植物生态学报 ›› 2024, Vol. 48 ›› Issue (1): 68-79.DOI: 10.17521/cjpe.2023.0120
所属专题: 植被生态学
陈昭铨1,2,3, 王明慧1,3, 胡子涵1,3, 郎学东1,3, 何云琼4, 刘万德1,3,*()
收稿日期:
2023-05-04
接受日期:
2023-11-09
出版日期:
2024-01-20
发布日期:
2023-11-09
通讯作者:
(基金资助:
CHEN Zhao-Quan1,2,3, WANG Ming-Hui1,3, HU Zi-Han1,3, LANG Xue-Dong1,3, HE Yun-Qiong4, LIU Wan-De1,3,*()
Received:
2023-05-04
Accepted:
2023-11-09
Online:
2024-01-20
Published:
2023-11-09
Contact:
(Supported by:
摘要:
幼苗是森林生物多样性保育的重点关注对象, 以往研究对云南普洱季风常绿阔叶林幼苗的关注较少。为探究该地幼苗的群落构建机制, 该研究利用30 hm2季风常绿阔叶林动态监测样地野外幼苗调查数据, 分析幼苗的物种组成, 划分不同优势种样方, 根据逐步群落构建模型分析群落构建机制, 进一步分析幼苗的群落功能性状。结果表明: 季风常绿阔叶林幼苗以短刺锥(Castanopsis echidnocarpa)和枹丝锥(C. calathiformis)为优势种, 根据优势种是否出现将样方划分为4种类型: 短刺锥样方、枹丝锥样方、混合优势种样方及非优势种样方。幼苗的群落构建过程均包含随机扩散构建(贡献率43.1%-61.3%)、生境过滤(贡献率27.4%-33.9%)及限制相似性(贡献率5.7%-27.2%)机制。短刺锥样方和枹丝锥样方以确定过程为主, 贡献率分别为56.9%和54.6%, 而混合优势种样方及非优势种样方则以随机过程为主, 贡献率分别为60.4%和61.3%。在非优势种样方中Rao二次熵(Rao’Q)最高, 而在混合优势种样方中最低。短刺锥样方具有最低的比叶面积和较高的叶厚度、比茎长度、根质量分数及潜在株高, 而枹丝锥样方及非优势种样方有更大的比叶面积。不同幼苗样方中, 比茎长度和潜在株高变异系数较大, 而其他功能性状变异水平较低。多元回归分析显示, 不同幼苗样方中, 比叶面积和潜在株高均和Rao’Q显著正相关, 除了非优势种样方外, 其他样方叶厚度和生活型均与Rao’Q显著正相关。因此, 季风常绿阔叶林幼苗的群落构建同时包含随机过程和确定过程, 两种过程的贡献率随群落类型的不同而不同。
陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制. 植物生态学报, 2024, 48(1): 68-79. DOI: 10.17521/cjpe.2023.0120
CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China. Chinese Journal of Plant Ecology, 2024, 48(1): 68-79. DOI: 10.17521/cjpe.2023.0120
序号 Order | 科 Family | 属 Genus | 物种 Species | 重要值 Important value (%) | 多度(株) Abundance |
---|---|---|---|---|---|
1 | 壳斗科 Fagaceae | 锥属 Castanopsis | 短刺锥 Castanopsis echidnocarpa | 35.86 | 1 349 |
2 | 壳斗科 Fagaceae | 锥属 Castanopsis | 枹丝锥 Castanopsis calathiformis | 28.11 | 1 258 |
3 | 樟科 Lauraceae | 木姜子属 Litsea | 红叶木姜子 Litsea rubescens | 20.68 | 575 |
4 | 卫矛科 Celastraceae | 南蛇藤属 Celastrus | 独子藤 Celastrus monospermus | 11.73 | 287 |
5 | 菝葜科 Smilacaceae | 菝葜属 Smilax | 粉背菝葜 Smilax hypoglauca | 7.18 | 182 |
6 | 豆科 Fabaceae | 巴豆藤属 Craspedolobium | 巴豆藤 Craspedolobium schochii | 5.75 | 125 |
7 | 买麻藤科 Gnetaceae | 买麻藤属 Gnetum | 买麻藤 Gnetum montanum | 5.60 | 116 |
8 | 樟科 Lauraceae | 润楠属 Machilus | 红梗润楠 Machilus rufipes | 5.53 | 153 |
9 | 壳斗科 Fagaceae | 柯属 Lithocarpus | 泥柯 Lithocarpus fenestratus | 5.11 | 152 |
10 | 菝葜科 Smilacaceae | 菝葜属 Smilax | 抱茎菝葜 Smilax ocreata | 3.02 | 106 |
表1 云南普洱季风常绿阔叶林幼苗物种重要值及多度
Table 1 Important value and abundance of seedling species in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China
序号 Order | 科 Family | 属 Genus | 物种 Species | 重要值 Important value (%) | 多度(株) Abundance |
---|---|---|---|---|---|
1 | 壳斗科 Fagaceae | 锥属 Castanopsis | 短刺锥 Castanopsis echidnocarpa | 35.86 | 1 349 |
2 | 壳斗科 Fagaceae | 锥属 Castanopsis | 枹丝锥 Castanopsis calathiformis | 28.11 | 1 258 |
3 | 樟科 Lauraceae | 木姜子属 Litsea | 红叶木姜子 Litsea rubescens | 20.68 | 575 |
4 | 卫矛科 Celastraceae | 南蛇藤属 Celastrus | 独子藤 Celastrus monospermus | 11.73 | 287 |
5 | 菝葜科 Smilacaceae | 菝葜属 Smilax | 粉背菝葜 Smilax hypoglauca | 7.18 | 182 |
6 | 豆科 Fabaceae | 巴豆藤属 Craspedolobium | 巴豆藤 Craspedolobium schochii | 5.75 | 125 |
7 | 买麻藤科 Gnetaceae | 买麻藤属 Gnetum | 买麻藤 Gnetum montanum | 5.60 | 116 |
8 | 樟科 Lauraceae | 润楠属 Machilus | 红梗润楠 Machilus rufipes | 5.53 | 153 |
9 | 壳斗科 Fagaceae | 柯属 Lithocarpus | 泥柯 Lithocarpus fenestratus | 5.11 | 152 |
10 | 菝葜科 Smilacaceae | 菝葜属 Smilax | 抱茎菝葜 Smilax ocreata | 3.02 | 106 |
图2 云南普洱季风常绿阔叶林不同幼苗样方的逐步群落构建模型结果。DA, 扩散构建; HF, 生境过滤; LS, 限制相似性。
Fig. 2 Results of stepwise community assembly models for different seedling plots in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China. DA, dispersal assembly; HF, habitat filtering; LS, limiting similarity.
指标 Index | 短刺锥样方 Castanopsis echidnocarpa plot | 枹丝锥样方 Castanopsis calathiformis plot | 混合优势种样方 Mixed-dominant species plot | 非优势种样方 Non-dominant species plot | |
---|---|---|---|---|---|
功能多样性 Functional diversity | Rao’Q | 3.22 ± 0.09b | 2.91 ± 0.17b | 2.29 ± 0.16c | 4.07 ± 0.11a |
优势种相对多度 Relative abundance of dominant species | RA | 0.46 ± 0.01c | 0.58 ± 0.03b | 0.72 ± 0.02a | 0 |
功能性状 Functional trait | SLA | 171.81 ± 1.61b | 205.77 ± 2.68a | 179.62 ± 1.95b | 213.39 ± 2.71a |
LT | 0.131 ± 0.001b | 0.109 ± 0.002c | 0.109 ± 0.002c | 0.150 ± 0.002a | |
SSL | 66.09 ± 0.91a | 51.80 ± 1.24c | 56.93 ± 1.22b | 58.14 ± 1.50b | |
RMF | 0.428 ± 0.003a | 0.406 ± 0.004b | 0.413 ± 0.002b | 0.408 ± 0.004b | |
LF | 1.62 ± 0.03b | 1.50 ± 0.04c | 1.30 ± 0.03d | 2.17 ± 0.03a | |
PPH | 16.45 ± 0.30a | 12.98 ± 0.45b | 13.56 ± 0.34b | 17.17 ± 0.53a |
表2 云南普洱季风常绿阔叶林不同幼苗样方物种多样性与功能性状(平均值±标准误)
Table 2 Diversity and functional traits of different seedling plots in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China (mean ± SE)
指标 Index | 短刺锥样方 Castanopsis echidnocarpa plot | 枹丝锥样方 Castanopsis calathiformis plot | 混合优势种样方 Mixed-dominant species plot | 非优势种样方 Non-dominant species plot | |
---|---|---|---|---|---|
功能多样性 Functional diversity | Rao’Q | 3.22 ± 0.09b | 2.91 ± 0.17b | 2.29 ± 0.16c | 4.07 ± 0.11a |
优势种相对多度 Relative abundance of dominant species | RA | 0.46 ± 0.01c | 0.58 ± 0.03b | 0.72 ± 0.02a | 0 |
功能性状 Functional trait | SLA | 171.81 ± 1.61b | 205.77 ± 2.68a | 179.62 ± 1.95b | 213.39 ± 2.71a |
LT | 0.131 ± 0.001b | 0.109 ± 0.002c | 0.109 ± 0.002c | 0.150 ± 0.002a | |
SSL | 66.09 ± 0.91a | 51.80 ± 1.24c | 56.93 ± 1.22b | 58.14 ± 1.50b | |
RMF | 0.428 ± 0.003a | 0.406 ± 0.004b | 0.413 ± 0.002b | 0.408 ± 0.004b | |
LF | 1.62 ± 0.03b | 1.50 ± 0.04c | 1.30 ± 0.03d | 2.17 ± 0.03a | |
PPH | 16.45 ± 0.30a | 12.98 ± 0.45b | 13.56 ± 0.34b | 17.17 ± 0.53a |
图3 云南普洱季风常绿阔叶林不同幼苗样方功能性状的变异系数。LF, 生活型; LT, 叶厚度; PPH, 潜在株高; RMF, 根质量分数; SLA, 比叶面积; SSL, 比茎长度。
Fig. 3 Coefficient of variation of functional traits for different seedling plots in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China. LF, life form; LT, leaf thickness; PPH, potential plant height; RMF, root mass fraction; SLA, specific leaf area; SSL, specific stem length.
图4 云南普洱季风常绿阔叶林不同幼苗样方功能性状与Rao二次熵(Rao’Q)的多元回归分析。黑色菱形代表变量对Rao’Q有显著影响(p < 0.05), 灰色菱形则相反。LF, 生活型; LT, 叶厚度; PPH, 潜在株高; RMF, 根质量分数; SLA, 比叶面积; SSL, 比茎长度。
Fig. 4 Multiple regression analyses of functional traits and Rao’s quadratic entropy (Rao’Q) in different seedling plots of a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China. Black diamonds represent variables that have a significant effect on Rao’Q (p < 0.05), while grey diamonds are the opposite. LF, life form; LT, leaf thickness; PPH, potential plant height; RMF, root mass fraction; SLA, specific leaf area; SSL, specific stem length.
[1] |
Adler PB, HilleRisLambers J, Levine JM (2007). A niche for neutrality. Ecology Letters, 10, 95-104.
PMID |
[2] |
Ahmad M, Rosbakh S, Bucher SF, Sharma P, Rathee S, Uniyal SK, Batish DR, Singh HP (2023). The role of floral traits in community assembly processes at high elevations in the Himalayas. Journal of Ecology, 111, 1107-1119.
DOI URL |
[3] | Angulo DF, Tun-Garrido J, Arceo-Gómez G, Munguía-Rosas MA, Parra-Tabla V (2018). Patterns of phylogenetic community structure of sand dune plant communities in the Yucatan Peninsula: the role of deterministic and stochastic processes in community assembly. Plant Ecology & Diversity, 11, 515-526. |
[4] |
Augspurger CK (1984). Seedling survival of tropical tree species: interactions of dispersal distance, light-gaps, and pathogens. Ecology, 65, 1705-1712.
DOI URL |
[5] |
Avolio ML, Forrestel EJ, Chang CC, La Pierre KJ, Burghardt KT, Smith MD (2019). Demystifying dominant species. New Phytologist, 223, 1106-1126.
DOI PMID |
[6] |
Bin Y, Ye WH, Cao HL, Huang ZL, Lian JY (2011). Seedling distribution in a subtropical evergreen broad-leaved forest plot in the Dinghu Mountain. Biodiversity Science, 19, 127-133.
DOI |
[宾粤, 叶万辉, 曹洪麟, 黄忠良, 练琚愉 (2011). 鼎湖山南亚热带常绿阔叶林20公顷样地幼苗的分布. 生物多样性, 19, 127-133.]
DOI |
|
[7] | Bongers FJ, Schmid B, Bruelheide H, Bongers F, Li S, von Oheimb G, Li Y, Cheng A, Ma K, Liu X (2021). Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nature Ecology & Evolution, 5, 1594-1603. |
[8] |
Botta-Dukát Z, Czúcz B (2016). Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods in Ecology and Evolution, 7, 114-126.
DOI URL |
[9] |
Chisholm RA, Pacala SW (2010). Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proceedings of the National Academy of Sciences of the United States of America, 107, 15821-15825.
DOI PMID |
[10] | Clark DB, Palmer MW, Clark DA (1999). Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology, 80, 2662-2675. |
[11] |
Connor EF, Simberloff D (1979). The assembly of species communities: chance or competition? Ecology, 60, 1132-1140.
DOI URL |
[12] | Cordero RD, Jackson DA (2019). Species-pair associations, null models, and tests of mechanisms structuring ecological communities. Ecosphere, 10, e02797. DOI: 10.1002/ecs2.2797. |
[13] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[14] | Delecti Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae (1959-2004). Flora Reipublicae Popularis Sinicae. Science Press, Beijing. |
[中国科学院中国植物志编辑委员会 (1959-2004). 中国植物志. 科学出版社, 北京.] | |
[15] | Fukami T (2015). Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1-23. |
[16] |
Gibert A, Gray EF, Westoby M, Wright IJ, Falster DS (2016). On the link between functional traits and growth rate: meta-analysis shows effects change with plant size, as predicted. Journal of Ecology, 104, 1488-1503.
DOI URL |
[17] |
Gilbert B, Turkington R, Srivastava DS (2009). Dominant species and diversity: linking relative abundance to controls of species establishment. The American Naturalist, 174, 850-862.
DOI PMID |
[18] |
Gong X, Jarvie S, Zhang Q, Liu Q, Yan Y, Su N, Han P, Li F (2023). Community assembly of plant, soil bacteria, and fungi vary during the restoration of an ecosystem threatened by desertification. Journal of Soils and Sediments, 23, 459-472.
DOI |
[19] |
Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš J, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012). Ecological assembly rules in plant communities— Approaches, patterns and prospects. Biological Reviews, 87, 111-127.
DOI URL |
[20] | He P, Fontana S, Ma C, Liu H, Xu L, Wang R, Jiang Y, Li M (2023). Using leaf traits to explain species co-existence and its consequences for primary productivity across a forest-steppe ecotone. Science of the Total Environment, 859, 160139. DOI: 10.1016/j.scitotenv.2022.160139. |
[21] |
Hu Y, Sha L, Blanchet FG, Zhang J, Tang Y, Lan G, Cao M (2012). Dominant species and dispersal limitation regulate tree species distributions in a 20-ha plot in Xishuangbanna, southwest China. Oikos, 121, 952-960.
DOI URL |
[22] |
Hubbell SP (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166-172.
DOI URL |
[23] |
Hubbell SP (2006). Neutral theory and the evolution of ecological equivalence. Ecology, 87, 1387-1398.
PMID |
[24] |
Iida Y, Swenson NG (2020). Towards linking species traits to demography and assembly in diverse tree communities: revisiting the importance of size and allocation. Ecological Research, 35, 947-966.
DOI URL |
[25] | Jin Y, Qian H, Yu MJ (2015). Phylogenetic structure of tree species across different life stages from seedlings to canopy trees in a subtropical evergreen broad-leaved forest. PLoS ONE, 10, e0131162. DOI: 10.1371/journal.pone.0131162. |
[26] | Johnson DJ, Condit R, Hubbell SP, Comita LS (2017). Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proceedings of the Royal Society B: Biological Sciences, 284, 20172210. DOI: 10.1098/rspb.2017.2210. |
[27] |
Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007). Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170, 271-283.
PMID |
[28] |
Lebrija-Trejos E, Pérez-García EA, Meave JA, Bongers F, Poorter L (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology, 91, 386-398.
PMID |
[29] | Li L, Wei SG, Ma JM, Ye WH, Lian JY (2020). Relative effects of habitat heterogeneity and dispersal limitation on species diversity maintenance in south subtropical evergreen broad-leaved forest. Scientia Silvae Sinicae, 56(10), 1-10. |
[李林, 魏识广, 马姜明, 叶万辉, 练琚愉 (2020). 生境异质性和扩散限制对南亚热带常绿阔叶林群落物种多样性的相对作用. 林业科学, 56(10), 1-10.] | |
[30] |
Li SF, Lang XD, Huang XB, Wang YH, Liu WD, Xu CH, Su JR (2020). Association classification of a 30 hm2 dynamics plot in the monsoon broad-leaved evergreen forest in Pu’er, Yunnan, China. Chinese Journal of Plant Ecology, 44, 236-247.
DOI URL |
[李帅锋, 郎学东, 黄小波, 王艳红, 刘万德, 徐崇华, 苏建荣 (2020). 云南普洱30 hm2季风常绿阔叶林动态监测样地群丛数量分类. 植物生态学报, 44, 236-247.]
DOI |
|
[31] | Li XL, Wang H, Zheng Z, Lin LX, Deng XB, Cao M (2009). Composition, spatial distribution and survival during the dry season of tree seedlings in a tropical forest in Xishuangbanna, SW China. Chinese Journal of Plant Ecology, 33, 658-671. |
[李晓亮, 王洪, 郑征, 林露湘, 邓晓保, 曹敏 (2009). 西双版纳热带森林树种幼苗的组成、空间分布和旱季存活. 植物生态学报, 33, 658-671.]
DOI |
|
[32] |
Lin L, Comita LS, Zheng Z, Cao M (2012). Seasonal differentiation in density-dependent seedling survival in a tropical rain forest. Journal of Ecology, 100, 905-914.
DOI URL |
[33] |
Lin YC, Chang LW, Yang KC, Wang HH, Sun IF (2011). Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation. Oecologia, 165, 175-184.
DOI URL |
[34] |
Liu WD, Su JR, Li SF, Lang XD, Zhang ZJ, Huang XB (2015). Leaf carbon, nitrogen and phosphorus stoichiometry at different growth stages in dominant tree species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province, China. Chinese Journal of Plant Ecology, 39, 52-62.
DOI URL |
[刘万德, 苏建荣, 李帅锋, 郎学东, 张志钧, 黄小波 (2015). 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征. 植物生态学报, 39, 52-62.]
DOI |
|
[35] |
MacArthur R, Levins R (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385.
DOI URL |
[36] |
McNaughton SJ, Wolf LL (1970). Dominance and the niche in ecological systems. Science, 167, 131-139.
PMID |
[37] |
Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo- Murakami A, Paniagua-Zambrana N, Seidel R (2013). Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16, 151-157.
DOI PMID |
[38] |
Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelissen JHC, Díaz S, Dominy NJ, Elgart A, Enrico L, Fine PVA, Howard JJ, Jalili A, Kitajima K, Kurokawa H, et al. (2011). Global patterns of leaf mechanical properties. Ecology Letters, 14, 301-312.
DOI PMID |
[39] |
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
DOI PMID |
[40] |
Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87, 1733-1743.
PMID |
[41] |
Rosindell J, Hubbell SP, Etienne RS (2011). The unified neutral theory of biodiversity and biogeography at age ten. Trends in Ecology Evolution, 26, 340-348.
DOI URL |
[42] |
Sevillano I, Short I, Grant J, O’Reilly C (2016). Effects of light availability on morphology, growth and biomass allocation of Fagus sylvatica and Quercus robur seedlings. Forest Ecology and Management, 374, 11-19.
DOI URL |
[43] | Shang H, Wang YQ, Han BC, Mi XC, Chen L, Liang Y, Ma KP (2023). Effects of functional phylogeny of light- response-related orthologous genes on seedling survival in a subtropical forest. Forest Ecosystems, 10, 100087. DOI: 10.1016/j.fecs.2023.100087. |
[44] |
Song X, Cao M, Kitching RL, Tang Y, Sun Z, Nakamura A, Laidlaw MJ, Yang J (2019). Environmental and spatial contributions to seedling and adult tree assembly across tropical, subtropical and subalpine elevational gradients. Journal of Plant Ecology, 12, 103-112.
DOI |
[45] | Song XY, Li JQ, Zhang WF, Tang Y, Sun ZH, Cao M (2016). Variant responses of tree seedling to seasonal drought stress along an elevational transect in tropical montane forests. Scientific Reports, 6, 36438. DOI: 10.1038/srep36438. |
[46] |
Song X, Yang J, Cao M, Lin L, Sun Z, Wen H, Swenson NG (2021). Traits mediate a trade-off in seedling growth response to light and conspecific density in a diverse subtropical forest. Journal of Ecology, 109, 703-713.
DOI URL |
[47] |
van der Plas F, Janzen T, Ordonez A, Fokkema W, Reinders J, Etienne RS, Olff H (2015). A new modeling approach estimates the relative importance of different community assembly processes. Ecology, 96, 1502-1515.
DOI URL |
[48] |
Vanderlei RS, Barros MF, Leal IR, Tabarelli M (2022). Impoverished woody seedling assemblages and the regeneration of Caatinga dry forest in a human-modified landscape. Biotropica, 54, 670-681.
DOI URL |
[49] |
Volkov I, Banavar JR, Hubbell SP, Maritan A (2003). Neutral theory and relative species abundance in ecology. Nature, 424, 1035-1037.
DOI |
[50] |
Wang YH, Li SF, Lang XD, Huang XB, Liu WD, Xu CH, Su JR (2020). Effects of topographic heterogeneity on species diversity in a monsoon evergreen broad-leaved forest in Puʼer, Yunnan, China. Chinese Journal of Plant Ecology, 44, 1015-1027.
DOI URL |
[王艳红, 李帅锋, 郎学东, 黄小波, 刘万德, 徐崇华, 苏建荣 (2020). 地形异质性对云南普洱季风常绿阔叶林物种多样性的影响. 植物生态学报, 44, 1015-1027.] | |
[51] | Webb CO, Gilbert GS, Donoghue MJ (2006). Phylodiversity- dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology, 87, 123-131. |
[52] | Wills J, Herbohn J, Wells J, Maranguit Moreno MO, Ferraren A, Firn J (2021). Seedling diversity in actively and passively restored tropical forest understories. Ecological Applications, 31, e02286. DOI: 10.1002/eap.2286. |
[53] | Worthy SJ, Laughlin DC, Zambrano J, Umaña MN, Zhang C, Lin L, Cao M, Swenson NG (2020). Alternative designs and tropical tree seedling growth performance landscapes. Ecology, 101, e03007. DOI: 10.1002/ecy.3007. |
[54] | Xu YZ, Wan D, Xiao ZQ, Wu H, Jiang MX (2019). Spatio-temporal dynamics of seedling communities are determined by seed input and habitat filtering in a subtropical montane forest. Forest Ecology and Management, 449, 117475. DOI: 10.1016/j.foreco.2019.117475. |
[55] | Yang QS, Shen GC, Liu HM, Wang ZH, Ma ZP, Fang XF, Zhang J, Wang XH (2016). Detangling the effects of environmental filtering and dispersal limitation on aggregated distributions of tree and shrub species: life stage matters. PLoS ONE, 11, e0156326. DOI: 10.1371/journal.pone.0156326. |
[56] |
Yu M, Sun OJ (2013). Effects of forest patch type and site on herb-layer vegetation in a temperate forest ecosystem. Forest Ecology and Management, 300, 14-20.
DOI URL |
[57] | Zhao LJ, Xiang WH, Li JX, Liu WQ, Hu YT, Wu HL, Zhang YL, Cheng X, Wang WJ, Wang WT, Ouyang S (2022). “Realistic strategies” and neutral processes drive the community assembly based on leaf functional traits in a subtropical evergreen broad-leaved forest. Ecology and Evolution, 12, e9323. DOI: 10.1002/ece3.9323. |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[6] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[7] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[8] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[9] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[10] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[11] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[12] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[13] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[14] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[15] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19