植物生态学报 ›› 2020, Vol. 44 ›› Issue (1): 33-43.DOI: 10.17521/cjpe.2019.0283
丁威1,王玉冰2,3,向官海2,3,迟永刚4,鲁顺保1,*(),郑淑霞2,*(
)
收稿日期:
2019-10-22
修回日期:
2020-01-14
出版日期:
2020-01-20
发布日期:
2020-03-26
通讯作者:
鲁顺保,郑淑霞
基金资助:
DING Wei1,WANG Yu-Bing2,3,XIANG Guan-Hai2,3,CHI Yong-Gang4,LU Shun-Bao1,*(),ZHENG Shu-Xia2,*(
)
Received:
2019-10-22
Revised:
2020-01-14
Online:
2020-01-20
Published:
2020-03-26
Contact:
LU Shun-Bao,ZHENG Shu-Xia
Supported by:
摘要:
草原灌丛化是全球干旱半干旱地区面临的重要生态问题。灌丛化对草原生态系统结构与功能的影响较为复杂, 有待于在更广泛的区域开展研究。该研究在内蒙古锡林郭勒典型草原选择轻度、中度和重度灌丛化草地, 通过群落调查, 结合植物功能性状和土壤理化性质观测, 研究了小叶锦鸡儿(Caragana microphylla)灌丛化对草原群落结构(物种多样性、功能多样性和功能群组成)和生态系统功能(初级生产力、植被和土壤养分库)的影响。结果表明: 1)不同程度灌丛化草地的物种丰富度、功能性状多样性和群落加权性状平均值差异显著, 其中, 中度灌丛化草地的物种多样性和功能多样性较高, 表明一定程度的灌丛化有利于生物多样性维持。2)重度灌丛化草地的地上净初级生产力(ANPP)显著高于轻度和中度灌丛化草地, 其原因主要是随着灌丛化程度加剧, 群落内一/二年生草本植物显著增加, 而多年生禾草和多年生杂类草显著减少。三个灌丛化草地的植被叶片和土壤碳、氮库差异均不显著。3)灌丛化对草原生态系统功能包括ANPP、植被和土壤养分库均没有直接的影响, 而是通过影响功能群组成、土壤理化性质和功能多样性, 间接地影响生态系统功能; 灌丛化导致功能群发生替代和土壤旱碱化是最重要的生物和非生物因素。
丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响[J]. 植物生态学报, 2020, 44(1): 33-43.
DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe[J]. Chin J Plant Ecol, 2020, 44(1): 33-43.
图1 内蒙古典型草原轻度(A)、中度(B)和重度(C)小叶锦鸡儿灌丛化草地。
Fig. 1 Three grassland sites with light (A), moderate (B) and heavy (C) shrub encroachment by Caragana microphylla in Nei Mongol typical steppe.
灌丛特征 Shrub characteristic | 不同程度灌丛化 Degree of shrub encroachment | |||
---|---|---|---|---|
轻度 Light | 中度 Moderate | 重度 Heavy | ||
数量 Number of bunches (No.·25 m-2) | 2 ± 0.5b (45) | 6 ± 0.6a (94) | 5 ± 0.9a (80) | |
高度 Height (cm) | 24.13 ± 1.45b (45) | 25.71 ± 0.91b (94) | 38.90 ± 2.23a (80) | |
冠幅 Crown (cm2) | 8 505.6 ± 1 453.0ab (45) | 6 907.3 ± 1 048.8b (94) | 13 083.9 ± 2 289.0a (80) | |
冠幅面积比 Crown area ratio (%) | 7.66 ± 1.81b (20) | 12.99 ± 2.47ab (20) | 20.93 ± 4.37a (20) | |
分蘖株数 Number of individuals (No.·25 m-2) | 25 ± 6b (504) | 32 ± 5ab (719) | 47 ± 8a (942) |
表1 内蒙古典型草原不同程度灌丛化草地的小叶锦鸡儿灌丛特征
Table 1 Shrub characteristics of Caragana microphylla at light, moderate and heavy encroachment sites in Nei Mongol typical steppe
灌丛特征 Shrub characteristic | 不同程度灌丛化 Degree of shrub encroachment | |||
---|---|---|---|---|
轻度 Light | 中度 Moderate | 重度 Heavy | ||
数量 Number of bunches (No.·25 m-2) | 2 ± 0.5b (45) | 6 ± 0.6a (94) | 5 ± 0.9a (80) | |
高度 Height (cm) | 24.13 ± 1.45b (45) | 25.71 ± 0.91b (94) | 38.90 ± 2.23a (80) | |
冠幅 Crown (cm2) | 8 505.6 ± 1 453.0ab (45) | 6 907.3 ± 1 048.8b (94) | 13 083.9 ± 2 289.0a (80) | |
冠幅面积比 Crown area ratio (%) | 7.66 ± 1.81b (20) | 12.99 ± 2.47ab (20) | 20.93 ± 4.37a (20) | |
分蘖株数 Number of individuals (No.·25 m-2) | 25 ± 6b (504) | 32 ± 5ab (719) | 47 ± 8a (942) |
图2 内蒙古典型草原不同程度灌丛化样地草本物种丰富度(A)和功能性状多样性(B)的变化(平均值+标准误差)。功能性状多样性(FAD)由4个性状(株高、株丛生物量、茎叶比和比叶面积)计算而得。不同小写字母表示各样地间差异显著(p < 0.05)。
Fig. 2 Species richness and functional attribute diversity (FAD) at light, moderate and heavy encroachment sites in Nei Mongol typical steppe (mean + SE). FAD was calculated by plant height, plant biomass, stem:leaf biomass ratio and specific leaf area. Different lowercase letters indicate significant differences among sites (p < 0.05).
图3 内蒙古典型草原不同程度灌丛化样地草本群落加权性状值(CWM)的变化(平均值+标准误差)。群落加权性状值: PBCWM, 株丛生物量; PHCWM, 株高; SLACWM, 比叶面积; SLRCWM, 茎叶比。不同小写字母表示各样地间差异显著(p < 0.05)。
Fig. 3 Community-weighted mean traits (CWM) at light, moderate and heavy encroachment sites in Nei Mongol typical steppe (mean + SE). PBCWM, community-weighted plant biomass; PHCWM, community-weighted plant height; SLACWM, community-weighted specific leaf area; SLRCWM, community-weighted stem:leaf ratio. Different lowercase letters indicate significant differences among sites (p < 0.05).
图4 内蒙古典型草原不同程度灌丛化草地地上净初级生产力(ANPP)和功能群生物量(RAB)的变化(平均值+标准误差)。AB, 一/二年生草本; PF, 多年生杂类草; PG, 多年生禾草。不同小写字母表示各样地间差异显著(p < 0.05)。
Fig. 4 Aboveground net primary productivity (ANPP) and relative biomass (RAB) of different functional groups at light, moderate and heavy encroachment sites in Nei Mongol typical steppe (mean + SE). AB, annuals and biennials; PF, perennial forbs; PG, perennial graminoids. Different lowercase letters indicate significant differences among sites (p < 0.05).
图5 灌丛化对内蒙古典型草原植被叶片和土壤C、N库的影响(平均值+标准误差)。样地间差异均不显著(p > 0.05)。
Fig. 5 Effects of shrub encroachment on C and N pools of vegetational leaf and soil in Nei Mongol typical steppe (mean + SE). No significant differences among sites (p > 0.05).
图6 灌丛化对草原生态功能包括地上净初级生产力(ANPP)、植被和土壤养分(C、N)库影响的直接与间接途径。箭头正负数值为标准化回归系数, 表示正、负效应; r2值表示某一变量被其他变量的方差解释量。
Fig. 6 Structural equation model (SEM) analyses of direct and indirect effects of shrub encroachment on grassland ecosystem function, including aboveground net primary productivity (ANPP), vegetation and soil nutrient pools (C and N). Values associated with solid arrows are standardized path coefficients, indicating positive or negative effects. r2 values associated with response variables indicate the proportion of variation explained by relationships with other variables.
[1] | Archer SR, Andersen EM, Predick KI, Schwinning S, Steidl RJ, Woods SR (2017). Woody plant encroachment: Causes and consequences. In: Briske DD ed. Rangeland Systems. Springer, New York. 25-84. |
[2] | Archer SR, Schimel DS, Holland EA (1995). Mechanisms of shrubland expansion: Land use, climate or CO2? Climatic Change, 29, 91-99. |
[3] | Barger NN, Archer SR, Campbell JL, Huang CY, Morton JA, Knapp AK (2011). Woody plant proliferation in North American drylands: A synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research, 116, G00K07. DOI: 10.1029/2010JG001506. |
[4] | Chen LY, Li H, Zhang PJ, Zhao X, Zhou LH, Liu TY, Hu HF, Bai YF, Shen HH, Fang JY (2015). Climate and native grassland vegetation as drivers of the community structures of shrub-encroached grasslands in Inner Mongolia, China. Landscape Ecology, 30, 1627-1641. |
[5] |
Darrouzet-Nardi A, D’Antonio CM, Dawson TE (2006). Depth of water acquisition by invading shrubs and resident herbs in a Sierra Nevada meadow. Plant and Soil, 285, 31-43.
DOI URL |
[6] |
Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG (2011). Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 14, 709-722.
DOI URL |
[7] | Eldridge DJ, Soliveres S, Bowker MA, Val J (2013). Grazing dampens the positive effects of shrub encroachment on ecosystem functions in a semi-arid woodland. Journal of Applied Ecology, 50, 1028-1038. |
[8] | Gao Q, Liu T (2015). Causes and consequences of shrub encroachment in arid and semiarid region: A disputable issue. Arid Land Geography, 38, 1202-1212. |
[ 高琼, 刘婷 (2015). 干旱半干旱区草原灌丛化的原因及影响-争议与进展. 干旱区地理, 38, 1202-1212.] | |
[9] | Gross N, Suding KN, Lavorel S, Roumet C (2007). Complementarity as a mechanism of coexistence between functional groups of grasses. Journal of Ecology, 95, 1296-1305. |
[10] | Grover HD, Musick HB (1990). Shrubland encroachment in southern New Mexico, USA: An analysis of desertification processes in the American Southwest. Climatic Change, 17, 305-330. |
[11] | Holzapfel C, Mahall BE (1999). Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology, 80, 1747-1761. |
[12] |
Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005). Ecohydrological implications of woody plant encroachment. Ecology, 86, 308-319.
DOI URL |
[13] | Jackson RB, Banner JL, Jobbágy EG, Pockman WT, Wall DH (2002). Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 418, 623-626. |
[14] | Knapp AK, Briggs JM, Collins SL, Archer SR, Bret-Harte MS, Ewers BE, Peters DP, Young DR, Shaver GR, Pendall E, Cleary MB (2008). Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14, 615-623. |
[15] | Lan ZC, Bai YF (2012). Testing mechanisms of N-enrichment- induced species loss in a semiarid Inner Mongolia grassland: Critical thresholds and implications for long-term ecosystem responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3125-3134. |
[16] | Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2008). Assessing functional diversity in the field— Methodology matters! Functional Ecology, 22, 134-147. |
[17] |
Li XY, Zhang SY, Peng HY, Hu X, Ma YJ (2013). Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agricultural and Forest Meteorology, 171-172, 20-30.
DOI URL |
[18] | Maestre FT, Bowker MA, Puche MD, Belén Hinojosa M, Martínez I, García-Palacios P, Castillo AP, Soliveres S, Luzuriaga AL, Sánchez AM, Carreira JA, Gallardo A, Escudero A (2009). Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecology Letters, 12, 930-941. |
[19] | Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-being: Desertification Synthesis. World Resources Institute, Washington. |
[20] | Morgan JA, Milchunas DG, LeCain DR, West M, Mosier AR (2007). Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proceedings of the National Academy of Sciences of the United States of America, 104, 14724-14729. |
[21] | Neilson RP (1986). High-resolution climatic analysis and southwest biogeography. Science, 232, 27-34. |
[22] | Parizek B, Rostagno CM, Sottini R (2002). Soil erosion as affected by shrub encroachment in northeastern Patagonia. Journal of Range Management, 55, 43-48. |
[23] | Peng HY, Li XY, Li GY, Zhang ZH, Zhang SY, Li L, Zhao GQ, Jiang ZY, Ma YJ (2013). Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China. Catena, 109, 39-48. |
[24] | Pugnaire FI, Armas C, Maestre FT (2011). Positive plant interactions in the Iberian Southeast: Mechanisms, environmental gradients, and ecosystem function. Journal of Arid Environments, 75, 1310-1320. |
[25] | Ratajczak Z, DʼOdorico P, Nippert JB, Collins SL, Brunsell NA, Ravi S (2017). Changes in spatial variance during a grassland to shrubland state transition. Journal of Ecology, 105, 750-760. |
[26] | Roscher C, Weigelt A, Proulx R, Marquard E, Schumacher J, Weisser WW, Schmid B (2011). Identifying population- and community-level mechanisms of diversity-stability relationships in experimental grasslands. Journal of Ecology, 99, 1460-1469. |
[27] |
Seifan M, Kadmon R (2006). Indirect effects of cattle grazing on shrub spatial pattern in a mediterranean scrub community. Basic and Applied Ecology, 7, 496-506.
DOI URL |
[28] |
Shackleton CM, Scholes RJ (2011). Above ground woody community attributes, biomass and carbon stocks along a rainfall gradient in the savannas of the central lowveld, South Africa. South African Journal of Botany, 77, 184-192.
DOI URL |
[29] | Soliveres S, Eldridge DJ (2014). Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function? Functional Ecology, 28, 530-537. |
[30] | Thompson WA, Eldridge DJ (2005). Plant cover and composition in relation to density of Callitris glaucophylla(white cypress pine) along a rainfall gradient in eastern Australia. Australian Journal of Botany, 53, 545. |
[31] | Throop HL, Archer SR, Monger HC, Waltman S (2012). When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils. Journal of Arid Environments, 77, 66-71. |
[32] | van Auken OW (2009). Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 90, 2931-2942. |
[33] | Walker B, Kinzig A, Langridge J (1999). Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems, 2, 95-113. |
[34] | Wan HW, Pan QM, Bai YF (2013). China grassland biodiversity monitoring network: Indicators and implementation plan. Biodiversity Science, 21, 639-650. |
[ 万宏伟, 潘庆民, 白永飞 (2013). 中国草地生物多样性监测网络的指标体系及实施方案. 生物多样性, 21, 639-650.] | |
[35] | Xiong XG, Han XG (2006). Application of state and transition models to discussing the thicketization of steppe in Xilin River Basin, Inner Mongolia. Acta Prataculturae Sinica, 15(2), 9-13. |
[ 熊小刚, 韩兴国 (2006). 运用状态与过渡模式讨论锡林河流域典型草原的灌丛化. 草业学报, 15(2), 9-13.] | |
[36] |
Zarovali MP, Yiakoulaki MD, Papanastasis VP (2007). Effects of shrub encroachment on herbage production and nutritive value in semi-arid Mediterranean grasslands. Grass and Forage Science, 62, 355-363.
DOI URL |
[37] | Zheng SX, Ren HY, Li WH, Lan ZC (2012). Scale-dependent effects of grazing on plant C:N:P stoichiometry and linkages to ecosystem functioning in the Inner Mongolia grassland. PLOS ONE, 7, e51750. DOI: 10.1371/journal.pone.0051750. |
[38] | Zhou LH, Shen HH, Chen LY, Li H, Zhang PJ, Zhao X, Liu TY, Liu SS, Xing AJ, Hu HF, Fang JY (2019). Ecological consequences of shrub encroachment in the grasslands of northern China. Landscape Ecology, 34, 119-130. |
[1] | 李海东 吴新卫 肖治术. 种间互作网络的结构、生态系统功能及稳定性机制研究[J]. 植物生态学报, 2020, 44(预发表): 0-0. |
[2] | 包新康, 王亮, 卢梦洁, 裴鹏祖, 李建亮, 马东辉, 李佳琦. 利用红外相机监测甘肃安西极旱荒漠国家级自然保护区鸟兽物种多样性[J]. 生物多样性, 2020, 28(9): 1141-1146. |
[3] | 李林妙, 池辉云, 万雅琼, 周佳滨, 张礼标, 何向阳, 黄文忠, 张伯军, 徐湛荣, 刘昌传, 赖任燕, 朱秀芳, 李友余, 李佳琦, 陈金平. 广东云开山国家级自然保护区鸟兽红外相机调查初报[J]. 生物多样性, 2020, 28(9): 1154-1159. |
[4] | 刘凌 樊英杰 宋晓彤 李敏 邵小明 王晓蕊. 色季拉山不同腐解等级华山松倒木上的苔藓植物组合[J]. 植物生态学报, 2020, 44(8): 0-0. |
[5] | 陈梦悦, 吴雨恒, 廖承清, 马方舟, 王星. 八大公山国家级自然保护区不同生境蝶类群落特征与月动态[J]. 生物多样性, 2020, 28(8): 950-957. |
[6] | 刘润红 白金连 涂洪润 赵佳佳 农娟丽 姜勇 梁士楚 李月娟. 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联[J]. 植物生态学报, 2020, 44(8): 0-0. |
[7] | 刘鹏, 付明霞, 齐敦武, 宋心强, 韦伟, 杨琬婧, 陈玉祥, 周延山, 刘家斌, 马锐, 余吉, 杨洪, 陈鹏, 侯蓉. 利用红外相机监测四川大相岭自然保护区鸟兽物种多样性[J]. 生物多样性, 2020, 28(7): 905-912. |
[8] | 胡宜峰, 王晓云, 邓学建, 吴华, 黄正澜懿, 岳阳, 黎舫, 张秋萍, 郭伟健, 李锋, 陈柏承, 徐忠鲜, 周全, 余文华, 吴毅. 罗霄山脉翼手目物种多样性及适生区预测[J]. 生物多样性, 2020, 28(7): 876-888. |
[9] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
[10] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[11] | 王宇彤, 牛克昌. 青藏高原高寒草甸土壤环境对线虫功能多样性的影响[J]. 生物多样性, 2020, 28(6): 707-717. |
[12] | 衣海燕, 曾源, 赵玉金, 郑朝菊, 熊杰, 赵旦. 利用聚类算法监测森林乔木物种多样性[J]. 植物生态学报, 2020, 44(6): 598-615. |
[13] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[14] | 刘丹, 郭忠玲, 崔晓阳, 范春楠. 5种东北红豆杉植物群丛及其物种多样性的比较[J]. 生物多样性, 2020, 28(3): 340-349. |
[15] | 王世彤, 徐耀粘, 杨腾, 魏新增, 江明喜. 微生境对黄梅秤锤树野生种群叶片功能性状的影响[J]. 生物多样性, 2020, 28(3): 277-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2021 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19