植物生态学报 ›› 2024, Vol. 48 ›› Issue (9): 1223-1231.DOI: 10.17521/cjpe.2024.0004 cstr: 32100.14.cjpe.2024.0004
收稿日期:
2024-01-05
接受日期:
2024-04-08
出版日期:
2024-09-20
发布日期:
2024-04-08
通讯作者:
顾大形(基金资助:
LIAO Su-Hui, NI Long-Kang, QIN Jia-Shuang, TAN Yu, GU Da-Xing*()
Received:
2024-01-05
Accepted:
2024-04-08
Online:
2024-09-20
Published:
2024-04-08
Contact:
GU Da-Xing (Supported by:
摘要:
喀斯特地区由于岩石大面积裸露、土层浅薄, 地表极易失水, 因此面临着抗干旱能力弱、演替进程缓慢等问题。探究中亚热带喀斯特森林不同演替阶段树种水力调节策略的变化, 了解演替背后的干旱适应机制, 能够为植被恢复和重建提供理论依据。该研究以喀斯特地区演替早、中和后期森林群落中的优势种为研究对象, 测量并计算了茎和叶栓塞脆弱性(P50S和P50L)、脆弱性分割(P50L-S)、茎和叶比导率(KS和KL)、叶水力安全边界(HSML)等水力性状, 以及边材密度、胡伯尔值和比叶面积(SLA)等水力相关指标。结果表明: (1)该研究在物种间和群落间均未发现水力安全与效率的权衡, P50S、KS和KL均随正向演替而减小。(2)所有树种均存在正向脆弱性分割, 变化范围为0.53-6.59 MPa, 演替早期显著大于中期和后期, 且分割主要由P50S决定。(3)演替早期植物拥有较大的栓塞抗性和KS、KL, 以提高水分运输和抵抗干旱的能力, 后期形成较大的SLA以增加对光资源的竞争。该研究揭示了喀斯特森林植物随着演替发展过程, 水力调节策略由以提高水力效率与安全的策略向增加对光合碳投资的策略转变的变化规律, 为阐明喀斯特森林群落演替过程中的植物干旱适应机制提供理论依据。
廖苏慧, 倪隆康, 秦佳双, 谭羽, 顾大形. 中亚热带喀斯特森林不同演替阶段树种水力调节策略差异. 植物生态学报, 2024, 48(9): 1223-1231. DOI: 10.17521/cjpe.2024.0004
LIAO Su-Hui, NI Long-Kang, QIN Jia-Shuang, TAN Yu, GU Da-Xing. Hydraulic regulation strategies of karst forest species exhibit variation across different successional stages in the mid-subtropical zone. Chinese Journal of Plant Ecology, 2024, 48(9): 1223-1231. DOI: 10.17521/cjpe.2024.0004
物种 Species | 科 Family | 代码 Code | 生活型 Life form |
---|---|---|---|
演替早期 Early-successional stage | |||
圆叶乌桕 Triadica rotundifolia | 大戟科 Euphorbiaceae | E-Tr | 落叶灌木 Deciduous shrub |
龙须藤 Phanera championii | 豆科 Fabaceae | Phc | 常绿木质藤本 Evergreen woody vine |
雀梅藤 Sageretia thea | 鼠李科 Rhamnaceae | St | 常绿灌木 Evergreen shrub |
火棘 Pyracantha fortuneana | 蔷薇科 Rosaceae | Pf | 常绿灌木 Evergreen shrub |
朴树 Celtis sinensis | 大麻科 Cannabaceae | E-Cs | 落叶乔木 Deciduous tree |
演替中期 Mid-successional stage | |||
长叶女贞 Ligustrum compactum | 木犀科 Oleaceae | Lc | 常绿灌木 Evergreen shrub |
石山巴豆 Croton euryphyllus | 大戟科 Euphorbiaceae | Ce | 常绿灌木 Evergreen shrub |
黄连木 Pistacia chinensis | 漆树科 Anacardiaceae | Pic | 落叶乔木 Deciduous tree |
光皮梾木 Cornus wilsoniana | 山茱萸科 Cornaceae | M-Cw | 落叶乔木 Deciduous tree |
朴树 Celtis sinensis | 大麻科 Cannabaceae | M-Cs | 落叶乔木 Deciduous tree |
南酸枣 Choerospondias axillaris | 漆树科 Anacardiaceae | Ca | 落叶乔木 Deciduous tree |
鸡仔木 Sinoadina racemosa | 茜草科 Rubiaceae | M-Sr | 落叶乔木 Deciduous tree |
演替后期 Late-successional stage | |||
黄梨木 Boniodendron minus | 无患子科 Sapindaceae | Bm | 落叶乔木 Deciduous tree |
青冈 Quercus glauca | 壳斗科 Fagaceae | Qg | 常绿乔木 Evergreen tree |
光腺合欢 Albizia calcarea | 豆科 Fabaceae | Ac | 落叶乔木 Deciduous tree |
光皮梾木 Cornus wilsoniana | 山茱萸科 Cornaceae | L-Cw | 落叶乔木 Deciduous tree |
灰岩润楠 Machilus calcicola | 樟科 Lauraceae | Mc | 常绿乔木 Evergreen tree |
圆叶乌桕 Triadica rotundifolia | 大戟科 Euphorbiaceae | L-Tr | 落叶灌木 Deciduous shrub |
粗糠柴 Mallotus philippensis | 大戟科 Euphorbiaceae | Mp | 常绿乔木 Evergreen tree |
鸡仔木 Sinoadina racemosa | 茜草科 Rubiaceae | L-Sr | 落叶乔木 Deciduous tree |
表1 中亚热带喀斯特森林优势树种信息
Table 1 Information of dominant tree species in karst forests in mid-subtropical zone
物种 Species | 科 Family | 代码 Code | 生活型 Life form |
---|---|---|---|
演替早期 Early-successional stage | |||
圆叶乌桕 Triadica rotundifolia | 大戟科 Euphorbiaceae | E-Tr | 落叶灌木 Deciduous shrub |
龙须藤 Phanera championii | 豆科 Fabaceae | Phc | 常绿木质藤本 Evergreen woody vine |
雀梅藤 Sageretia thea | 鼠李科 Rhamnaceae | St | 常绿灌木 Evergreen shrub |
火棘 Pyracantha fortuneana | 蔷薇科 Rosaceae | Pf | 常绿灌木 Evergreen shrub |
朴树 Celtis sinensis | 大麻科 Cannabaceae | E-Cs | 落叶乔木 Deciduous tree |
演替中期 Mid-successional stage | |||
长叶女贞 Ligustrum compactum | 木犀科 Oleaceae | Lc | 常绿灌木 Evergreen shrub |
石山巴豆 Croton euryphyllus | 大戟科 Euphorbiaceae | Ce | 常绿灌木 Evergreen shrub |
黄连木 Pistacia chinensis | 漆树科 Anacardiaceae | Pic | 落叶乔木 Deciduous tree |
光皮梾木 Cornus wilsoniana | 山茱萸科 Cornaceae | M-Cw | 落叶乔木 Deciduous tree |
朴树 Celtis sinensis | 大麻科 Cannabaceae | M-Cs | 落叶乔木 Deciduous tree |
南酸枣 Choerospondias axillaris | 漆树科 Anacardiaceae | Ca | 落叶乔木 Deciduous tree |
鸡仔木 Sinoadina racemosa | 茜草科 Rubiaceae | M-Sr | 落叶乔木 Deciduous tree |
演替后期 Late-successional stage | |||
黄梨木 Boniodendron minus | 无患子科 Sapindaceae | Bm | 落叶乔木 Deciduous tree |
青冈 Quercus glauca | 壳斗科 Fagaceae | Qg | 常绿乔木 Evergreen tree |
光腺合欢 Albizia calcarea | 豆科 Fabaceae | Ac | 落叶乔木 Deciduous tree |
光皮梾木 Cornus wilsoniana | 山茱萸科 Cornaceae | L-Cw | 落叶乔木 Deciduous tree |
灰岩润楠 Machilus calcicola | 樟科 Lauraceae | Mc | 常绿乔木 Evergreen tree |
圆叶乌桕 Triadica rotundifolia | 大戟科 Euphorbiaceae | L-Tr | 落叶灌木 Deciduous shrub |
粗糠柴 Mallotus philippensis | 大戟科 Euphorbiaceae | Mp | 常绿乔木 Evergreen tree |
鸡仔木 Sinoadina racemosa | 茜草科 Rubiaceae | L-Sr | 落叶乔木 Deciduous tree |
性状 Trait | 缩写 Abbreviation | 单位 Unit | 范围 Range |
---|---|---|---|
茎栓塞脆弱性 Vulnerability of stem to embolism | P50S | MPa | -7.09- -0.83 |
叶栓塞脆弱性 Vulnerability of leaf to embolism | P50L | MPa | -1.69- -0.30 |
脆弱性分割 Vulnerability segmentation | P50L-S | MPa | 0.53-6.59 |
边材密度 Sapwood density | WD | g·cm-3 | 0.43-0.72 |
茎比导率 Stem specific hydraulic conductivity | KS | kg·m-1·s-1·MPa-1 | 0.69-4.36 |
胡伯尔值 Huber value | HV | cm2·g-1 | (0.8-3.0) × 10-4 |
叶比导率 Leaf specific hydraulic conductivity | KL | kg·m-1·s-1·MPa-1 | (0.6-9.0) × 10-4 |
比叶面积 Specific leaf area | SLA | m²·kg-1 | 6.08-15.03 |
年最低水势 Lowest water potential at annual | ψmin | MPa | -6.15- -0.75 |
叶水力安全边界 Hydraulic safety margin of leaf | HSML | MPa | -6.27- -0.25 |
表2 本研究所用主要指标名称、符号、单位及值的范围
Table 2 List of abbreviations including the names, symbols, units and ranges used in this study
性状 Trait | 缩写 Abbreviation | 单位 Unit | 范围 Range |
---|---|---|---|
茎栓塞脆弱性 Vulnerability of stem to embolism | P50S | MPa | -7.09- -0.83 |
叶栓塞脆弱性 Vulnerability of leaf to embolism | P50L | MPa | -1.69- -0.30 |
脆弱性分割 Vulnerability segmentation | P50L-S | MPa | 0.53-6.59 |
边材密度 Sapwood density | WD | g·cm-3 | 0.43-0.72 |
茎比导率 Stem specific hydraulic conductivity | KS | kg·m-1·s-1·MPa-1 | 0.69-4.36 |
胡伯尔值 Huber value | HV | cm2·g-1 | (0.8-3.0) × 10-4 |
叶比导率 Leaf specific hydraulic conductivity | KL | kg·m-1·s-1·MPa-1 | (0.6-9.0) × 10-4 |
比叶面积 Specific leaf area | SLA | m²·kg-1 | 6.08-15.03 |
年最低水势 Lowest water potential at annual | ψmin | MPa | -6.15- -0.75 |
叶水力安全边界 Hydraulic safety margin of leaf | HSML | MPa | -6.27- -0.25 |
性状 Trait | 演替早期 Early-successional stage | 演替中期 Mid-successional stage | 演替后期 Late-successional stage |
---|---|---|---|
P50S | -3.94 ± 0.85b | -2.25 ± 0.33a | -1.98 ± 0.24a |
P50L | -0.67 ± 0.13a | -0.82 ± 0.17a | -0.52 ± 0.04a |
P50L-S | 3.28 ± 0.94a | 1.43 ± 0.24b | 1.46 ± 0.26b |
WD | 0.56 ± 0.04a | 0.62 ± 0.02a | 0.553 ± 0.02a |
KS | 2.72 ± 0.52a | 2.43 ± 0.11ab | 1.75 ± 0.20b |
Hv | 2.09 × 10-4 ± 0.00a | 1.44 × 10-4 ± 0.00a | 1.57 × 10-4 ± 0.00a |
KL | 4.98 × 10-4 ± 0.01a | 2.98 × 10-4 ± 0.00ab | 2.48 × 10-4 ± 0.00b |
SLA | 6.55 ± 0.31b | 11.86 ± 0.84a | 11.83 ± 0.92a |
ψmin | -4.56 ± 0.78a | -2.51 ± 0.47a | -4.21 ± 0.70a |
HSML | -3.89 ± 0.74b | -1.69 ± 0.89a | -3.04 ± 1.96b |
表3 中亚热带喀斯特森林不同演替阶段水力相关性状差异(平均值±标准差)
Table 3 Differences in various hydraulic traits at different stages of karst forest in the mid-subtropical zone (mean ± SD)
性状 Trait | 演替早期 Early-successional stage | 演替中期 Mid-successional stage | 演替后期 Late-successional stage |
---|---|---|---|
P50S | -3.94 ± 0.85b | -2.25 ± 0.33a | -1.98 ± 0.24a |
P50L | -0.67 ± 0.13a | -0.82 ± 0.17a | -0.52 ± 0.04a |
P50L-S | 3.28 ± 0.94a | 1.43 ± 0.24b | 1.46 ± 0.26b |
WD | 0.56 ± 0.04a | 0.62 ± 0.02a | 0.553 ± 0.02a |
KS | 2.72 ± 0.52a | 2.43 ± 0.11ab | 1.75 ± 0.20b |
Hv | 2.09 × 10-4 ± 0.00a | 1.44 × 10-4 ± 0.00a | 1.57 × 10-4 ± 0.00a |
KL | 4.98 × 10-4 ± 0.01a | 2.98 × 10-4 ± 0.00ab | 2.48 × 10-4 ± 0.00b |
SLA | 6.55 ± 0.31b | 11.86 ± 0.84a | 11.83 ± 0.92a |
ψmin | -4.56 ± 0.78a | -2.51 ± 0.47a | -4.21 ± 0.70a |
HSML | -3.89 ± 0.74b | -1.69 ± 0.89a | -3.04 ± 1.96b |
图1 中亚热带喀斯特森林不同演替阶段各树种的脆弱性分割(P50L-S, A)和叶水力安全边界(HSML, B)。物种名称见表1。
Fig. 1 Vulnerability segmentation (P50L-S, A) and hydraulic safety margin (HSML, B) of various tree species in different successional stages in the mid-subtropical zone. Species see Table 1.
P50S | KS | WD | P50L | KL | SLA | P50L-S | ψmin | Hv | HSML | |
---|---|---|---|---|---|---|---|---|---|---|
P50S | 1 | |||||||||
KS | -0.02ns | 1 | ||||||||
WD | -0.46* | 0.24ns | 1 | |||||||
P50L | 0.07ns | -0.34ns | -0.33ns | 1 | ||||||
KL | -0.35ns | 0.52* | -0.12ns | 0.06ns | 1 | |||||
SLA | 0.47* | -0.17ns | 0.02ns | 0.14ns | -0.58** | 1 | ||||
P50L-S | -0.97** | -0.17ns | -0.57** | 0.07ns | 0.27ns | -0.30ns | 1 | |||
ψmin | 0.08ns | 0.24ns | 0.04ns | 0.22ns | -0.01ns | 0.11ns | -0.06ns | 1 | ||
Hv | -0.20ns | -0.01ns | -0.15ns | 0.34ns | 0.74** | -0.45* | 0.19ns | 0.04ns | 1 | |
HSML | -0.38ns | 0.15ns | -0.07ns | 0.11ns | 0.15ns | -0.08ns | 0.39ns | 0.97** | 0.19ns | 1 |
表4 中亚热带喀斯特森林树种各水力性状的相关性矩阵
Table 4 Correlation matrix of various hydraulic traits of tree species in mid-subtropical karst forests
P50S | KS | WD | P50L | KL | SLA | P50L-S | ψmin | Hv | HSML | |
---|---|---|---|---|---|---|---|---|---|---|
P50S | 1 | |||||||||
KS | -0.02ns | 1 | ||||||||
WD | -0.46* | 0.24ns | 1 | |||||||
P50L | 0.07ns | -0.34ns | -0.33ns | 1 | ||||||
KL | -0.35ns | 0.52* | -0.12ns | 0.06ns | 1 | |||||
SLA | 0.47* | -0.17ns | 0.02ns | 0.14ns | -0.58** | 1 | ||||
P50L-S | -0.97** | -0.17ns | -0.57** | 0.07ns | 0.27ns | -0.30ns | 1 | |||
ψmin | 0.08ns | 0.24ns | 0.04ns | 0.22ns | -0.01ns | 0.11ns | -0.06ns | 1 | ||
Hv | -0.20ns | -0.01ns | -0.15ns | 0.34ns | 0.74** | -0.45* | 0.19ns | 0.04ns | 1 | |
HSML | -0.38ns | 0.15ns | -0.07ns | 0.11ns | 0.15ns | -0.08ns | 0.39ns | 0.97** | 0.19ns | 1 |
图2 不同叶物候树种午间最低水势(ψmin)的差异。*, p < 0.05。
Fig. 2 Differences in the lowest water potential (ψmin) at noon among different leaf phenological tree species. *, p < 0.05.
[1] | Avila RT, Guan XY, Kane CN, Cardoso AA, Batz TA, DaMatta FM, Jansen S, McAdam SAM (2022). Xylem embolism spread is largely prevented by interconduit pit membranes until the majority of conduits are gas-filled. Plant, Cell & Environment, 45, 1204-1215. |
[2] | Bonal D, Born C, Brechet C, Coste S, Marcon E, Roggy JC, Guehl JM (2007). The successional status of tropical rainforest tree species is associated with differences in leaf carbon isotope discrimination and functional traits. Annals of Forest Science, 64, 169-176. |
[3] | Bouche PS, Delzon S, Choat B, Badel E, Brodribb TJ, Burlett R, Cochard H, Charra-Vaskou K, Lavigne B, Li S, Mayr S, Morris H, Torres-Ruiz JM, Zufferey V, Jansen S (2016). Are needles of Pinus pinaster more vulnerable to xylem embolism than branches? New insights from X-ray computed tomography. Plant, Cell & Environment, 39, 860-870. |
[4] | Brodribb TJ, Holbrook NM (2007). Forced depression of leaf hydraulic conductance in situ: effects on the leaf gas exchange of forest trees. Functional Ecology, 21, 705-712. |
[5] | Cai J, Tyree MT (2010). The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant, Cell & Environment, 33, 1059-1069. |
[6] | Chen HS, Nie YP, Wang KL (2013). Spatio-temporal heterogeneity of water and plant adaptation mechanisms in karst regions: a review. Acta Ecologica Sinica, 33, 317-326. |
[陈洪松, 聂云鹏, 王克林 (2013). 岩溶山区水分时空异质性及植物适应机理研究进展. 生态学报, 33, 317-326.] | |
[7] | Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al.(2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755. |
[8] | Creek D, Blackman CJ, Brodribb TJ, Choat B, Tissue DT (2018). Coordination between leaf, stem, and root hydraulics and gas exchange in three arid-zone angiosperms during severe drought and recovery. Plant, Cell & Environment, 41, 2869-2881. |
[9] | Ding YL, Nie YP, Chen HS, Wang KL, Querejeta JI (2021). Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. New Phytologist, 229, 1339-1353. |
[10] | Han L, Zhao H, Wang W, Liu WH, Jiang ZM, Cai J (2023). Hydraulic vulnerability segmentation and its correlation with growth in hybrid poplar. Scientia Silvae Sinicae, 59(3), 94-103. |
[韩璐, 赵涵, 王薇, 刘文辉, 姜在民, 蔡靖 (2023). 白杨杂交子代栓塞脆弱性分割及与生长的关系. 林业科学, 59(3), 94-103.] | |
[11] | Jiang ZC, Li XK, Zeng FP (2007). Ecological Reconstruction of Karst Peaks, Clusters, and Depressions. Geological Publishing House, Beijing. 151. |
[蒋忠诚, 李先琨, 曾馥平 (2007). 岩溶峰丛洼地生态重建. 地质出版社, 北京. 151.] | |
[12] |
Jin Y, Wang CK, Zhou ZH (2019). Conifers but not angiosperms exhibit vulnerability segmentation between leaves and branches in a temperate forest. Tree Physiology, 39, 454-462.
DOI PMID |
[13] |
Johnson DM, Wortemann R, McCulloh KA, Jordan-Meille L, Ward E, Warren JM, Palmroth S, Domec JC (2016). A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiology, 36, 983-993.
DOI PMID |
[14] | Levionnois S, Ziegler C, Heuret P, Jansen S, Stahl C, Calvet E, Goret JY, Bonal D, Coste S (2021). Is vulnerability segmentation at the leaf-stem transition a drought resistance mechanism? A theoretical test with a trait-based model for Neotropical canopy tree species. Annals of Forest Science, 78, 87. DOI: 10.1007/s13595-021-01094-9. |
[15] | Li DQ, Zou Q, Cheng BS (1990). Pressure chamber method for measuring water potential of plant tissues. Shandong Agricultural Sciences, 22(3), 46-48. |
[李德全, 邹琦, 程炳嵩 (1990). 测定植物组织水势的压力室法. 山东农业科学, 22(3), 46-48.] | |
[16] | Li S, Wang J, Lu S, Salmon Y, Liu P, Guo JK (2023). Trade-off between hydraulic safety and efficiency in plant xylem and its influencing factors. Forests, 14, 1817. DOI: 10.3390/f14091817. |
[17] | Li YJ, Zheng JM, Wang GZ, Zhou JX, Liu YG, Ha WX (2021). A study of functional traits of natural secondary forests and their influencing factors in different succession stages in karst areas: a case study of Dahei Mountain, Yunnan Province. Acta Geoscientica Sinica, 42, 397-406. |
[李亚锦, 郑景明, 王根柱, 周金星, 刘玉国, 哈文秀 (2021). 喀斯特区天然林不同演替阶段功能性状特征及其影响因素研究——以云南大黑山为例. 地球学报, 42, 397-406.] | |
[18] | Losso A, Bär A, Dämon B, Dullin C, Ganthaler A, Petruzzellis F, Savi T, Tromba G, Nardini A, Mayr S, Beikircher B (2019). Insights from in vivo micro-CT analysis: testing the hydraulic vulnerability segmentation in Acer pseudoplatanus and Fagus sylvatica seedlings. New Phytologist, 221, 1831-1842. |
[19] | Luo DD, Wang CK, Jin Y (2021). Response mechanisms of hydraulic systems of woody plants to drought stress. Chinese Journal of Plant Ecology, 45, 925-941. |
[罗丹丹, 王传宽, 金鹰 (2021). 木本植物水力系统对干旱胁迫的响应机制. 植物生态学报, 45, 925-941.]
DOI |
|
[20] |
Mujawamariya M, Wittemann M, Dusenge ME, Manishimwe A, Ntirugulirwa B, Zibera E, Nsabimana D, Wallin G, Uddling J (2023). Contrasting warming responses of photosynthesis in early- and late-successional tropical trees. Tree Physiology, 43, 1104-1117.
DOI PMID |
[21] |
Nardini A, Pedà G, La Rocca N (2012). Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho- anatomical bases, carbon costs and ecological consequences. New Phytologist, 196, 788-798.
DOI PMID |
[22] | Ni MY, Aritsara ANA, Wang YQ, Huang DL, Xiang W, Wan CY, Zhu SD (2021). Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical karst region. Chinese Journal of Plant Ecology, 45, 394-403. |
[倪鸣源, Aritsara ANA, 王永强, 黄冬柳, 项伟, 万春燕, 朱师丹 (2021). 中亚热带喀斯特常绿落叶阔叶混交林典型树种的木质部解剖与功能特征分析. 植物生态学报, 45, 394-403.] | |
[23] | Nolf M, Creek D, Duursma R, Holtum J, Mayr S, Choat B (2015). Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species. Plant, Cell & Environment, 38, 2652-2661. |
[24] |
Pivovaroff AL, Sack L, Santiago LS (2014). Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. New Phytologist, 203, 842-850.
DOI PMID |
[25] |
Rodriguez-Dominguez CM, Carins-Murphy MR, Lucani C, Brodribb TJ (2018). Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots. New Phytologist, 218, 1025-1035.
DOI PMID |
[26] |
Sperry JS, Tyree MT (1988). Mechanism of water stress- induced xylem embolism. Plant Physiology, 88, 581-587.
DOI PMID |
[27] | Tan FS, Song HQ, Li ZG, Zhang QW, Zhu SD (2019). Hydraulic safety margin of 17 co-occurring woody plants in a seasonal rain forest in Guangxi’s Southwest karst landscape, China. Chinese Journal of Plant Ecology, 43, 227-237. |
[谭凤森, 宋慧清, 李忠国, 张启伟, 朱师丹 (2019). 桂西南喀斯特季雨林木本植物的水力安全. 植物生态学报, 43, 227-237.]
DOI |
|
[28] | Tyree MT, Cochard H, Cruiziat P, Sinclair B, Ameglio T (1993). Drought-induced leaf shedding in walnut: evidence for vulnerability segmentation. Plant, Cell & Environment, 16, 879-882. |
[29] | Tyree MT, Ewers FW (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119, 345-360. |
[30] | Wan CY, Yu JR, Zhu SD (2023). Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species. Chinese Journal of Plant Ecology, 47, 1386-1397. |
[万春燕, 余俊瑞, 朱师丹 (2023). 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异. 植物生态学报, 47, 1386-1397.]
DOI |
|
[31] | Wen L, Song TQ, Du H, Wang KL, Peng WX, Zeng FP, Zeng ZX, He TG (2015). The succession characteristics and its driving mechanism of plant community in karst region, Southwest China. Acta Ecologica Sinica, 35, 5822-5833. |
[文丽, 宋同清, 杜虎, 王克林, 彭晚霞, 曾馥平, 曾昭霞, 何铁光 (2015). 中国西南喀斯特植物群落演替特征及驱动机制. 生态学报, 35, 5822-5833.] | |
[32] | Woodruff DR, McCulloh KA, Warren JM, Meinzer FC, Lachenbruch B (2007). Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir. Plant, Cell & Environment, 30, 559-569. |
[33] | Wu TH, Long CL, Xiong L, Li J, Liu Q (2023). Relationship between plant leaf functional traits and soil factors at different succession stages in karst forest of Maolan. Guihaia, 43, 463-472. |
[吴陶红, 龙翠玲, 熊玲, 李娟, 刘奇 (2023). 茂兰喀斯特森林不同演替阶段植物叶片功能性状与土壤因子的关系. 广西植物, 43, 463-472.] | |
[34] | Yu JR, Wan CY, Zhu SD (2023). Hydraulic vulnerability segmentation in woody plant species from tropical and subtropical karst forests. Chinese Journal of Plant Ecology, 47, 1576-1584. |
[余俊瑞, 万春燕, 朱师丹 (2023). 热带亚热带喀斯特森林木本植物的水力脆弱性分割. 植物生态学报, 47, 1576-1584.]
DOI |
|
[35] | Yuan DX (1992). Karst in southwest China and its comparison with karst in North China. Quaternary Sciences, 12, 352-361. |
[袁道先 (1992). 中国西南部的岩溶及其与华北岩溶的对比. 第四纪研究, 12, 352-361.] | |
[36] | Zhang SB, Wen GJ, Qu YY, Yang LY, Song Y (2022). Trade-offs between xylem hydraulic efficiency and mechanical strength in Chinese evergreen and deciduous savanna species. Tree Physiology, 42, 1337-1349. |
[37] | Zhang SB, Wen GJ, Yang DX (2019). Drought-induced mortality is related to hydraulic vulnerability segmentation of tree species in a savanna ecosystem. Forests, 10, 697. DOI: 10.3390/f10080697. |
[38] |
Zhao YT, Xu MS, Zhang ZH, Zhou LL, Zhang QQ, Arshad A, Song YJ, Yan ER (2016). Hydraulic architecture of evergreen broad-leaved woody plants at different successional stages in Tiantong National Forest Park, Zhejiang Province, China. Chinese Journal of Plant Ecology, 40, 116-126.
DOI |
[赵延涛, 许洺山, 张志浩, 周刘丽, 张晴晴, Arshad A, 宋彦君, 阎恩荣 (2016). 浙江天童常绿阔叶林不同演替阶段木本植物的水力结构特征. 植物生态学报, 40, 116-126.]
DOI |
|
[39] | Zheng SX, Shangguan ZP (2007). Photosynthetic characteristics and their relationships with leaf nitrogen content and leaf mass per area in different plant functional types. Acta Ecologica Sinica, 27, 171-181. |
[郑淑霞, 上官周平 (2007). 不同功能型植物光合特性及其与叶氮含量、比叶重的关系. 生态学报, 27, 171-181.] | |
[40] | Zhu SD, Chen YJ, Cao KF, Ye Q (2015). Interspecific variation in branch and leaf traits among three Syzygium tree species from different successional tropical forests. Functional Plant Biology, 42, 423-432. |
[41] | Zhu SD, Liu H, Xu QY, Cao KF, Ye Q (2016). Are leaves more vulnerable to cavitation than branches. Functional Ecology, 30, 1740-1744. |
[1] | 王振宇 黄志群. 亚热带27种木本植物叶片性状对植食作用的影响: 验证生长-防御权衡假说[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈炫铮, 朱耀军, 高居娟, 刘一凡, 王荣, 方涛, 罗芳丽, 薛伟, 于飞海. 植物-土壤反馈时空变异研究进展[J]. 植物生态学报, 2024, 48(8): 955-966. |
[3] | 王小林, 周维, 赵梅, 丁钰桐, 杨冬梅, 张吟霜, 尹梦琪, 庄悦, 彭国全. 雷竹和青皮竹导管结构的轴向变化[J]. 植物生态学报, 2024, 48(7): 915-929. |
[4] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[5] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[6] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[7] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[8] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[9] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[10] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[11] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[12] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[13] | 代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[14] | 任金培, 李俊鹏, 王卫锋, 代永欣, 王林. 八个树种叶水力性状对水分条件的响应及其驱动因素[J]. 植物生态学报, 2021, 45(9): 942-951. |
[15] | 罗丹丹, 王传宽, 金鹰. 木本植物水力系统对干旱胁迫的响应机制[J]. 植物生态学报, 2021, 45(9): 925-941. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19