植物生态学报 ›› 2020, Vol. 44 ›› Issue (1): 33-43.DOI: 10.17521/cjpe.2019.0283
丁威1,王玉冰2,3,向官海2,3,迟永刚4,鲁顺保1,*(),郑淑霞2,*(
)
收稿日期:
2019-10-22
修回日期:
2020-01-14
出版日期:
2020-01-20
发布日期:
2020-03-26
通讯作者:
鲁顺保,郑淑霞
基金资助:
DING Wei1,WANG Yu-Bing2,3,XIANG Guan-Hai2,3,CHI Yong-Gang4,LU Shun-Bao1,*(),ZHENG Shu-Xia2,*(
)
Received:
2019-10-22
Revised:
2020-01-14
Online:
2020-01-20
Published:
2020-03-26
Contact:
LU Shun-Bao,ZHENG Shu-Xia
Supported by:
摘要:
草原灌丛化是全球干旱半干旱地区面临的重要生态问题。灌丛化对草原生态系统结构与功能的影响较为复杂, 有待于在更广泛的区域开展研究。该研究在内蒙古锡林郭勒典型草原选择轻度、中度和重度灌丛化草地, 通过群落调查, 结合植物功能性状和土壤理化性质观测, 研究了小叶锦鸡儿(Caragana microphylla)灌丛化对草原群落结构(物种多样性、功能多样性和功能群组成)和生态系统功能(初级生产力、植被和土壤养分库)的影响。结果表明: 1)不同程度灌丛化草地的物种丰富度、功能性状多样性和群落加权性状平均值差异显著, 其中, 中度灌丛化草地的物种多样性和功能多样性较高, 表明一定程度的灌丛化有利于生物多样性维持。2)重度灌丛化草地的地上净初级生产力(ANPP)显著高于轻度和中度灌丛化草地, 其原因主要是随着灌丛化程度加剧, 群落内一/二年生草本植物显著增加, 而多年生禾草和多年生杂类草显著减少。三个灌丛化草地的植被叶片和土壤碳、氮库差异均不显著。3)灌丛化对草原生态系统功能包括ANPP、植被和土壤养分库均没有直接的影响, 而是通过影响功能群组成、土壤理化性质和功能多样性, 间接地影响生态系统功能; 灌丛化导致功能群发生替代和土壤旱碱化是最重要的生物和非生物因素。
丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响. 植物生态学报, 2020, 44(1): 33-43. DOI: 10.17521/cjpe.2019.0283
DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe. Chinese Journal of Plant Ecology, 2020, 44(1): 33-43. DOI: 10.17521/cjpe.2019.0283
图1 内蒙古典型草原轻度(A)、中度(B)和重度(C)小叶锦鸡儿灌丛化草地。
Fig. 1 Three grassland sites with light (A), moderate (B) and heavy (C) shrub encroachment by Caragana microphylla in Nei Mongol typical steppe.
灌丛特征 Shrub characteristic | 不同程度灌丛化 Degree of shrub encroachment | |||
---|---|---|---|---|
轻度 Light | 中度 Moderate | 重度 Heavy | ||
数量 Number of bunches (No.·25 m-2) | 2 ± 0.5b (45) | 6 ± 0.6a (94) | 5 ± 0.9a (80) | |
高度 Height (cm) | 24.13 ± 1.45b (45) | 25.71 ± 0.91b (94) | 38.90 ± 2.23a (80) | |
冠幅 Crown (cm2) | 8 505.6 ± 1 453.0ab (45) | 6 907.3 ± 1 048.8b (94) | 13 083.9 ± 2 289.0a (80) | |
冠幅面积比 Crown area ratio (%) | 7.66 ± 1.81b (20) | 12.99 ± 2.47ab (20) | 20.93 ± 4.37a (20) | |
分蘖株数 Number of individuals (No.·25 m-2) | 25 ± 6b (504) | 32 ± 5ab (719) | 47 ± 8a (942) |
表1 内蒙古典型草原不同程度灌丛化草地的小叶锦鸡儿灌丛特征
Table 1 Shrub characteristics of Caragana microphylla at light, moderate and heavy encroachment sites in Nei Mongol typical steppe
灌丛特征 Shrub characteristic | 不同程度灌丛化 Degree of shrub encroachment | |||
---|---|---|---|---|
轻度 Light | 中度 Moderate | 重度 Heavy | ||
数量 Number of bunches (No.·25 m-2) | 2 ± 0.5b (45) | 6 ± 0.6a (94) | 5 ± 0.9a (80) | |
高度 Height (cm) | 24.13 ± 1.45b (45) | 25.71 ± 0.91b (94) | 38.90 ± 2.23a (80) | |
冠幅 Crown (cm2) | 8 505.6 ± 1 453.0ab (45) | 6 907.3 ± 1 048.8b (94) | 13 083.9 ± 2 289.0a (80) | |
冠幅面积比 Crown area ratio (%) | 7.66 ± 1.81b (20) | 12.99 ± 2.47ab (20) | 20.93 ± 4.37a (20) | |
分蘖株数 Number of individuals (No.·25 m-2) | 25 ± 6b (504) | 32 ± 5ab (719) | 47 ± 8a (942) |
图2 内蒙古典型草原不同程度灌丛化样地草本物种丰富度(A)和功能性状多样性(B)的变化(平均值+标准误差)。功能性状多样性(FAD)由4个性状(株高、株丛生物量、茎叶比和比叶面积)计算而得。不同小写字母表示各样地间差异显著(p < 0.05)。
Fig. 2 Species richness and functional attribute diversity (FAD) at light, moderate and heavy encroachment sites in Nei Mongol typical steppe (mean + SE). FAD was calculated by plant height, plant biomass, stem:leaf biomass ratio and specific leaf area. Different lowercase letters indicate significant differences among sites (p < 0.05).
图3 内蒙古典型草原不同程度灌丛化样地草本群落加权性状值(CWM)的变化(平均值+标准误差)。群落加权性状值: PBCWM, 株丛生物量; PHCWM, 株高; SLACWM, 比叶面积; SLRCWM, 茎叶比。不同小写字母表示各样地间差异显著(p < 0.05)。
Fig. 3 Community-weighted mean traits (CWM) at light, moderate and heavy encroachment sites in Nei Mongol typical steppe (mean + SE). PBCWM, community-weighted plant biomass; PHCWM, community-weighted plant height; SLACWM, community-weighted specific leaf area; SLRCWM, community-weighted stem:leaf ratio. Different lowercase letters indicate significant differences among sites (p < 0.05).
图4 内蒙古典型草原不同程度灌丛化草地地上净初级生产力(ANPP)和功能群生物量(RAB)的变化(平均值+标准误差)。AB, 一/二年生草本; PF, 多年生杂类草; PG, 多年生禾草。不同小写字母表示各样地间差异显著(p < 0.05)。
Fig. 4 Aboveground net primary productivity (ANPP) and relative biomass (RAB) of different functional groups at light, moderate and heavy encroachment sites in Nei Mongol typical steppe (mean + SE). AB, annuals and biennials; PF, perennial forbs; PG, perennial graminoids. Different lowercase letters indicate significant differences among sites (p < 0.05).
图5 灌丛化对内蒙古典型草原植被叶片和土壤C、N库的影响(平均值+标准误差)。样地间差异均不显著(p > 0.05)。
Fig. 5 Effects of shrub encroachment on C and N pools of vegetational leaf and soil in Nei Mongol typical steppe (mean + SE). No significant differences among sites (p > 0.05).
图6 灌丛化对草原生态功能包括地上净初级生产力(ANPP)、植被和土壤养分(C、N)库影响的直接与间接途径。箭头正负数值为标准化回归系数, 表示正、负效应; r2值表示某一变量被其他变量的方差解释量。
Fig. 6 Structural equation model (SEM) analyses of direct and indirect effects of shrub encroachment on grassland ecosystem function, including aboveground net primary productivity (ANPP), vegetation and soil nutrient pools (C and N). Values associated with solid arrows are standardized path coefficients, indicating positive or negative effects. r2 values associated with response variables indicate the proportion of variation explained by relationships with other variables.
[1] | Archer SR, Andersen EM, Predick KI, Schwinning S, Steidl RJ, Woods SR (2017). Woody plant encroachment: Causes and consequences. In: Briske DD ed. Rangeland Systems. Springer, New York. 25-84. |
[2] | Archer SR, Schimel DS, Holland EA (1995). Mechanisms of shrubland expansion: Land use, climate or CO2? Climatic Change, 29, 91-99. |
[3] | Barger NN, Archer SR, Campbell JL, Huang CY, Morton JA, Knapp AK (2011). Woody plant proliferation in North American drylands: A synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research, 116, G00K07. DOI: 10.1029/2010JG001506. |
[4] | Chen LY, Li H, Zhang PJ, Zhao X, Zhou LH, Liu TY, Hu HF, Bai YF, Shen HH, Fang JY (2015). Climate and native grassland vegetation as drivers of the community structures of shrub-encroached grasslands in Inner Mongolia, China. Landscape Ecology, 30, 1627-1641. |
[5] |
Darrouzet-Nardi A, D’Antonio CM, Dawson TE (2006). Depth of water acquisition by invading shrubs and resident herbs in a Sierra Nevada meadow. Plant and Soil, 285, 31-43.
DOI URL |
[6] |
Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG (2011). Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 14, 709-722.
DOI URL |
[7] | Eldridge DJ, Soliveres S, Bowker MA, Val J (2013). Grazing dampens the positive effects of shrub encroachment on ecosystem functions in a semi-arid woodland. Journal of Applied Ecology, 50, 1028-1038. |
[8] | Gao Q, Liu T (2015). Causes and consequences of shrub encroachment in arid and semiarid region: A disputable issue. Arid Land Geography, 38, 1202-1212. |
[ 高琼, 刘婷 (2015). 干旱半干旱区草原灌丛化的原因及影响-争议与进展. 干旱区地理, 38, 1202-1212.] | |
[9] | Gross N, Suding KN, Lavorel S, Roumet C (2007). Complementarity as a mechanism of coexistence between functional groups of grasses. Journal of Ecology, 95, 1296-1305. |
[10] | Grover HD, Musick HB (1990). Shrubland encroachment in southern New Mexico, USA: An analysis of desertification processes in the American Southwest. Climatic Change, 17, 305-330. |
[11] | Holzapfel C, Mahall BE (1999). Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology, 80, 1747-1761. |
[12] |
Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005). Ecohydrological implications of woody plant encroachment. Ecology, 86, 308-319.
DOI URL |
[13] | Jackson RB, Banner JL, Jobbágy EG, Pockman WT, Wall DH (2002). Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 418, 623-626. |
[14] | Knapp AK, Briggs JM, Collins SL, Archer SR, Bret-Harte MS, Ewers BE, Peters DP, Young DR, Shaver GR, Pendall E, Cleary MB (2008). Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14, 615-623. |
[15] | Lan ZC, Bai YF (2012). Testing mechanisms of N-enrichment- induced species loss in a semiarid Inner Mongolia grassland: Critical thresholds and implications for long-term ecosystem responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3125-3134. |
[16] | Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2008). Assessing functional diversity in the field— Methodology matters! Functional Ecology, 22, 134-147. |
[17] |
Li XY, Zhang SY, Peng HY, Hu X, Ma YJ (2013). Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agricultural and Forest Meteorology, 171-172, 20-30.
DOI URL |
[18] | Maestre FT, Bowker MA, Puche MD, Belén Hinojosa M, Martínez I, García-Palacios P, Castillo AP, Soliveres S, Luzuriaga AL, Sánchez AM, Carreira JA, Gallardo A, Escudero A (2009). Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecology Letters, 12, 930-941. |
[19] | Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-being: Desertification Synthesis. World Resources Institute, Washington. |
[20] | Morgan JA, Milchunas DG, LeCain DR, West M, Mosier AR (2007). Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proceedings of the National Academy of Sciences of the United States of America, 104, 14724-14729. |
[21] | Neilson RP (1986). High-resolution climatic analysis and southwest biogeography. Science, 232, 27-34. |
[22] | Parizek B, Rostagno CM, Sottini R (2002). Soil erosion as affected by shrub encroachment in northeastern Patagonia. Journal of Range Management, 55, 43-48. |
[23] | Peng HY, Li XY, Li GY, Zhang ZH, Zhang SY, Li L, Zhao GQ, Jiang ZY, Ma YJ (2013). Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China. Catena, 109, 39-48. |
[24] | Pugnaire FI, Armas C, Maestre FT (2011). Positive plant interactions in the Iberian Southeast: Mechanisms, environmental gradients, and ecosystem function. Journal of Arid Environments, 75, 1310-1320. |
[25] | Ratajczak Z, DʼOdorico P, Nippert JB, Collins SL, Brunsell NA, Ravi S (2017). Changes in spatial variance during a grassland to shrubland state transition. Journal of Ecology, 105, 750-760. |
[26] | Roscher C, Weigelt A, Proulx R, Marquard E, Schumacher J, Weisser WW, Schmid B (2011). Identifying population- and community-level mechanisms of diversity-stability relationships in experimental grasslands. Journal of Ecology, 99, 1460-1469. |
[27] |
Seifan M, Kadmon R (2006). Indirect effects of cattle grazing on shrub spatial pattern in a mediterranean scrub community. Basic and Applied Ecology, 7, 496-506.
DOI URL |
[28] |
Shackleton CM, Scholes RJ (2011). Above ground woody community attributes, biomass and carbon stocks along a rainfall gradient in the savannas of the central lowveld, South Africa. South African Journal of Botany, 77, 184-192.
DOI URL |
[29] | Soliveres S, Eldridge DJ (2014). Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function? Functional Ecology, 28, 530-537. |
[30] | Thompson WA, Eldridge DJ (2005). Plant cover and composition in relation to density of Callitris glaucophylla(white cypress pine) along a rainfall gradient in eastern Australia. Australian Journal of Botany, 53, 545. |
[31] | Throop HL, Archer SR, Monger HC, Waltman S (2012). When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils. Journal of Arid Environments, 77, 66-71. |
[32] | van Auken OW (2009). Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 90, 2931-2942. |
[33] | Walker B, Kinzig A, Langridge J (1999). Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems, 2, 95-113. |
[34] | Wan HW, Pan QM, Bai YF (2013). China grassland biodiversity monitoring network: Indicators and implementation plan. Biodiversity Science, 21, 639-650. |
[ 万宏伟, 潘庆民, 白永飞 (2013). 中国草地生物多样性监测网络的指标体系及实施方案. 生物多样性, 21, 639-650.] | |
[35] | Xiong XG, Han XG (2006). Application of state and transition models to discussing the thicketization of steppe in Xilin River Basin, Inner Mongolia. Acta Prataculturae Sinica, 15(2), 9-13. |
[ 熊小刚, 韩兴国 (2006). 运用状态与过渡模式讨论锡林河流域典型草原的灌丛化. 草业学报, 15(2), 9-13.] | |
[36] |
Zarovali MP, Yiakoulaki MD, Papanastasis VP (2007). Effects of shrub encroachment on herbage production and nutritive value in semi-arid Mediterranean grasslands. Grass and Forage Science, 62, 355-363.
DOI URL |
[37] | Zheng SX, Ren HY, Li WH, Lan ZC (2012). Scale-dependent effects of grazing on plant C:N:P stoichiometry and linkages to ecosystem functioning in the Inner Mongolia grassland. PLOS ONE, 7, e51750. DOI: 10.1371/journal.pone.0051750. |
[38] | Zhou LH, Shen HH, Chen LY, Li H, Zhang PJ, Zhao X, Liu TY, Liu SS, Xing AJ, Hu HF, Fang JY (2019). Ecological consequences of shrub encroachment in the grasslands of northern China. Landscape Ecology, 34, 119-130. |
[1] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[2] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[3] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[4] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[5] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[6] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[7] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[8] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[9] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[10] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[11] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[12] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[13] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[14] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[15] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19