植物生态学报 ›› 2024, Vol. 48 ›› Issue (11): 1501-1509.DOI: 10.17521/cjpe.2023.0290 cstr: 32100.14.cjpe.2023.0290
所属专题: 植物功能性状
收稿日期:
2023-10-12
接受日期:
2024-02-08
出版日期:
2024-11-20
发布日期:
2024-12-03
通讯作者:
*黄志群(zhiqunhuang@fjnu.edu.cn)
基金资助:
WANG Zhen-Yu, HUANG Zhi-Qun*()
Received:
2023-10-12
Accepted:
2024-02-08
Online:
2024-11-20
Published:
2024-12-03
Contact:
*HUANG Zhi-Qun (zhiqunhuang@fjnu.edu.cn)
Supported by:
摘要:
木本植物的植食率存在巨大的种间差异, 并极大地调控着森林生态系统功能。生长-防御权衡假说认为, 植物的固有生长率决定着其在防御和生长方面的投资权衡, 从而影响植食率的种间变异。但生长-防御权衡假说的普适性仍然存在巨大争议, 尤其在物种高度丰富的亚热带森林。该研究测量了12种与植食性昆虫适口性相关的叶片性状, 并通过大样本调查植物物种的植食率, 探究亚热带地区27种木本植物叶片性状的权衡关系以及这些性状对植食率和植物生长率的影响。该研究发现: 1)控制性状的系统发育依赖性后, 物种在空间上的排序并没有呈现一维的“生长-防御”权衡; 2)缩合单宁和可溶性酚含量等化学防御性状对植食率没有显著影响; 3)物种固有的生长速度与化学防御物质之间也并没有表现出权衡关系。该研究结果没有支持生长-防御权衡假说的观点, 亚热带森林的植物在进化上可能同时经历环境和天敌的强烈选择, 使植物表现出更加灵活的性状组合来适应复杂的生物和非生物环境。
王振宇, 黄志群. 亚热带27种木本植物叶片性状对植食作用的影响: 验证生长-防御权衡假说. 植物生态学报, 2024, 48(11): 1501-1509. DOI: 10.17521/cjpe.2023.0290
WANG Zhen-Yu, HUANG Zhi-Qun. Effects of leaf traits on herbivory across 27 woody plants in the subtropical forest: testing the growth-defense trade-off hypothesis. Chinese Journal of Plant Ecology, 2024, 48(11): 1501-1509. DOI: 10.17521/cjpe.2023.0290
图1 亚热带森林27种木本植物的系统发育树和叶片植食率(平均值±标准差)。括号内数字为重复数。
Fig. 1 Phylogenetic tree and leaf damage (%) on young, fully expanded leaves of 27 tree species in subtropical forests (mean ± SD). Number of repetitions in parentheses.
图2 亚热带12个叶片性状的系统发育主成分分析(PPCA, A)与前两个系统发育主成分轴上的物种坐标(B)。Cellulose, 纤维素含量; C:N, 碳氮比; LA, 叶面积; LC, 叶碳含量; LDMC, 叶干物质含量; Lignin, 木质素含量; LN, 叶氮含量; LP, 叶磷含量; LT, 叶厚度; Phenolics, 可溶性酚含量; SLA, 比叶面积; Tannin, 单宁含量。
Fig. 2 Biplot of the factor loadings for traits on the first two axes of the phylogenetic principal component analysis (PPCA, A) and biplot of species coordinates arrayed on the first two axes of the phylogenetic principal component analysis (B). Cellulose, cellulose content; C:N, carbon:nitrogen; LA, leaf area; LC, leaf carbon content; LDMC, leaf dry matter content; Lignin, lignin content; LN, leaf nitrogen content; LP, leaf phosphorus content; LT, leaf thickness; Phenolics, soluble phenolics content; SLA, specific leaf area; Tannin, tannin content.
性状 Trait | LA | LP | LT | LC | LN | LDMC | SLA | Tannin | Phenolics | Cellulose | Lignin |
---|---|---|---|---|---|---|---|---|---|---|---|
LP | -0.93*** | ||||||||||
LT | 0.79*** | -0.56*** | |||||||||
LC | 1.13** | -1.20*** | 1.20*** | ||||||||
LN | 0.19 | 0.77 | 0.21 | -0.39 | |||||||
LDMC | 0.32 | -1.08** | 0.89 | 0.37 | -0.35* | ||||||
SLA | -0.85*** | 0.89*** | -1.24*** | -0.44*** | 0.14 | -0.36*** | |||||
Tannin | -0.59*** | 0.49*** | -0.72*** | -0.22*** | 0.00 | -0.12* | 0.42*** | ||||
Phenolics | -0.72** | 0.94*** | -1.09*** | -0.56*** | 0.01 | -0.30* | 0.81*** | 1.57*** | |||
Cellulose | -0.68** | 0.27 | -0.30 | -0.28 | 0.01 | 0.21 | -0.11 | 0.24 | -0.19 | ||
Lignin | -1.20*** | 0.79*** | -1.48*** | -0.20 | -0.05 | -0.20 | 0.77*** | 2.01*** | 0.38 | 0.11 | |
C:N | 0.24 | -1.07** | 0.25 | 0.68* | -0.90*** | 0.51* | -0.91* | -0.57 | -0.31 | -0.18 | 0.04 |
表1 亚热带森林27种木本两两性状间系统发育最小二乘(PGLS)模型系数
Table 1 Coefficient of univariate phylogenetic generalized least squares (PGLS) models for trait pairs of 27 woody species in subtropical forests
性状 Trait | LA | LP | LT | LC | LN | LDMC | SLA | Tannin | Phenolics | Cellulose | Lignin |
---|---|---|---|---|---|---|---|---|---|---|---|
LP | -0.93*** | ||||||||||
LT | 0.79*** | -0.56*** | |||||||||
LC | 1.13** | -1.20*** | 1.20*** | ||||||||
LN | 0.19 | 0.77 | 0.21 | -0.39 | |||||||
LDMC | 0.32 | -1.08** | 0.89 | 0.37 | -0.35* | ||||||
SLA | -0.85*** | 0.89*** | -1.24*** | -0.44*** | 0.14 | -0.36*** | |||||
Tannin | -0.59*** | 0.49*** | -0.72*** | -0.22*** | 0.00 | -0.12* | 0.42*** | ||||
Phenolics | -0.72** | 0.94*** | -1.09*** | -0.56*** | 0.01 | -0.30* | 0.81*** | 1.57*** | |||
Cellulose | -0.68** | 0.27 | -0.30 | -0.28 | 0.01 | 0.21 | -0.11 | 0.24 | -0.19 | ||
Lignin | -1.20*** | 0.79*** | -1.48*** | -0.20 | -0.05 | -0.20 | 0.77*** | 2.01*** | 0.38 | 0.11 | |
C:N | 0.24 | -1.07** | 0.25 | 0.68* | -0.90*** | 0.51* | -0.91* | -0.57 | -0.31 | -0.18 | 0.04 |
PPCA 1 | PPCA 2 | PPCA 3 | PPCA 4 | |
---|---|---|---|---|
叶面积 Leaf area | 0.90 | -0.38 | -0.01 | -0.02 |
叶磷含量 Leaf phosphorus content | -0.90 | -0.11 | 0.36 | 0.00 |
叶厚度 Leaf thickness | 0.96 | -0.08 | 0.15 | -0.01 |
叶碳含量 Leaf carbon content | 0.67 | 0.00 | -0.60 | -0.30 |
叶氮含量 Leaf nitrogen content | -0.06 | -0.32 | 0.67 | -0.59 |
碳氮比 Carbon:nitrogen | 0.21 | 0.30 | -0.75 | 0.47 |
叶干物质含量 Leaf dry matter content | 0.43 | 0.66 | -0.16 | 0.31 |
比叶面积 Specific leaf area | -0.85 | -0.38 | 0.10 | -0.18 |
单宁含量 Tannin content | -0.98 | -0.05 | -0.10 | 0.00 |
可溶性酚含量 Soluble phenolics content | -0.70 | -0.46 | 0.14 | 0.48 |
纤维素含量 Cellulose content | -0.19 | 0.84 | 0.42 | -0.05 |
木质素含量 Lignin content | -0.80 | 0.09 | -0.40 | -0.30 |
表2 亚热带森林27种木本植物叶片性状在前4个系统发育主成分(PPCA)上的因子载荷
Table 2 Factor loadings of the first four components of phylogenetic principal component analysis (PPCA) on traits of 27 woody species in subtropical forests
PPCA 1 | PPCA 2 | PPCA 3 | PPCA 4 | |
---|---|---|---|---|
叶面积 Leaf area | 0.90 | -0.38 | -0.01 | -0.02 |
叶磷含量 Leaf phosphorus content | -0.90 | -0.11 | 0.36 | 0.00 |
叶厚度 Leaf thickness | 0.96 | -0.08 | 0.15 | -0.01 |
叶碳含量 Leaf carbon content | 0.67 | 0.00 | -0.60 | -0.30 |
叶氮含量 Leaf nitrogen content | -0.06 | -0.32 | 0.67 | -0.59 |
碳氮比 Carbon:nitrogen | 0.21 | 0.30 | -0.75 | 0.47 |
叶干物质含量 Leaf dry matter content | 0.43 | 0.66 | -0.16 | 0.31 |
比叶面积 Specific leaf area | -0.85 | -0.38 | 0.10 | -0.18 |
单宁含量 Tannin content | -0.98 | -0.05 | -0.10 | 0.00 |
可溶性酚含量 Soluble phenolics content | -0.70 | -0.46 | 0.14 | 0.48 |
纤维素含量 Cellulose content | -0.19 | 0.84 | 0.42 | -0.05 |
木质素含量 Lignin content | -0.80 | 0.09 | -0.40 | -0.30 |
图3 亚热带森林物种分层聚类图。底部的每个分支代表一个物种。
Fig. 3 Phenogram from hierarchical cluster analysis in subtropical forests. Each branch at the bottom of the phenogram represents one species.
图4 系统发育最小二乘(PGLS)最优模型中叶片功能性状和相对生长率对植食率的影响(A)以及PGLS最优模型中叶片功能性状对相对生长率的影响(B)。点和线分别表示系数的平均值和95%的置信区间。Cellulose, 纤维素含量; LDMC, 叶干物质含量; LP, 叶磷含量; RGR, 相对生长率; Tannin, 单宁含量。*, p < 0.05; ***, p < 0.001。
Fig. 4 Effects of leaf traits and relative growth rates on the mean proportion of leaf damage by insect herbivores in most parsimonious phylogenetic generalized least squares (PGLS) model (A), and effects of leaf functional traits on relative growth rate in most parsimonious PGLS model (B). Points and lines show the means and 95% credible intervals of the coefficients, respectively. Cellulose, cellulose content; LDMC, leaf dry matter content; LP, leaf phosphorus content; RGR, relative growth rate; Tannin, tannin content. *, p < 0.05; ***, p < 0.001.
[1] | Agrawal AA (2007). Macroevolution of plant defense strategies. Trends in Ecology & Evolution, 22, 103-109. |
[2] | Agrawal AA, Fishbein M (2006). Plant defense syndromes. Ecology, 87, S132-S149. |
[3] |
Agrawal AA, Weber MG (2015). On the study of plant defence and herbivory using comparative approaches: How important are secondary plant compounds. Ecology Letters, 18, 985-991.
DOI PMID |
[4] | Albert G, Gauzens B, Loreau M, Wang S, Brose U (2022). The hidden role of multi-trophic interactions in driving diversity- productivity relationships. Ecology Letters, 25, 405-415. |
[5] | Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506, 85-88. |
[6] |
Cappelli SL, Pichon NA, Kempel A, Allan E (2020). Sick plants in grassland communities: a growth-defense trade- off is the main driver of fungal pathogen abundance. Ecology Letters, 23, 1349-1359.
DOI PMID |
[7] | Cárdenas RE, Valencia R, Kraft NJB, Argoti A, Dangles O (2014). Plant traits predict inter- and intraspecific variation in susceptibility to herbivory in a hyperdiverse Neotropical rain forest tree community. Journal of Ecology, 102, 939-952. |
[8] | Carmona D, Lajeunesse MJ, Johnson MTJ (2011). Plant traits that predict resistance to herbivores. Functional Ecology, 25, 358-367. |
[9] |
Chauvin KM, Asner GP, Martin RE, Kress WJ, Wright SJ, Field CB (2018). Decoupled dimensions of leaf economic and anti-herbivore defense strategies in a tropical canopy tree community. Oecologia, 186, 765-782.
DOI PMID |
[10] | Coley PD, Barone JA (1996). Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27, 305-335. |
[11] |
Coley PD, Bryant JP, Chapin III FS (1985). Resource availability and plant antiherbivore defense. Science, 230, 895-899.
DOI PMID |
[12] | Coley PD, Kursar TA (2014). On tropical forests and their pests. Science, 343, 35-36. |
[13] | Endara MJ, Coley PD (2011). The resource availability hypothesis revisited: a meta-analysis. Functional Ecology, 25, 389-398. |
[14] |
Fichtner A, Härdtle W, Bruelheide H, Kunz M, Li Y, von Oheimb G (2018). Neighbourhood interactions drive overyielding in mixed-species tree communities. Nature Communications, 9, 1144-1153.
DOI PMID |
[15] | Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Sääksjärvi I, Schultz JC, Coley PD (2006). The growth- defense trade-off and habitat specialization by plants in Amazonian forests. Ecology, 87, S150-S162. |
[16] | Goto M, Ehara H, Karita S, Takabe K, Ogawa N, Yamada Y, Ogawa S, Yahaya MS, Morita O (2003). Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop. Plant Science, 164, 349-356. |
[17] | Huang ZQ, Ran SS, Fu YR, Wan XH, Song X, Chen YX, Yu ZP (2022). Functionally dissimilar neighbours increase tree water use efficiency through enhancement of leaf phosphorus concentration. Journal of Ecology, 110, 2179-2189. |
[18] |
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
DOI PMID |
[19] | Kursar TA, Coley PD (2003). Convergence in defense syndromes of young leaves in tropical rainforests. Biochemical Systematics and Ecology, 31, 929-949. |
[20] |
Lebrija-Trejos E, Wright SJ, Hernández A, Reich PB (2014). Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest. Ecology, 95, 940-951.
PMID |
[21] |
Levi T, Barfield M, Barrantes S, Sullivan C, Holt RD, Terborgh J (2019). Tropical forests can maintain hyperdiversity because of enemies. Proceedings of the National Academy of Sciences of the United States of America, 116, 581-586.
DOI PMID |
[22] | Li Y, Schmid B, Schuldt A, Li S, Wang MQ, Fornoff F, Staab M, Guo PF, Anttonen P, Chesters D, Bruelheide H, Zhu CD, Ma K, Liu X (2023). Multitrophic arthropod diversity mediates tree diversity effects on primary productivity. Nature Ecology & Evolution, 7, 832-840. |
[23] |
Liu X, Swenson NG, Lin D, Mi X, Umaña MN, Schmid B, Ma K (2016). Linking individual-level functional traits to tree growth in a subtropical forest. Ecology, 97, 2396-2405.
DOI PMID |
[24] | Luo YQ, Yu MS, Yu JJ, Zheng SL, Liu JJ, Yu MJ (2017). Effects of plant traits and the relative abundance of common woody species on seedling herbivory in the Thousand Island Lake region. Chinese Journal of Plant Ecology, 41, 1033-1040. |
[骆杨青, 余梅生, 余晶晶, 郑诗璐, 刘佳佳, 于明坚 (2017). 千岛湖地区常见木本植物性状和相对多度对幼苗植食作用的影响. 植物生态学报, 41, 1033-1040.]
DOI |
|
[25] |
Moles AT, Peco B, Wallis IR, Foley WJ, Poore AGB, Seabloom EW, Vesk PA, Bisigato AJ, Cella-Pizarro L, Clark CJ, Cohen PS, Cornwell WK, Edwards W, Ejrnaes R, Gonzales-Ojeda T, et al. (2013). Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat? New Phytologist, 198, 252-263.
DOI PMID |
[26] | Njoroge B, Li Y, Otieno D, Liu S, Wei S, Meng Z, Zhang Q, Zhang D, Liu J, Chu G, Haider FU, Tenhunen J (2023). Seasonal droughts drive up carbon gain in a subtropical forest. Journal of Plant Ecology, 16, rtac088. DOI: 10.1093/jpe/rtac088. |
[27] | Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[28] | Revell LJ (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223. |
[29] | Scavo A, Abbate C, Mauromicale G (2019). Plant allelochemicals: agronomic, nutritional and ecological relevance in the soil system. Plant and Soil, 442, 23-48. |
[30] |
Schuldt A, Assmann T, Bruelheide H, Durka W, Eichenberg D, Härdtle W, Kröber W, Michalski SG, Purschke O (2014). Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest. New Phytologist, 202, 864-873.
DOI PMID |
[31] |
Schuldt A, Baruffol M, Böhnke M, Bruelheide H, Härdtle W, Lang AC, Nadrowski K, Von Oheimb G, Voigt W, Zhou H, Assmann T, Fridley J (2010). Tree diversity promotes insect herbivory in subtropical forests of south-east China. Journal of Ecology, 98, 917-926.
PMID |
[32] |
Schuldt A, Bruelheide H, Durka W, Eichenberg D, Fischer M, Kröber W, Härdtle W, Ma K, Michalski SG, Palm WU, Schmid B, Welk E, Zhou H, Assmann T (2012). Plant traits affecting herbivory on tree recruits in highly diverse subtropical forests. Ecology Letters, 15, 732-739.
DOI PMID |
[33] |
Schuldt A, Bruelheide H, Härdtle W, Assmann T, Li Y, Ma K, von Oheimb G, Zhang J (2015). Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth. Journal of Ecology, 103, 563-571.
PMID |
[34] |
Schuldt A, Hönig L, Li Y, Fichtner A, Härdtle W, von Oheimb G, Welk E, Bruelheide H (2017). Herbivore and pathogen effects on tree growth are additive, but mediated by tree diversity and plant traits. Ecology and Evolution, 7, 7462-7474.
DOI PMID |
[35] |
Schuldt A, Liu X, Buscot F, Bruelheide H, Erfmeier A, He JS, Klein AM, Ma K, Scherer-Lorenzen M, Schmid B, Scholten T, Tang Z, Trogisch S, Wirth C, Wubet T, Staab M (2023). Carbon-biodiversity relationships in a highly diverse subtropical forest. Global Change Biology, 29, 5321-5333.
DOI PMID |
[36] |
Scoffoni C, Vuong C, Diep S, Cochard H, Sack L (2014). Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance. Plant Physiology, 164, 1772-1788.
DOI PMID |
[37] | Shen Y, Umaña MN, Li W, Fang M, Chen Y, Lu H, Yu S (2019). Coordination of leaf, stem and root traits in determining seedling mortality in a subtropical forest. Forest Ecology and Management, 446, 285-292. |
[38] | Wan X, Joly FX, Jia H, Zhu M, Fu Y, Huang Z (2023). Functional identity drives tree species richness-induced increases in litterfall production and forest floor mass in young tree communities. New Phytologist, 240, 1003-1014. |
[39] |
Wang X, He Y, Sedio BE, Jin L, Ge X, Glomglieng S, Cao M, Yang J, Swenson NG, Yang J (2023). Phytochemical diversity impacts herbivory in a tropical rainforest tree community. Ecology Letters, 26, 1898-1910.
DOI PMID |
[40] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[41] | Zhang S, Xu GR, Zhang YX, Zhang WF, Cao M (2023). Canopy height, rather than neighborhood effects, shapes leaf herbivory in a tropical rainforest. Ecology, 104, e4028. DOI: 10.1002/ecy.4028. |
[1] | 杜英杰 范爱连 王雪 闫晓俊 陈廷廷 贾林巧 姜琦 陈光水. 亚热带天然常绿阔叶林乔木树种与林下灌木树种根-叶功能性状协调性及差异[J]. 植物生态学报, 2025, 49(预发表): 1-0. |
[2] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[3] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[4] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[5] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[6] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[7] | 代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[8] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[9] | 王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242-252. |
[10] | 潘权, 郑华, 王志恒, 文志, 杨延征. 植物功能性状对生态系统服务影响研究进展[J]. 植物生态学报, 2021, 45(10): 1140-1153. |
[11] | 李海东, 吴新卫, 肖治术. 种间互作网络的结构、生态系统功能及稳定性机制研究[J]. 植物生态学报, 2021, 45(10): 1049-1063. |
[12] | 井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 1094-1111. |
[13] | 钟志伟, 李晓菲, 王德利. 植物-植食性动物相互关系研究进展[J]. 植物生态学报, 2021, 45(10): 1036-1048. |
[14] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[15] | 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响[J]. 植物生态学报, 2020, 44(1): 33-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19