (g) | 21.2 ± 1.8b | 25.6 ± 2.9b | 37.6 ± 2.7a | 6.4 ± 0.3c | 15.9 ± 1.3b | 25.9 ± 1.3a | 28.7 ± 2.8a | 6.7 ± 0.9c |
Root C content (mg·g-1) | 489 ± 8b | 463 ± 7c | 484 ± 6b | 518 ± 3a | 500 ± 4a | 494 ± 8a | 497 ± 9a | 507 ± 1a |
Root N content (mg·g-1) | 12.28 ± 0.47a | 9.98 ± 0.66ab | 9.34 ± 0.32b | 11.19 ± 1.10ab | 9.65 ± 0.61a | 9.13 ± 0.34a | 9.70 ± 0.97a | 8.38 ± 0.69a |
Root C:N | 40.1 ± 2.2b | 47.2 ± 3.1ab | 52.1 ± 2.2a | 48.2 ± 4.8ab | 52.7 ± 3.5a | 54.5 ± 2.7a | 53.7 ± 6.2a | 61.9 ± 4.5a |
Fine root density (kg·m-3) | 1 077 ± 127b | 1 285 ± 161b | 2 091 ± 150a | NA | 580 ± 78b | 1437 ± 71a | 1 593 ± 153a | NA |
表2 北京东灵山白桦和蒙古栎植物根叶功能性状基本信息(平均值±标准误, n = 4)
Table 2 Plant functional traits of leaves and roots of Betula platyphylla and Quercus mongolica in Dongling Mountain, Beijing (mean ± SE, n = 4)
白桦 Betula platyphylla | 蒙古栎 Quercus mongolica | |||||||
---|---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | |
SLA (m2·kg-1) | 33.1 ± 1.6a | 29.1 ± 2.1a | 22.5 ± 0.8b | NA | 20.4 ± 1.3a | 16.4 ± 0.8b | 16.1 ± 0.3b | NA |
LDMC (g·g-1) | 0.189 ± 0.005b | 0.173 ± 0.008b | 0.261 ± 0.010a | NA | 0.217 ± 0.010b | 0.214 ± 0.004b | 0.348 ± 0.004a | NA |
Leaf C content (mg·g-1) | NA | 481 ± 7a | 491 ± 2a | NA | 458 ± 1c | 480 ± 3a | 467 ± 2b | NA |
Leaf N content (mg·g-1) | NA | 27.4 ± 1.0a | 21.2 ± 0.7b | NA | 56.1 ± 0.7a | 27.5 ± 0.6b | 21.2 ± 0.6c | NA |
Leaf C:N | NA | 17.7 ± 0.8b | 23.2 ± 0.8a | NA | 8.2 ± 0.1c | 17.5 ± 0.3b | 22.1 ± 0.5a | NA |
Fine root biomass (g) | 21.2 ± 1.8b | 25.6 ± 2.9b | 37.6 ± 2.7a | 6.4 ± 0.3c | 15.9 ± 1.3b | 25.9 ± 1.3a | 28.7 ± 2.8a | 6.7 ± 0.9c |
Root C content (mg·g-1) | 489 ± 8b | 463 ± 7c | 484 ± 6b | 518 ± 3a | 500 ± 4a | 494 ± 8a | 497 ± 9a | 507 ± 1a |
Root N content (mg·g-1) | 12.28 ± 0.47a | 9.98 ± 0.66ab | 9.34 ± 0.32b | 11.19 ± 1.10ab | 9.65 ± 0.61a | 9.13 ± 0.34a | 9.70 ± 0.97a | 8.38 ± 0.69a |
Root C:N | 40.1 ± 2.2b | 47.2 ± 3.1ab | 52.1 ± 2.2a | 48.2 ± 4.8ab | 52.7 ± 3.5a | 54.5 ± 2.7a | 53.7 ± 6.2a | 61.9 ± 4.5a |
Fine root density (kg·m-3) | 1 077 ± 127b | 1 285 ± 161b | 2 091 ± 150a | NA | 580 ± 78b | 1437 ± 71a | 1 593 ± 153a | NA |
图1 北京东灵山白桦和蒙古栎林土壤理化性质的根际效应(平均值±标准误, n = 4)的季节变化。A, 土壤含水量。B, pH。C, 可提取有机碳含量。D, 总碳含量。E, 总氮含量。F, 土壤碳氮比。G, 可提取氮含量。H, 铵态氮含量。I, 硝态氮含量。不同小写字母表示同一树种的根际效应在不同季节间差异显著(p < 0.05)。*表示根际效应值显著区别于1 (*, p < 0.05; **, p < 0.01; ***, p < 0.001)。左下角为线性混合效应模型的结果, *表示树种、季节或两者的交互作用对根际效应有显著影响(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。
Fig. 1 Seasonal variations of rhizosphere effects on soil physical and chemical properties of Betula platyphylla forest and Quercus mongolica forest in Dongling Mountain, Beijing (mean ± SE, n = 4). A, Soil water content. B, pH. C, Extractable organic carbon content. D, Total carbon content. E, Total nitrogen content. F, Soil carbon to nitrogen ratio. G, Extractable nitrogen content. H, Ammonium nitrogen content. I, Nitrate nitrogen content. Different lowercase letters indicate the rhizosphere effect of the same species is significantly different in different seasons (p < 0.05). The asterisk indicates that the rhizosphere effect value is significantly different from 1 (*, p < 0.05; **, p < 0.01; ***, p < 0.001). The results of linear mixed-effect model are located in the lower left corner of each figure. The asterisk indicates that tree species, season or their interaction has a significant impact on the rhizosphere effect (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
图2 北京东灵山白桦和蒙古栎林土壤微生物生物量及碳氮矿化速率根际效应(平均值±标准误, n = 4)的季节变化。A, 微生物生物量碳含量。B, 微生物生物量氮含量。C, 微生物生物量碳氮比。D, 碳矿化速率。E, 氮矿化速率。不同小写字母表示同一树种的根际效应在不同季节间差异显著(p < 0.05)。*表示根际效应值显著区别于1 (*, p < 0.05; **, p < 0.01; ***, p < 0.001)。左下角为线性混合效应模型的结果, *表示树种、季节或两者的交互作用对根际效应有显著影响(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。
Fig. 2 Seasonal variations of rhizosphere effects on microbial biomass, carbon and nitrogen mineralization rates of Betula platyphylla forest and Quercus mongolica forest in Dongling Mountain, Beijing (mean ± SE, n = 4). A, Microbial biomass carbon content. B, Microbial biomass nitrogen content. C, Microbial biomass carbon to nitrogen ratio. D, Carbon mineralization rate. E, Nitrogen mineralization rate. Different lowercase letters indicate the rhizosphere effect of the same species is significantly different in different seasons (p < 0.05). The asterisk indicates that the rhizosphere effect value is significantly different from 1 (*, p < 0.05; **, p < 0.01; ***, p < 0.001). The results of linear mixed-effect model are located in the lower left corner of each figure. The asterisk indicates that tree species, season or their interaction has a significant impact on the rhizosphere effect (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
图3 北京东灵山白桦和蒙古栎林土壤胞外酶活性及矢量特征根际效应(平均值±标准误, n = 4)的季节变化。A, β-1,4-葡萄糖苷酶活性。B, β-1,4-乙酰氨基葡糖苷酶活性。C, 酸性磷酸酶活性。D, 氧化酶活性。E, 矢量长度。F, 矢量角度。不同小写字母表示同一树种的根际效应在不同季节间差异显著(p < 0.05)。*表示根际效应值显著区别于1 (*, p < 0.05; **, p < 0.01; ***, p < 0.001)。左下角为线性混合效应模型的结果, *表示树种、季节或两者的交互作用对根际效应有显著影响(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。
Fig. 3 Seasonal variations of rhizosphere effects on soil extracellular enzyme activities and vector characteristics of Betula platyphylla forest and Quercus mongolica forest in Dongling Mountain, Beijing (mean ± SE, n = 4). A, β-1,4-glucosidase. B, β-1,4-acetylglucosidase. C, Acid phosphatase. D, Oxidase activity. E, Vector length. F, Vector angle. Different lowercase letters indicate the rhizosphere effect of the same species is significantly different in different seasons (p < 0.05). The asterisk indicates that the rhizosphere effect value is significantly different from 1 (*, p < 0.05; **, p < 0.01; ***, p < 0.001). The results of linear mixed-effect model are located in the lower left corner of each figure. The asterisk indicates that tree species, season or their interaction has a significant impact on the rhizosphere effect (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
图4 北京东灵山白桦和蒙古栎林根际效应与植物功能性状的相关性分析。A, 白桦。B, 蒙古栎。AP, 酸性磷酸酶活性; BG, β-1,4-葡萄糖苷酶活性; Cmin, 碳矿化速率; ETN, 可提取氮含量; EOC, 可提取有机碳含量; Fine root biomass, 细根生物量; Fine root density, 细根密度; LDMC, 叶干物质含量; Leaf C, 叶碳含量; Leaf N, 叶氮含量; Leaf C:N, 叶碳氮比; MBC, 微生物生物量碳含量; MBN, 微生物生物量氮含量; NAG, β-1,4-乙酰氨基葡糖苷酶活性; NH4+-N, 铵态氮含量; Nmin, 氮矿化速率; NO3--N, 硝态氮含量; POX+PER, 氧化酶活性; Root C, 根碳含量; Root N, 根氮含量; Root C:N, 根碳氮比; SLA, 比叶面积; Soil C:N, 土壤碳氮比; SWC, 土壤含水量; TC, 总碳含量; TN, 总氮含量; Vector length, 矢量长度; Vector angle, 矢量角度。红色代表正相关关系, 蓝色代表负相关关系, 颜色越深, 相关性越强。*表示相关性显著(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。
Fig. 4 Correlation analysis between rhizosphere effect and plant functional traits of Betula platyphylla forest and Quercus mongolica forest in Dongling Mountain, Beijing. A, Betula platyphylla. B, Quercus mongolica. AP, acid phosphatase activity; BG, β-1,4-glucosidase activity; Cmin, carbon mineralization rate; EOC, extractable organic carbon content; ETN, extractable nitrogen content; LDMC, leaf dry matter content; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; NAG, β-1,4-acetylglucosidase activity; NH4+-N, ammonium nitrogen content; Nmin, nitrogen mineralization rate; NO3--N, nitrate nitrogen content; POX+PER, oxidase activity; SLA, specific leaf area; Soil C:N, soil carbon to nitrogen ratio; SWC, soil water content; TC, total carbon content; TN, nitrogen content. Red represents positive correlation, and blue represents negative correlation. The darker the color, the stronger the correlation. The asterisk indicates a significant correlation (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
图5 方差分解分析探究北京东灵山白桦和蒙古栎林植物根叶功能性状对根际效应变异的解释。A, 白桦。B, 蒙古栎。
Fig. 5 Variations in the rhizosphere effects are partitioned by leaf and root functional traits of Betula platyphylla (A) forest and Quercus mongolica (B) forest in Dongling Mountain, Beijing using variation partitioning analysis.
[1] | Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005). A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20, 634-641. |
[2] | Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699. |
[3] | Calvaruso C, N’Dira V, Turpault MP (2011). Impact of common European tree species and Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) on the physicochemical properties of the rhizosphere. Plant and Soil, 342, 469-480. |
[4] | Chen J, Elsgaard L, van Groenigen KJ, Olesen JE, Liang Z, Jiang Y, Lærke PE, Zhang YF, Luo YQ, Hungate BA, Sinsabaugh RL, Jørgensen U (2020). Soil carbon loss with warming: new evidence from carbon-degrading enzymes. Global Change Biology, 26, 1944-1952. |
[5] | Chen X, Ding ZJ, Tang M, Zhu B (2018). Greater variations of rhizosphere effects within mycorrhizal group than between mycorrhizal group in a temperate forest. Soil Biology & Biochemistry, 126, 237-246. |
[6] |
Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201, 31-44.
DOI PMID |
[7] | Cui XT, Yuan FH, Wang AZ, Guan DX, Wu JB, Jin CJ (2017). Leaf age-related changes in photosynthesis of Quercus mongolica leaves in relation to leaf functional traits. Chinese Journal of Ecology, 36, 3160-3167. |
[崔西甜, 袁凤辉, 王安志, 关德新, 吴家兵, 金昌杰 (2017). 蒙古栎叶片光合作用随叶龄的变化及其与叶片功能性状的关系. 生态学杂志, 36, 3160-3167.] | |
[8] |
Dijkstra FA, Cheng WX (2007). Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecology Letters, 10, 1046-1053.
PMID |
[9] | Ding ZJ, Tang M, Chen X, Yin LM, Gui HC, Zhu B (2019). Measuring rhizosphere effects of two tree species in a temperate forest: a comprehensive method comparison. Rhizosphere, 10, 100153. DOI: 10.1016/j.rhisph.2019.100153. |
[10] | Eviner V, Chapin III FS (2003). Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology, Evolution, and Systematics, 34, 455-485. |
[11] | Fang JY, Liu GH, Zhu B, Wang XK, Liu SH (2006). Carbon cycle of three temperate forest ecosystems in Dongling Mountain, Beijing. Science in China: Earth Science, 36, 533-543. |
[方精云, 刘国华, 朱彪, 王效科, 刘绍辉 (2006). 北京东灵山三种温带森林生态系统的碳循环. 中国科学: 地球科学, 36, 533-543.] | |
[12] | Gan DY, Feng JG, Han MG, Zeng H, Zhu B (2021). Rhizosphere effects of woody plants on soil biogeochemical processes: a meta-analysis. Soil Biology & Biochemistry, 160, 108310. DOI: 10.1016/j.soilbio.2021.108310. |
[13] |
Gan DY, Zeng H, Zhu B (2022). The rhizosphere effect on soil gross nitrogen mineralization: a meta-analysis. Soil Ecology Letters, 4, 144-154.
DOI |
[14] | Han MG, Sun LJ, Gan DY, Fu LC, Zhu B (2020). Root functional traits are key determinants of the rhizosphere effect on soil organic matter decomposition across 14 temperate hardwood species. Soil Biology & Biochemistry, 151, 108019. DOI: 10.1016/j.soilbio.2020.108019. |
[15] | Jenkinson DS, Brookes PC, Powlson DS (2004). Measuring soil microbial biomass. Soil Biology & Biochemistry, 36, 5-7. |
[16] | Jin BB, Guo QX (2013). Root decomposition and nutrient dynamics of Quercus mongolica and Betula Platyphylla. Acta Ecologica Sinica, 33, 2416-2424. |
[靳贝贝, 国庆喜 (2013). 蒙古栎、白桦根系分解及养分动态. 生态学报, 33, 2416-2424.] | |
[17] | Jing X, Chen X, Fang JY, Ji CJ, Shen HH, Zheng CY, Zhu B (2020). Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil Biology & Biochemistry, 141, 107657. DOI: 10.1016/j.soilbio.2019.107657. |
[18] | Kaiser C, Fuchslueger L, Koranda M, Gorfer M, Stange CF, Kitzler B, Rasche F, Strauss J, Sessitsch A, Zechmeister- Boltenstern S, Richter A (2011). Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground allocation. Ecology, 92, 1036-1051. |
[19] |
Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A, Richter A (2010). Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist, 187, 843-858.
DOI PMID |
[20] | Kuzyakov Y (2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371. |
[21] | Kuzyakov Y (2002). Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165, 382-396. |
[22] | Kuzyakov Y, Cheng W (2004). Photosynthesis controls of CO2 efflux from maize rhizosphere. Plant and Soil, 263, 85-99. |
[23] |
Kuzyakov Y, Xu XL (2013). Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist, 198, 656-669.
DOI PMID |
[24] | Lai JS (2019). An explanation about the negative value in the common explanation part of environmental factors in redundancy analysis (RDA).[2023-05-29]. https://blog.sciencenet.cn/blog-267448-1187530.html. |
[赖江山 (2019). 关于冗余分析(RDA)中环境因子共同解释部分出现负值的说明.[2023-05-29]. https://blog.sciencenet.cn/blog-267448-1187530.html. | |
[25] | Li YL, Cui JY, Su YZ (2005). Specific leaf area and leaf dry matter content of some plants in different dune habitats. Acta Ecologica Sincia, 25, 304-311. |
[李玉霖, 崔建垣, 苏永中 (2005). 不同沙丘生境主要植物比叶面积和叶干物质含量的比较. 生态学报, 25, 304-311.] | |
[26] | Liu S, Sheng KY, Liu XS, Wu ZH, Guo XM, Xiao FM, Zhang WY (2017). Contents of soil organic carbon and nitrogen forms in rhizosphere soil of Cunninghamia lanceolata and the rhizosphere effect. Chinese Journal of Ecology, 36, 1957-1964. |
[刘顺, 盛可银, 刘喜帅, 吴珍花, 郭晓敏, 肖复明, 张文元 (2017). 陈山红心山根际土壤有机碳、氮含量及根际效应. 生态学杂志, 36, 1957-1964.] | |
[27] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[28] | Mo XL, Dai XQ, Wang HM, Fu XL, Kou L (2018). Rhizosphere effects of overstory tree and understory shrub species in central subtropical plantations—A case study at Qianyanzhou, Taihe, Jiangxi, China. Chinese Journal of Plant Ecology, 42, 723-733. |
[莫雪丽, 戴晓琴, 王辉民, 付晓莉, 寇亮 (2018). 中亚热带典型人工林常见乔灌木根际效应——以江西泰和千烟洲为例. 植物生态学报, 42, 723-733.]
DOI |
|
[29] | Moorhead DL, Rinkes ZL, Sinsabaugh RL, Weintraub MN (2013). Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Frontiers in Microbiology, 4, 223. DOI: 10.3389/fmicb.2013.00223. |
[30] | Moorhead DL, Sinsabaugh RL, Hill BH, Weintraub MN (2016). Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology & Biochemistry, 93, 1-7. |
[31] |
Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007). Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytologist, 173, 600-610.
DOI PMID |
[32] | Pausch J, Zhu B, Kuzyakov Y, Cheng WX (2013). Plant inter-species effects on rhizosphere priming of soil organic matter decomposition. Soil Biology & Biochemistry, 57, 91-99. |
[33] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167. DOI: 10.1071/BT12225. |
[34] |
Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789-799.
DOI PMID |
[35] |
Phillips RP, Fahey TJ (2006). Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology, 87, 1302-1313.
PMID |
[36] | Phillips RP, Fahey TJ (2008). The influence of soil fertility on rhizosphere effects in northern hardwood forest soils. Soil Science Society of America Journal, 72, 453-461. |
[37] | Stone EL, Gibson EJ (1975). Effects of species on nutrient cycles and soil change. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 271, 149-162. |
[38] | Strickland MS, Rousk J (2010). Considering fungal:bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biology & Biochemistry, 42, 1385-1395. |
[39] | Su HX, Li GQ (2012). Simulating the response of the Quercus mongolica forest ecosystem carbon budget to asymmetric warming. Chinese Science Bulletin, 57, 1544-1552. |
[苏宏新, 李广起 (2012). 模拟蒙古栎林生态系统碳收支对非对称性升温的响应. 科学通报, 57, 1544-1552.] | |
[40] | Sun L, Ataka M, Han M, Han Y, Gan D, Xu T, Guo Y, Zhu B (2021). Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytologist, 229, 259-271. |
[41] | Sun LJ, Ataka M, Kominami Y, Yoshimura K (2017). Relationship between fine-root exudation and respiration of two Quercus species in a Japanese temperate forest. Tree Physiology, 37, 1011-1020. |
[42] | Sun Y, Xu XL, Kuzyakov Y (2014). Mechanisms of rhizosphere priming effects and their ecological significance. Chinese Journal of Plant Ecology, 38, 62-75. |
[孙悦, 徐兴良, Kuzyakov Y, (2014). 根际激发效应的发生机制及其生态重要性. 植物生态学报, 38, 62-75.]
DOI |
|
[43] |
Wang XP, Xiao X, Tang TW, Li YX, Xiao J (2018). Seasonal changes of the input of root exudates and its driving characteristics of rhizosphere microbe in a Cercidiphyllum japonicum Sieb. plantation. Bulletin of Botanical Research, 38(1), 47-55.
DOI |
[王小平, 肖肖, 唐天文, 黎云祥, 肖娟 (2018). 连香树人工林根系分泌物输入季节性变化及其驱动的根际微生物特性研究. 植物研究, 38(1), 47-55.]
DOI |
|
[44] | Xiao W, Chen X, Jing X, Zhu B (2018). A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biology & Biochemistry, 123, 21-32. |
[45] |
Yao H, Hu XY, Zhu JL, Zhu JX, Ji CJ, Fang JY (2015). Soil respiration and the 20-year change in three temperate forests in Mt. Dongling, Beijing. Chinese Journal of Plant Ecology, 39, 849-856.
DOI |
[姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云 (2015). 北京东灵山3种温带森林土壤呼吸及其20年的变化. 植物生态学报, 39, 849-856.]
DOI |
|
[46] | Zhu B, Cheng WX (2012). Nodulated soybean enhances rhizosphere priming effects on soil organic matter decomposition more than non-nodulated soybean. Soil Biology & Biochemistry, 51, 56-65. |
[47] | Zhu B, Gutknecht JLM, Herman DJ, Keck DC, Firestone MK, Cheng WX (2014). Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biology & Biochemistry, 76, 183-192. |
[48] | Zhu B, Panke-Buisse K, Kao-Kniffin J (2015). Nitrogen fertilization has minimal influence on rhizosphere effects of smooth crabgrass (Digitaria ischaemum) and bermudagrass (Cynodon dactylon). Journal of Plant Ecology, 8, 390-400. |
[49] | Zhu XM, Liu DY, Yin HJ (2021). Roots regulate microbial N processes to achieve an efficient NH4+ supply in the rhizosphere of alpine coniferous forests. Biogeochemistry, 155, 39-57. |
[1] | 廖苏慧 倪隆康 秦佳双 谭羽 顾大形. 中亚热带喀斯特森林不同演替阶段树种水力调节策略差异[J]. 植物生态学报, 2024, 48(9): 0-0. |
[2] | 冉佳鑫 张宇辉 王云 杨智杰 毛超. 增温和氮磷添加对亚热带森林凋落物溶解有机碳生物可降解性的影响[J]. 植物生态学报, 2024, 48(9): 0-0. |
[3] | 彭思瑞, 张慧玲, 孙兆林, 赵学超, 田鹏, 陈迪马, 王清奎, 刘圣恩. 长期凋落物去除对亚热带杉木林土壤有机碳及其组分的影响[J]. 植物生态学报, 2024, 48(8): 1078-1088. |
[4] | 王燕, 张全智, 王传宽, 郭万桂, 蔺佳玮. 恢复方式对东北东部森林土壤碳氮磷计量特征的影响[J]. 植物生态学报, 2024, 48(7): 943-954. |
[5] | 郑莉莉, 余林兰, 戴萍, 薛跃规, 龙萍. 广西大石围天坑群植物叶片养分特征及其适应性[J]. 植物生态学报, 2024, 48(7): 872-887. |
[6] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[7] | 周建, 王焓. 森林径级结构研究: 从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(6): 675-689. |
[8] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[9] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[10] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[11] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[12] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[13] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[14] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[15] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19