植物生态学报 ›› 2024, Vol. 48 ›› Issue (5): 541-560.DOI: 10.17521/cjpe.2023.0237
• 综述 • 下一篇
常晨晖1,*()(), 朱彪1, 朱江玲1, 吉成均1, 杨万勤2
收稿日期:
2023-08-16
接受日期:
2024-01-24
出版日期:
2024-05-20
发布日期:
2024-01-25
通讯作者:
E-mail: 基金资助:
CHANG Chen-Hui1,*()(), ZHU Biao1, ZHU Jiang-Ling1, JI Cheng-Jun1, YANG Wan-Qin2
Received:
2023-08-16
Accepted:
2024-01-24
Online:
2024-05-20
Published:
2024-01-25
Contact:
E-mail: Supported by:
摘要:
森林粗木质残体主要包括倒木、枯立木、大枯枝、树桩和粗根等, 它们是绝大多数森林生态系统的结构性成分, 在全球碳循环和生物多样性保育等方面发挥着不可替代的作用。特别是近些年, 极端高温、干旱、热带气旋等极端气候事件正在加速树木死亡, 改变森林粗木质残体形成的方式和分解过程, 森林生态系统功能和稳定性也会受到深刻影响, 生态学家对此也越来越重视。如今, 生态学家通过野外观测和控制实验, 围绕粗木质残体的分解特征、调控机制和分解过程中粗木质残体上的生物多样性开展了大量研究, 促进了粗木质残体生态学的快速发展。该文首先汇总了最常见的用于森林粗木质残体分解过程的研究方法, 并且描述了各研究方法适用的情景。其次, 从形态、物理和化学性状方面探讨了粗木质残体的分解特征。然后, 围绕着影响森林粗木质残体分解的控制因素, 系统梳理和总结了已取得的研究结果。具体来说, 粗木质残体分解主要受到基质质量、分解者和环境条件的调控, 其中基质质量和分解者在样点尺度上影响着分解过程, 基质质量对分解者群落有自下而上的调控作用, 环境条件在区域或更大研究尺度上发挥主导作用。粗木质残体在分解的同时孕育了数量巨大、种类丰富的生物, 主要类群包括苔藓类附生植物、细菌、真菌和无脊椎动物。无脊椎动物对森林粗木质残体的利用方式最为复杂, 可能将其作为栖息地、掩蔽所、繁殖地、取食场所。附生植物的演替过程与分解时间正相关, 但与腐烂程度联系不紧密, 其他生物类群的演替则更多地受到基质质量的影响。由于以往的综述鲜有涉及不同结构组分(树皮和木质部)分解的研究进展, 该文补充和探讨了树皮和木质部的分解特征和潜在的相互作用过程。由于粗木质残体分解缓慢的特点和研究方法的限制, 目前许多机理的相关研究仍不够深入, 该文围绕粗木质残体分解机制和生物多样性保育功能探讨了未来需要重点关注的研究内容及可能的研究方法。
常晨晖, 朱彪, 朱江玲, 吉成均, 杨万勤. 森林粗木质残体分解研究进展. 植物生态学报, 2024, 48(5): 541-560. DOI: 10.17521/cjpe.2023.0237
CHANG Chen-Hui, ZHU Biao, ZHU Jiang-Ling, JI Cheng-Jun, YANG Wan-Qin. Review on the study of forest coarse woody debris decomposition. Chinese Journal of Plant Ecology, 2024, 48(5): 541-560. DOI: 10.17521/cjpe.2023.0237
研究方法 Methodology | 优点 Pros | 缺点 Cons | 适用场景 Scenarios | 参考文献 Reference |
---|---|---|---|---|
短期观测 Short-term observation | 一般1-5 a, 时间成本低 Usually 1-5 a, low time cost | 只能解释非常短的时间段内的森林木质残体的分解特征 Present the short-term decomposition process | 探究分解初期的性状、分解者群落、分解速率及相关性; 探究树枝等小径级的森林木质残体分解特征; 白蚁或者树皮甲虫分布广泛的地区 Explore the characteristics of substrate quality, decomposer community, decay rate and the relationships between those indicators. Termites and bark beetles widely distributed region | Wende et al., Seibold et al., |
长期监测 Long-term monitoring | 可以监测分解环境的动态变化特征, 有利于深入探究环境对分解的影响 Appropriate for monitoring changes in environment during decomposition, beneficial to disentangle the mechanisms of decomposition | 耗费时间长 Time consuming | 追踪不同分解时期的性状特征、分解速率特征、分解者(微生物和土壤动物)群落演替、附生植物群落演替及相关性 Track the dynamics of substrate quality and decay rate at different decay stages. Monitor the community succession of decomposer and eplixylic plants. Explore the relationships between those indicators | Cornelissen et al., Kahl et al., Prescott et al., Seibold et al., |
年代序列 Chronosequence | 以空间替代时间, 单次调查便可了解森林木质残体整个分解过程的特征 Replace time with space, the whole decomposition process can be understood by single survey | 只能提供大概趋势, 精确度低 Access to the trend of decomposition, at low accuracy | 森林资源调查; 探究不同分解时期的养分动态和质量损失 Forest survey. Explore the characteristics of nutrient dynamics and mass loss at different decomposition stages | Harmon et al., |
室内培养 Laboratory culture | 可以严格控制分解环境、分解者种类、分解基质 The decomposition environment, decomposer community and substrate quality can be controlled strictly | 许多微生物无法在室内生存, 不能反映真实的野外分解环境 Many microbial organisms can not be cultured in the lab. The decomposition process can be different with that in the field | 尤其适用于探讨不同类型木腐菌对木质残体结构性成分的降解机制; 木质残体分解过程中微生物群落演替和种间关系的探究 Applicable to disentangle the decomposition mechanisms of wood structural components by wood rot fungi, microbial community succession and interspecific relationships | Valášková et al., de Boer et al., |
分解序列 Decomposition vector | 在以空间替代时间的基础上短期培养, 能在较短时间内追踪、获取完整的分解动态 Combine short term incubation and chronosequences, can track and achieve the whole decomposition process within a short time | 无法确定每个腐烂等级森林木质残体已经分解的时长和初始性状 The length of decomposition time and original trait are uncertain | 适用于多种场景 Applicable to various scenarios | Harmon et al., Freschet et al., |
标准化木块 Wood block | 尺寸固定, 获取材料方便, 可以切断气候因素和树种之间的关联性 Uniformed size, easy access to the materials, can cut the links between climate and tree species | 不能代表真实的粗木质残体分解 Different with the decomposition of coarse woody debris | 在区域或全球尺度上探究气候因子对粗木质残体分解的影响 Reveal the factors controlling coarse woody debris decomposition at regional and global scales | Lustenhouwer et al., Zanne et al., |
表1 粗木质残体分解过程的主要研究方法
Table 1 Lists of methodology used in different scenarios of coarse woody debris (CWD) decomposition
研究方法 Methodology | 优点 Pros | 缺点 Cons | 适用场景 Scenarios | 参考文献 Reference |
---|---|---|---|---|
短期观测 Short-term observation | 一般1-5 a, 时间成本低 Usually 1-5 a, low time cost | 只能解释非常短的时间段内的森林木质残体的分解特征 Present the short-term decomposition process | 探究分解初期的性状、分解者群落、分解速率及相关性; 探究树枝等小径级的森林木质残体分解特征; 白蚁或者树皮甲虫分布广泛的地区 Explore the characteristics of substrate quality, decomposer community, decay rate and the relationships between those indicators. Termites and bark beetles widely distributed region | Wende et al., Seibold et al., |
长期监测 Long-term monitoring | 可以监测分解环境的动态变化特征, 有利于深入探究环境对分解的影响 Appropriate for monitoring changes in environment during decomposition, beneficial to disentangle the mechanisms of decomposition | 耗费时间长 Time consuming | 追踪不同分解时期的性状特征、分解速率特征、分解者(微生物和土壤动物)群落演替、附生植物群落演替及相关性 Track the dynamics of substrate quality and decay rate at different decay stages. Monitor the community succession of decomposer and eplixylic plants. Explore the relationships between those indicators | Cornelissen et al., Kahl et al., Prescott et al., Seibold et al., |
年代序列 Chronosequence | 以空间替代时间, 单次调查便可了解森林木质残体整个分解过程的特征 Replace time with space, the whole decomposition process can be understood by single survey | 只能提供大概趋势, 精确度低 Access to the trend of decomposition, at low accuracy | 森林资源调查; 探究不同分解时期的养分动态和质量损失 Forest survey. Explore the characteristics of nutrient dynamics and mass loss at different decomposition stages | Harmon et al., |
室内培养 Laboratory culture | 可以严格控制分解环境、分解者种类、分解基质 The decomposition environment, decomposer community and substrate quality can be controlled strictly | 许多微生物无法在室内生存, 不能反映真实的野外分解环境 Many microbial organisms can not be cultured in the lab. The decomposition process can be different with that in the field | 尤其适用于探讨不同类型木腐菌对木质残体结构性成分的降解机制; 木质残体分解过程中微生物群落演替和种间关系的探究 Applicable to disentangle the decomposition mechanisms of wood structural components by wood rot fungi, microbial community succession and interspecific relationships | Valášková et al., de Boer et al., |
分解序列 Decomposition vector | 在以空间替代时间的基础上短期培养, 能在较短时间内追踪、获取完整的分解动态 Combine short term incubation and chronosequences, can track and achieve the whole decomposition process within a short time | 无法确定每个腐烂等级森林木质残体已经分解的时长和初始性状 The length of decomposition time and original trait are uncertain | 适用于多种场景 Applicable to various scenarios | Harmon et al., Freschet et al., |
标准化木块 Wood block | 尺寸固定, 获取材料方便, 可以切断气候因素和树种之间的关联性 Uniformed size, easy access to the materials, can cut the links between climate and tree species | 不能代表真实的粗木质残体分解 Different with the decomposition of coarse woody debris | 在区域或全球尺度上探究气候因子对粗木质残体分解的影响 Reveal the factors controlling coarse woody debris decomposition at regional and global scales | Lustenhouwer et al., Zanne et al., |
腐烂等级 Decay stage | 硬度 Hardness | 结构完整性 Structural integrity | 附生植物生长情况 Epixylic plants colonization | 树皮存在情况 Bark presence-absence |
---|---|---|---|---|
I | 坚硬 Sound | 树干完整, 小枝新鲜可见, 形成层仍保持新鲜状态 Trunk intact, twigs still attached, cambium still fresh | 除了树木死亡前已经附着生长的地衣几乎没有植物生长 Little or no moss or other vegetation except lichen already lived before tree death | 树皮完整 Bark intact |
II | 坚硬 Sound | 树干完整, 小枝几乎脱落, 形成层开始分解 Trunk intact, twigs almost decayed, cambium still fresh | 少量苔藓或其他类型植物开始生长 Sparse moss or other plants growing | 树皮几乎完整, 与木质部的连接紧密 Bark mostly intact, and tightly attached to xylem |
III | 较为坚硬 Less sound | 树干完整, 一般为圆形; 心材肉眼可见的疏松 Trunk intact, the cut surface is usually round; the heartwood becomes loose | 苔藓或其他类型植物继续生长, 对树皮的覆盖度增大 Sparse moss or other plants growing | 树皮与木质部的连接松动, 或树皮部分缺失 Bark partially absent, and loosely attached to xylem |
IV | 小刀可刺入2-5 cm A knife blade penetrates 2-5 cm | 树干开始变形, 垂直地面方向直径变小, 横切面近似椭圆形; 心材腐烂 Truck partial collapsed, cross section height decreased, oval in shape; heartwood rotted | 树干表面几乎被苔藓或其他类型植被覆盖 Almost covered with moss or other plants | 仅有少部分树皮保存 Bark mostly absent |
V | 小刀几乎可刺穿 A knife blade mostly penetrates | 树干坍塌, 心材部分消失 Truck collapsed, heartwood partial absent | 树干表面被以苔藓为主的植被完全覆盖 Totally covered with thick moss-dominated plants | 树皮完全分解 Bark absent |
表2 粗木质残体分解过程中一般形态变化特征
Table 2 Features of coarse woody debris during decomposition
腐烂等级 Decay stage | 硬度 Hardness | 结构完整性 Structural integrity | 附生植物生长情况 Epixylic plants colonization | 树皮存在情况 Bark presence-absence |
---|---|---|---|---|
I | 坚硬 Sound | 树干完整, 小枝新鲜可见, 形成层仍保持新鲜状态 Trunk intact, twigs still attached, cambium still fresh | 除了树木死亡前已经附着生长的地衣几乎没有植物生长 Little or no moss or other vegetation except lichen already lived before tree death | 树皮完整 Bark intact |
II | 坚硬 Sound | 树干完整, 小枝几乎脱落, 形成层开始分解 Trunk intact, twigs almost decayed, cambium still fresh | 少量苔藓或其他类型植物开始生长 Sparse moss or other plants growing | 树皮几乎完整, 与木质部的连接紧密 Bark mostly intact, and tightly attached to xylem |
III | 较为坚硬 Less sound | 树干完整, 一般为圆形; 心材肉眼可见的疏松 Trunk intact, the cut surface is usually round; the heartwood becomes loose | 苔藓或其他类型植物继续生长, 对树皮的覆盖度增大 Sparse moss or other plants growing | 树皮与木质部的连接松动, 或树皮部分缺失 Bark partially absent, and loosely attached to xylem |
IV | 小刀可刺入2-5 cm A knife blade penetrates 2-5 cm | 树干开始变形, 垂直地面方向直径变小, 横切面近似椭圆形; 心材腐烂 Truck partial collapsed, cross section height decreased, oval in shape; heartwood rotted | 树干表面几乎被苔藓或其他类型植被覆盖 Almost covered with moss or other plants | 仅有少部分树皮保存 Bark mostly absent |
V | 小刀几乎可刺穿 A knife blade mostly penetrates | 树干坍塌, 心材部分消失 Truck collapsed, heartwood partial absent | 树干表面被以苔藓为主的植被完全覆盖 Totally covered with thick moss-dominated plants | 树皮完全分解 Bark absent |
[1] | Araya K (1993). Relationship between the decay types of dead wood and occurrence of lucanid beetles (Coleoptera: Lucanidae). Applied Entomology and Zoology, 28, 27-33. |
[2] |
Asplund J, Wardle DA (2017). How lichens impact on terrestrial community and ecosystem properties. Biological Reviews of the Cambridge Philosophical Society, 92, 1720-1738.
DOI PMID |
[3] | Bade C, Jacob M, Leuschner C, Hauck M (2015). Chemical properties of decaying wood in an old-growth spruce forest and effects on soil chemistry. Biogeochemistry, 122, 1-13. |
[4] | Bani A, Pioli S, Ventura M, Panzacchi P, Borruso L, Tognetti R, Tonon G, Brusetti L (2018). The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology, 126, 75-84. |
[5] |
Berlemont R, Martiny AC (2015). Genomic potential for polysaccharide deconstruction in bacteria. Applied and Environmental Microbiology, 81, 1513-1519.
PMID |
[6] | Błońska E, Lasota J, Tullus A, Lutter R, Ostonen I (2019). Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests. Annals of Forest Science, 76, 102. DOI: 10.1007/s13595-019-0889-9. |
[7] | Bradford MA, Warren II RJ, Baldrian P, Crowther TW, Maynard DS, Oldfield EE, Wieder WR, Wood SA, King JR (2014). Climate fails to predict wood decomposition at regional scales. Nature Climate Change, 4, 625-630. |
[8] |
Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011). The emerging role for bacteria in lignin degradation and bio-product formation. Current Opinion in Biotechnology, 22, 394-400.
DOI PMID |
[9] | Campbell LJ, Laroque CP (2007). Decay progression and classification in two old-growth forests in Atlantic Canada. Forest Ecology and Management, 238, 293-301. |
[10] |
Chambers JQ, Higuchi N, Schimel JP, Ferreira LV, Melack JM (2000). Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia, 122, 380-388.
DOI PMID |
[11] | Chambers JQ, Schimel JP, Nobre AD (2001). Respiration from coarse wood litter in central Amazon forests. Biogeochemistry, 52, 115-131. |
[12] | Chang CH, Berg MP, Zuo J, Lin L, Bom C, Wolters J, Biesbroeck M, de Ruijter P, Hefting MM, Sass-Klaassen U, Cornelissen JHC (2023). Reciprocal bark exchange helps to disentangle tree species-dependent bark and wood trait effects on invertebrate diversity. Journal of Ecology, 111, 125-138. |
[13] | Chang C, Goudzwaard L, van Hal J, Zuo J, Hefting M, Sass-Klaassen U, Yang S, Sterck FJ, Poorter L, Cornelissen JHC (2020a). Methodology matters for comparing coarse wood and bark decay rates across tree species. Methods in Ecology and Evolution, 11, 828-838. |
[14] | Chang C, Wang Z, Tan B, Li J, Cao R, Wang Q, Yang W, Weedon JT, Cornelissen JHC (2020b). Tissue type and location within forest together regulate decay trajectories of Abies faxoniana logs at early and mid-decay stage. Forest Ecology and Management, 475, 118411. DOI: 10.1016/j.foreco.2020.118411. |
[15] | Chang CH, Wu FZ, Yang WQ, Tan B, Xiao S, Li J, Gou XL (2015). Changes in log quality at different decay stages in an alpine forest. Chinese Journal of Plant Ecology, 39, 14-22. |
[常晨晖, 吴福忠, 杨万勤, 谭波, 肖洒, 李俊, 苟小林 (2015). 高寒森林倒木在不同分解阶段的质量变化. 植物生态学报, 39, 14-22.]
DOI |
|
[16] | Chen H, Xu ZB (1991). History, current situation and tendency of CWD ecological research. Chinese Journal of Ecology, 10, 45-50. |
[陈华, 徐振邦 (1991). 粗木质物残体生态研究历史、现状和趋势. 生态学杂志, 10, 45-50.] | |
[17] | Clausen CA (1996). Bacterial associations with decaying wood: a review. International Biodeterioration & Biodegradation, 37, 101-107. |
[18] | Cornelissen JHC, Sass-Klaassen U, Poorter L, van Geffen K, van Hal J, Goudzwaard L, Sterck FJ, Klaassen RKWM, Freschet GT, van der Wal A, Eshuis H, Zuo J, de Boer W, Lamers T, et al. (2012). Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment. Ambio, 41(Suppl. 3), 231-245. |
[19] |
Crockatt ME, Bebber DP (2015). Edge effects on moisture reduce wood decomposition rate in a temperate forest. Global Change Biology, 21, 698-707.
DOI PMID |
[20] | de Boer W, Folman LB, Gunnewiek PJ, Svensson T, Bastviken D, Oberg G, del Rio JC, Boddy L (2010). Mechanism of antibacterial activity of the white-rot fungus Hypholoma fasciculare colonizing wood. Canadian Journal of Microbiology, 56, 380-388. |
[21] | Dossa GGO, Schaefer D, Zhang J, Tao J, Cao K, Corlett RT, Cunningham AB, Xu J, Cornelissen JHC, Harrison RD (2018). The cover uncovered: bark control over wood decomposition. Journal of Ecology, 106, 2147-2160. |
[22] | Erdenebileg E, Wang C, Ye X, Cui Q, Du J, Huang Z, Liu G, Cornelissen JHC (2020). Multiple abiotic and biotic drivers of long-term wood decomposition within and among species in the semi-arid inland dunes: a dual role for stem diameter. Functional Ecology, 34, 1472-1484. |
[23] | Floriancic MG, Allen ST, Meier R, Truniger L, Kirchner JW, Molnar P (2023). Potential for significant precipitation cycling by forest-floor litter and deadwood. Ecohydrology, 16, e2493. DOI: 10.1002/eco.2493. |
[24] | Fraver S, Milo AM, Bradford JB, D’Amato AW, Kenefic L, Palik BJ, Woodall CW, Brissette J (2013). Woody debris volume depletion through decay: implications for biomass and carbon accounting. Ecosystems, 16, 1262-1272. |
[25] | Fravolini G, Tognetti R, Lombardi F, Egli M, Ascher-Jenull J, Arfaioli P, Bardelli T, Cherubini P, Marchetti M (2018). Quantifying decay progression of deadwood in Mediterranean mountain forests. Forest Ecology and Management, 408, 228-237. |
[26] | Freschet GT, Weedon JT, Aerts R, van Hal JR, Cornelissen JHC (2012). Interspecific differences in wood decay rates: insights from a new short-term method to study long-term wood decomposition. Journal of Ecology, 100, 161-170. |
[27] | Fukasawa Y, Osono T, Takeda H (2009). Dynamics of physicochemical properties and occurrence of fungal fruit bodies during decomposition of coarse woody debris of Fagus crenata. Journal of Forest Research, 14, 20-29. |
[28] | Fukasawa Y, Takahashi K, Arikawa T, Hattori T, Maekawa N (2015). Fungal wood decomposer activities influence community structures of myxomycetes and bryophytes on coarse woody debris. Fungal Ecology, 14, 44-52. |
[29] | Garrett LG, Kimberley MO, Oliver GR, Pearce SH, Beets PN (2012). Decomposition of coarse woody roots and branches in managed Pinus radiata plantations in New Zealand—A time series approach. Forest Ecology and Management, 269, 116-123. |
[30] | González G, Gould WA, Hudak AT, Hollingsworth TN (2008). Decay of aspen (Populus tremuloides Michx.) wood in moist and dry boreal, temperate, and tropical forest fragments. Ambio, 37, 588-597. |
[31] | Guo C, Yan ER, Cornelissen JHC (2022). Size matters for linking traits to ecosystem multifunctionality. Trends in Ecology & Evolution, 37, 803-813. |
[32] | Guo LB, Bek E, Gifford RM (2006). Woody debris in a 16-year old Pinus radiata plantation in Australia: mass, carbon and nitrogen stocks, and turnover. Forest Ecology and Management, 228, 145-151. |
[33] | Hagge J, Bässler C, Gruppe A, Hoppe B, Kellner H, Krah FS, Müller J, Seibold S, Stengel E, Thorn S (2019). Bark coverage shifts assembly processes of microbial decomposer communities in dead wood. Proceedings of the Royal Society B: Biological Sciences, 286, 20191744. DOI: 10.1098/rspb.2019.1744. |
[34] | Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack Jr. K, Cummins KW (1986). Ecology of Coarse Woody Debris in Temperate Ecosystems. Academic Press, New York. 133-302. |
[35] | Harmon ME, Krankina ON, Sexton J (2000). Decomposition vectors: a new approach to estimating woody detritus decomposition dynamics. Canadian Journal of Forest Research, 30, 76-84. |
[36] | Harmon ME, Woodall CW, Fasth B, Sexton J, Yatkov M (2011). Differences Between Standing and Sowned Dead Tree Wood Density Reduction Factors: a Comparison Across Decay Classes and Tree Species. Research Paper NRS-15, U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square. DOI: 10.2737/NRS-RP-15. |
[37] |
Hibbett DS, Donoghue MJ (2001). Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Systematic Biology, 50, 215-242.
PMID |
[38] | Hiscox J, Savoury M, Müller CT, Lindahl BD, Rogers HJ, Boddy L (2015). Priority effects during fungal community establishment in beech wood. The ISME Journal, 9, 2246-2260. |
[39] | Hoppe B, Krüger K, Kahl T, Arnstadt T, Buscot F, Bauhus J, Wubet T (2015). A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Scientific Reports, 5, 9456. DOI: 10.1038/srep09456. |
[40] |
Hu Z, Chen HYH, Yue C, Gong X, Shao J, Zhou G, Wang J, Wang M, Xia J, Li Y, Zhou X, Michaletz ST (2020). Traits mediate drought effects on wood carbon fluxes. Global Change Biology, 26, 3429-3442.
DOI PMID |
[41] | Hu Z, Xu C, McDowell NG, Johnson DJ, Wang M, Luo Y, Zhou X, Huang Z (2017). Linking microbial community composition to C loss rates during wood decomposition. Soil Biology & Biochemistry, 104, 108-116. |
[42] | Johnson CE, Siccama TG, Denny EG, Koppers MM, Vogt DJ (2014). In situ decomposition of northern hardwood tree boles: decay rates and nutrient dynamics in wood and bark. Canadian Journal of Forest Research, 44, 1515-1524. |
[43] | Jones JM, Heath KD, Ferrer A, Dalling JW (2020). Habitat- specific effects of bark on wood decomposition: influences of fragmentation, nitrogen concentration and microbial community composition. Functional Ecology, 34, 1123-1133. |
[44] | Kahl T, Arnstadt T, Baber K, Bässler C, Bauhus J, Borken W, Buscot F, Floren A, Heibl C, Hessenmöller D, Hofrichter M, Hoppe B, Kellner H, Krüger D, Linsenmair KE, et al. (2017). Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. Forest Ecology and Management, 391, 86-95. |
[45] | Kahl T, Wirth C, Mund M, Böhnisch G, Schulze ED (2009). Using drill resistance to quantify the density in coarse woody debris of Norway spruce. European Journal of Forest Research, 128, 467-473. |
[46] | Kielak AM, Scheublin TR, Mendes LW, van Veen JA, Kuramae EE (2016). Bacterial community succession in pine-wood decomposition. Frontiers in Microbiology, 7, 231. DOI: 10.3389/fmicb.2016.00231. |
[47] | Klaassen RKWM (2014). Speed of bacterial decay in waterlogged wood in soil and open water. International Biodeterioration & Biodegradation, 86, 129-135. |
[48] | Klaassen RKWM, van Overeem BS (2012). Factors that influence the speed of bacterial wood degradation. Journal of Cultural Heritage, 13, S129-S134. |
[49] | Kruys N, Jonsson BG, Ståhl G (2002). A stage-based matrix model for decay-class dynamics of woody debris. Ecological Applications, 12, 773-781. |
[50] |
Kubartová A, Ottosson E, Dahlberg A, Stenlid J (2012). Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Molecular Ecology, 21, 4514-4532.
DOI PMID |
[51] | Kushnevskaya H, Mirin D, Shorohova E (2007). Patterns of epixylic vegetation on spruce logs in late-successional boreal forests. Forest Ecology and Management, 250, 25-33. |
[52] | Kushnevskaya H, Shorohova E (2018). Presence of bark influences the succession of cryptogamic wood-inhabiting communities on conifer fallen logs. Folia Geobotanica, 53, 175-190. |
[53] | Larjavaara M, Muller-Landau HC (2010). Comparison of decay classification, knife test, and two penetrometers for estimating wood density of coarse woody debris. Canadian Journal of Forest Research, 40, 2313-2321. |
[54] | Lepinay C, Jiráska L, Tláskal V, Brabcová V, Vrška T, Baldrian P (2021). Successional development of fungal communities associated with decomposing deadwood in a natural mixed temperate forest. Journal of Fungi (Basel), 7, 412. DOI: 10.3390/jof7060412. |
[55] | Lin L, Song Y, Li Y, Goudzwaard L, Chang C, Broekman R, van Hal J, Zuo J, Sterck FJ, Poorter L, Sass-Klaassen U, Hefting MM, Cornelissen JHC (2022). Considering inner and outer bark as distinctive tissues helps to disentangle the effects of bark traits on decomposition. Journal of Ecology, 110, 2359-2373. |
[56] | Lladó S, López-Mondéjar R, Baldrian P (2017). Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews, 81, e00063-16. DOI: 10.1128/MMBR.00063-16. |
[57] | Lombardi F, Cherubini P, Tognetti R, Cocozza C, Lasserre B, Marchetti M (2013). Investigating biochemical processes to assess deadwood decay of beech and silver fir in Mediterranean mountain forests. Annals of Forest Science, 70, 101-111. |
[58] |
Lustenhouwer N, Maynard DS, Bradford MA, Lindner DL, Oberle B, Zanne AE, Crowther TW (2020). A trait-based understanding of wood decomposition by fungi. Proceedings of the National Academy of Sciences of the United States of America, 117, 11551-11558.
DOI PMID |
[59] | Mackensen J, Bauhus J (2003). Density loss and respiration rates in coarse woody debris of Pinus radiata, Eucalyptus regnans and Eucalyptus maculata. Soil Biology & Biochemistry, 35, 177-186. |
[60] | Martin AR, Domke GM, Doraisami M, Thomas SC (2021). Carbon fractions in the worldʼs dead wood. Nature Communications, 12, 889. DOI: 10.1038/s41467-021-21149-9. |
[61] | Mills MB, Malhi Y, Ewers RM, Kho LK, Teh YA, Both S, Burslem DFRP, Majalap N, Nilus R, Huaraca Huasco W, Cruz R, Pillco MM, Turner EC, Reynolds G, Riutta T (2023). Tropical forests post-logging are a persistent net carbon source to the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 120, e2214462120. DOI: 10.1073/pnas.2214462120. |
[62] | Minnich C, Peršoh D, Poll C, Borken W (2021). Changes in chemical and microbial soil parameters following 8 years of deadwood decay: an experiment with logs of 13 tree species in 30 forests. Ecosystems, 24, 955-967. |
[63] | Moroni MT, Morris DM, Shaw C, Stokland JN, Harmon ME, Fenton NJ, Merganičová K, Merganič J, Okabe K, Hagemann U (2015). Buried wood: a common yet poorly documented form of deadwood. Ecosystems, 18, 605-628. |
[64] |
Oberle B, Lee MR, Myers JA, Osazuwa-Peters OL, Spasojevic MJ, Walton ML, Young DF, Zanne AE (2020). Accurate forest projections require long-term wood decay experiments because plant trait effects change through time. Global Change Biology, 26, 864-875.
DOI PMID |
[65] | Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331. |
[66] | Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, et al. (2011). A large and persistent carbon sink in the worldʼs forests. Science, 333, 988-993. |
[67] | Parameswaran N, Wilhelm GE (1979). Micromorphology of naturally degraded beech and spruce barks. European Journal of Forest Pathology, 9, 103-112. |
[68] | Pastorelli R, Paletto A, Agnelli AE, Lagomarsino A, De Meo I (2020). Microbial communities associated with decomposing deadwood of downy birch in a natural forest in Khibiny Mountains (Kola Peninsula, Russian Federation). Forest Ecology and Management, 455, 117643. DOI: 10.1016/j.foreco.2019.117643. |
[69] | Pearson M, Laiho R, Penttilä T (2017). Decay of Scots pine coarse woody debris in boreal peatland forests: mass loss and nutrient dynamics. Forest Ecology and Management, 401, 304-318. |
[70] |
Piaszczyk W, Błońska E, Lasota J, Lukac M (2019). A comparison of C:N:P stoichiometry in soil and deadwood at an advanced decomposition stage. Catena, 179, 1-5.
DOI |
[71] | Pietsch KA, Eichenberg D, Nadrowski K, Bauhus J, Buscot F, Purahong W, Wipfler B, Wubet T, Yu M, Wirth C (2019). Wood decomposition is more strongly controlled by temperature than by tree species and decomposer diversity in highly species rich subtropical forests. Oikos, 128, 701-715. |
[72] | Prescott CE, Corrao K, Reid AM, Zukswert JM, Addo-Danso SD (2017). Changes in mass, carbon, nitrogen, and phosphorus in logs decomposing for 30 years in three Rocky Mountain coniferous forests. Canadian Journal of Forest Research, 47, 1418-1423. |
[73] |
Prewitt L, Kang Y, Kakumanu ML, Williams M (2014). Fungal and bacterial community succession differs for three wood types during decay in a forest soil. Microbial Ecology, 68, 212-221.
DOI PMID |
[74] | Přívětivý T, Janík D, Unar P, Adam D, Král K, Vrška T (2016). How do environmental conditions affect the deadwood decomposition of European beech (Fagus sylvatica L.)?. Forest Ecology and Management, 381, 177-187. |
[75] |
Rinne-Garmston KT, Peltoniemi K, Chen J, Peltoniemi M, Fritze H, Mäkipää R (2019). Carbon flux from decomposing wood and its dependency on temperature, wood N2fixation rate, moisture and fungal composition in a Norway spruce forest. Global Change Biology, 25, 1852-1867.
DOI PMID |
[76] | Rinta-Kanto JM, Sinkko H, Rajala T, Al-Soud WA, Sørensen SJ, Tamminen MV, Timonen S (2016). Natural decay process affects the abundance and community structure of Bacteria and Archaea in Picea abies logs. FEMS Microbiology Ecology, 92, fiw087. DOI: 10.1093/femsec/fiw087. |
[77] |
Rosell JA, Gleason S, Méndez-Alonzo R, Chang Y, Westoby M (2014). Bark functional ecology: evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytologist, 201, 486-497.
DOI PMID |
[78] | Rouvinen S, Kuuluvainen T, Karjalainen L (2002). Coarse woody debris in old Pinus sylvestris dominated forests along a geographic and human impact gradient in boreal Fennoscandia. Canadian Journal of Forest Research, 32, 2184-2200. |
[79] | Sandström F, Petersson H, Kruys N, Ståhl G (2007). Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, Picea abies and Betula spp. in boreal forests of Sweden. Forest Ecology and Management, 243, 19-27. |
[80] | Schwarze FWMR, Jauss F, Spencer C, Hallam C, Schubert M (2012). Evaluation of an antagonistic Trichoderma strain for reducing the rate of wood decomposition by the white rot fungus Phellinus noxius. Biological Control, 61, 160-168. |
[81] |
Sedia EG, Ehrenfeld JG (2005). Differential effects of lichens, mosses and grasses on respiration and nitrogen mineralization in soils of the New Jersey Pinelands. Oecologia, 144, 137-147.
PMID |
[82] | Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, Lorz J, Cadotte MW, Lindenmayer DB, Adhikari YP, Aragón R, Bae S, Baldrian P, Barimani Varandi H, Barlow J, et al. (2021). The contribution of insects to global forest deadwood decomposition. Nature, 597, 77-81. |
[83] | Seibold S, Thorn S (2018). The importance of dead-wood amount for saproxylic insects and how it interacts with dead-wood diversity and other habitat factors //Ulyshen MD. Saproxylic Insects: Diversity, Ecology and Conservation. Springer International Publishing, Chambridge, UK. 607-637. |
[84] | Seibold S, Weisser WW, Ambarlı D, Gossner MM, Mori AS, Cadotte MW, Hagge J, Bässler C, Thorn S (2023). Drivers of community assembly change during succession in wood-decomposing beetle communities. Journal of Animal Ecology, 92, 965-978. |
[85] | Shorohova E, Kapitsa E, Kazartsev I, Romashkin I, Polevoi A, Kushnevskaya H (2016). Tree species traits are the predominant control on the decomposition rate of tree log bark in a mesic old-growth boreal forest. Forest Ecology and Management, 377, 36-45. |
[86] | Shorohova E, Kapitsa E, Ruokolainen A, Romashkin I, Kazartsev I (2019). Types and rates of decomposition of Larix sibirica trees and logs in a mixed European boreal old-growth forest. Forest Ecology and Management, 439, 173-180. |
[87] | Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-798. |
[88] | Song Z, Kennedy PG, Liew FJ, Schilling JS (2017). Fungal endophytes as priority colonizers initiating wood decomposition. Functional Ecology, 31, 407-418. |
[89] | Spears JDH, Lajtha K (2004). The imprint of coarse woody debris on soil chemistry in the western Oregon Cascades. Biogeochemistry, 71, 163-175. |
[90] | Stokland JN, Siitonen J, Jonsson BG (2012). Biodiversity in Dead Wood. Cambridge University Press, Cambridge, UK. |
[91] | Strukelj M, Brais S, Quideau SA, Angers VA, Kebli H, Drapeau P, Oh S-W (2013). Chemical transformations in downed logs and snags of mixed boreal species during decomposition. Canadian Journal of Forest Research, 43, 785-798. |
[92] | Stutz KP, Dann D, Wambsganss J, Scherer-Lorenzen M, Lang F (2017). Phenolic matter from deadwood can impact forest soil properties. Geoderma, 288, 204-212. |
[93] | Talbot JM, Yelle DJ, Nowick J, Treseder KK (2012). Litter decay rates are determined by lignin chemistry. Biogeochemistry, 108, 279-295. |
[94] | Thorn S, Seibold S, Leverkus AB, Michler T, Müller J, Noss RF, Stork N, Vogel S, Lindenmayer DB (2020). The living dead: acknowledging life after tree death to stop forest degradation. Frontiers in Ecology and the Environment, 18, 505-512. |
[95] | Ulyshen MD (2015). Insect-mediated nitrogen dynamics in decomposing wood. Ecological Entomology, 40, 97-112. |
[96] |
Ulyshen MD (2016). Wood decomposition as influenced by invertebrates. Biological Reviews of the Cambridge Philosophical Society, 91, 70-85.
DOI PMID |
[97] | Ulyshen MD, Müller J, Seibold S (2016). Bark coverage and insects influence wood decomposition: direct and indirect effects. Applied Soil Ecology, 105, 25-30. |
[98] | Valášková V, de Boer W, Klein Gunnewiek PJ, Pospíšek M, Baldrian P (2009). Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. The ISME Journal, 3, 1218-1221. |
[99] |
van Geffen KG, Poorter L, Sass-Klaassen U, Cornelissen JHC (2010). The trait contribution to wood decomposition rates of 15 Neotropical tree species. Ecology, 91, 3686-3697.
PMID |
[100] | Wang B, Wu F, Xiao S, Yang W, Justine MF, He J, Tan B (2016). Effect of succession gaps on the understory water-holding capacity in an over-mature alpine forest at the upper reaches of the Yangtze River. Hydrological Processes, 30, 692-703. |
[101] |
Wang C, Bond-Lamberty B, Gower ST (2002). Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia, 132, 374-381.
DOI PMID |
[102] | Wang Q, Yang WQ, Wu FZ, Chang CH, Cao R, Wang Z, Tang GQ, Jiang YR (2019). Effects of forest gap and coarse woody debris on biomass and diversity of epixylous moss in an alpine forest. Acta Ecologica Sinica, 39, 6651-6659. |
[汪沁, 杨万勤, 吴福忠, 常晨晖, 曹瑞, 王壮, 汤国庆, 蒋雨芮 (2019). 高山森林林窗和粗木质残体对木生苔藓生物量和多样性的影响. 生态学报, 39, 6651-6659.] | |
[103] | Wang Z, Tan B, Yang W, Wang Q, Chang C, Wang L, Li H, You C, Cao R, Jiang Y, Müller J (2023a). Forest gaps accelerate the degradation of cellulose and lignin in decaying logs in a subalpine forest. European Journal of Forest Research, 142, 27-36. |
[104] | Wang ZH, Xu MZ, Li F, Bai Y, Hou JF, Li XQ, Cao R, Deng YY, Jiang YR, Wang HB, Yang WQ (2023b). Changes in soil bacterial communities and functional groups beneath coarse woody debris across a subalpine forest successional series. Global Ecology and Conservation, 43, e02436. DOI: 10.1016/j.gecco.2023.e02436. |
[105] | Wende B, Gossner MM, Grass I, Arnstadt T, Hofrichter M, Floren A, Linsenmair KE, Weisser WW, Steffan-Dewenter I (2017). Trophic level, successional age and trait matching determine specialization of deadwood-based interaction networks of saproxylic beetles. Proceedings of the Royal Society B: Biological Sciences, 284, 2170198. DOI: 10.1098/rspb.2017.0198. |
[106] | Wu D, Seibold S, Ruan Z, Weng C, Yu M (2021). Island size affects wood decomposition by changing decomposer distribution. Ecography, 44, 456-468. |
[107] | Yan ER, Wang XH, Huang JJ (2005). Concept and classification of coarse woody debris in forest ecosystems. Acta Ecologica Sinica, 25, 158-167. |
[闫恩荣, 王希华, 黄建军 (2005). 森林粗死木质残体的概念及其分类. 生态学报, 25, 158-167.] | |
[108] | Yang FF, Li YL, Zhou GY, Wenigmann KO, Zhang DQ, Wenigmann M, Liu SZ, Zhang QM (2010). Dynamics of coarse woody debris and decomposition rates in an old-growth forest in lower tropical China. Forest Ecology and Management, 259, 1666-1672. |
[109] | Yang XX (2022). Coarse Woody Debris Decomposition and Soil Respiration and Their Influencing Factors in Fragmented Forests. PhD dissertation, Zhejiang University, Hangzhou. |
[杨席席 (2022). 片段化森林中粗木质残体分解和土壤呼吸及其影响因子. 博士学位论文, 浙江大学, 杭州.] | |
[110] | Yuan TF (2020). Effects of Drought on Decomposition of Coarse Woody Debris and Its Underlying Mechanisms in A Subtropical Forest. Master degree dissertation, East China Normal University, Shanghai. |
[袁腾飞 (2020). 干旱对亚热带森林粗木质残体分解的影响及机制. 硕士学位论文, 华东师范大学, 上海.] | |
[111] | Zalamea M, González G, Ping C-L, Michaelson G (2007). Soil organic matter dynamics under decaying wood in a subtropical wet forest: effect of tree species and decay stage. Plant and Soil, 296, 173-185. |
[112] |
Zanne AE, Flores-Moreno H, Powell JR, Cornwell WK, Dalling JW, Austin AT, Classen AT, Eggleton P, Okada Ki, Parr CL, Adair EC, Adu-Bredu S, Alam MA, Alvarez-Garzón C, Apgaua D, et al. (2022). Termite sensitivity to temperature affects global wood decay rates. Science, 377, 1440-1444.
DOI PMID |
[113] | Zhang LM, Wang CK (2010). Carbon and nitrogen release during decomposition of coarse woody debris for eleven temperate tree species in the eastern mountain region of northeast China. Chinese Journal of Plant Ecology, 34, 368-374. |
[张利敏, 王传宽 (2010). 东北东部山区11种温带树种粗木质残体分解与碳氮释放. 植物生态学报, 34, 368-374.]
DOI |
|
[114] | Zhang T, Yu C, Qi YJ (2022). Effects of fallen woods decomposition of common tree species on soil fungal composition and distribution in karst forest. Acta Ecologica Sinica, 42, 2772-2783. |
[张铁, 于存, 戚玉娇 (2022). 喀斯特森林常见树种倒木分解对土壤真菌群落组成及分布规律的影响. 生态学报, 42, 2774-2783.] | |
[115] | Zhu J, Hu H, Tao S, Chi X, Li P, Jiang L, Ji C, Zhu J, Tang Z, Pan Y, Birdsey RA, He X, Fang J (2017). Carbon stocks and changes of dead organic matter in Chinaʼs forests. Nature Communications, 8, 151. DOI: 10.1038/s41467- 017-00207-1. |
[116] | Zuo J, Berg MP, Klein R, Nusselder J, Neurink G, Decker O, Hefting MM, Sass-Klaassen U, Goudzwaard L, van Hal J, Sterck FJ, Poorter L, Cornelissen JHC (2016). Faunal community consequence of interspecific bark trait dissimilarity in early-stage decomposing logs. Functional Ecology, 30, 1957-1966. |
[117] | Zuo J, Berg MP, van Hal J, Goudzwaard L, Hefting MM, Poorter L, Sterck FJ, Cornelissen JHC (2021). Fauna community convergence during decomposition of deadwood across tree species and forests. Ecosystems, 24, 926-938. |
[1] | 马琳 巢林 何雨莎 李忠国 王爱华 刘晟源 胡宝清 刘艳艳. 热带喀斯特季节性雨林12个树种木质部栓塞抗性与其解剖结构及相关性状间的关系[J]. 植物生态学报, 2024, 48(7): 0-0. |
[2] | 秦嘉晨 王欢 朱江 王扬 田晨 白永飞 杨培志 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 0-0. |
[3] | 张富崇 于明含 张建玲 王平 丁国栋 何莹莹 孙慧媛. 黑沙蒿应对降水变化的木质部与韧皮部协同响应机制[J]. 植物生态学报, 2024, 48(7): 0-0. |
[4] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[5] | 徐子怡, 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[6] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[7] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[8] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[9] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[10] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[11] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[12] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[13] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[14] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[15] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19