植物生态学报 ›› 2024, Vol. 48 ›› Issue (3): 364-376.DOI: 10.17521/cjpe.2023.0137
所属专题: 植物功能性状
收稿日期:
2023-05-17
接受日期:
2024-01-30
出版日期:
2024-03-20
发布日期:
2024-04-24
通讯作者:
*(liuzl2093@126.com)
基金资助:
FAN Hong-Kun, ZENG Tao, JIN Guang-Ze, LIU Zhi-Li*()
Received:
2023-05-17
Accepted:
2024-01-30
Online:
2024-03-20
Published:
2024-04-24
Contact:
*(liuzl2093@126.com)
Supported by:
摘要:
植物叶功能性状的变异模式以及相关关系一直是解析植物对气候变化响应机制的关键, 然而不同生长型阔叶植物间叶片结构性状和光合生理性状变异及相关性的异同性尚不清晰。该研究以典型阔叶红松(Pinus koraiensis)林中的优势或常见的18种阔叶植物为研究对象, 通过测量4个结构性状(叶面积(LA)、叶片厚度(LT)、叶干物质含量(LDMC)和比叶质量(LMA))和4个光合生理性状(叶绿素值(SPAD)、胞间CO2浓度(Ci)、气孔导度(Gs)和净光合速率(Pn)), 分析了在不同生长型阔叶植物叶片结构性状和光合生理性状的变异及相关性。结果表明: 不同生长型植物叶功能性状的变异范围为7.73%-74.54%, 其中种间变异是LA和LT的主要变异来源, Ci、SPAD、LDMC以及LMA的变异主要由生长型驱动, Gs和Pn变异的主要来源是种内; 不同生长型叶功能性状间存在显著差异, 其中草本的LA、LT和Ci显著高于灌木和乔木, 乔木的LMA、LDMC、SPAD、Pn和Gs显著高于灌木和草本; 不同生长型之间Pn和LMA、LDMC之间具有显著的异速生长关系, 且斜率大于1, 而SPAD和LA、LT、LDMC、LMA, Ci与LT、LDMC、LMA之间则呈斜率小于1的异速生长关系; 草本采取“快速投资-收益”型(获取型)策略, 相对而言, 乔木采取“缓慢投资-收益”型(保守型)策略, 灌木采取介于乔木与草本之间的资源利用策略, 这可能与不同生长型植物所处环境的光照条件有关。植物叶片结构性状和光合生理特征的变异及相互关系的研究对于揭示植物资源获取与分配策略具有重要意义。
范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡. 植物生态学报, 2024, 48(3): 364-376. DOI: 10.17521/cjpe.2023.0137
FAN Hong-Kun, ZENG Tao, JIN Guang-Ze, LIU Zhi-Li. Leaf trait variation and trade-offs among growth types of broadleaf plants in Xiao Hinggan Mountains. Chinese Journal of Plant Ecology, 2024, 48(3): 364-376. DOI: 10.17521/cjpe.2023.0137
性状 Trait | 极小值 Min | 极大值 Max | 中位数 Median | 均值 Mean | 标准差 SD | 偏度 Skewness | 峰度 Kurtosis | 变异系数 KCV (%) |
---|---|---|---|---|---|---|---|---|
LA (cm2) | 0.978 | 423.847 | 23.936 | 33.974 | 39.314 | 4.114 | 23.582 | 74.54 |
LT (10-2 mm) | 5.667 | 26.000 | 12.000 | 12.495 | 3.022 | 0.813 | 1.043 | 21.24 |
LMA (g·cm-2) | 0.001 | 0.010 | 0.004 | 0.004 | 0.002 | 1.026 | 0.860 | 35.03 |
LDMC (g·g-1) | 0.077 | 0.951 | 0.332 | 0.327 | 0.110 | 0.857 | 3.166 | 26.74 |
SPAD | 13.900 | 56.250 | 40.500 | 39.041 | 6.210 | -0.881 | 0.716 | 15.84 |
Pn (µmol·m-2) | 0.195 | 21.995 | 5.864 | 7.082 | 3.943 | 1.182 | 1.369 | 45.09 |
Ci (µmol·mol-1) | 232.922 | 393.615 | 324.072 | 325.852 | 26.829 | -0.094 | 0.513 | 7.73 |
Gs (mol·m-2·s-1) | 0.018 | 0.676 | 0.159 | 0.193 | 0.119 | 1.250 | 1.406 | 45.57 |
表1 小兴安岭18种阔叶植物叶面积(LA)、叶片厚度(LT)、比叶质量(LMA)、叶干物质含量(LDMC)、叶绿素值(SPAD)、净光合速率(Pn)、胞间CO2浓度(Ci)以及气孔导度(Gs)的统计信息
Table 1 Statistical information of leaf area (LA), leaf thickness (LT), leaf chlorophyll value (SPAD), leaf dry matter content (LDMC), leaf mass per area (LMA), net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs) of 18 broadleaf plants in Xiao Hinggan Mountains
性状 Trait | 极小值 Min | 极大值 Max | 中位数 Median | 均值 Mean | 标准差 SD | 偏度 Skewness | 峰度 Kurtosis | 变异系数 KCV (%) |
---|---|---|---|---|---|---|---|---|
LA (cm2) | 0.978 | 423.847 | 23.936 | 33.974 | 39.314 | 4.114 | 23.582 | 74.54 |
LT (10-2 mm) | 5.667 | 26.000 | 12.000 | 12.495 | 3.022 | 0.813 | 1.043 | 21.24 |
LMA (g·cm-2) | 0.001 | 0.010 | 0.004 | 0.004 | 0.002 | 1.026 | 0.860 | 35.03 |
LDMC (g·g-1) | 0.077 | 0.951 | 0.332 | 0.327 | 0.110 | 0.857 | 3.166 | 26.74 |
SPAD | 13.900 | 56.250 | 40.500 | 39.041 | 6.210 | -0.881 | 0.716 | 15.84 |
Pn (µmol·m-2) | 0.195 | 21.995 | 5.864 | 7.082 | 3.943 | 1.182 | 1.369 | 45.09 |
Ci (µmol·mol-1) | 232.922 | 393.615 | 324.072 | 325.852 | 26.829 | -0.094 | 0.513 | 7.73 |
Gs (mol·m-2·s-1) | 0.018 | 0.676 | 0.159 | 0.193 | 0.119 | 1.250 | 1.406 | 45.57 |
图1 小兴安岭18种阔叶植物8个叶性状变异的方差分解。Ci, 胞间CO2浓度; Gs, 气孔导度; LA, 叶面积; LDMC, 叶干物质含量; LMA, 比叶质量; LT, 叶片厚度; Pn, 净光合速率; SPAD, 叶绿素值。
Fig. 1 Variance decomposition of variation in 8 leaf traits of 18 broadleaf plants in Xiao Hinggan Mountains. Ci, intercellular CO2 concentration; Gs, stomatal conductance; LA, leaf area; LDMC, leaf dry matter content; LMA, leaf mass per area; LT, leaf thickness; Pn, net photosynthetic rate; SPAD, leaf chlorophyll value.
图2 小兴安岭不同生长型18种阔叶植物8个叶性状的变异。不同小写字母表示不同生长型的叶性状之间具有显著差异(p < 0.05)。Ci, 胞间CO2浓度; Gs, 气孔导度; LA, 叶面积; LDMC, 叶干物质含量; LMA, 比叶质量; LT, 叶片厚度; Pn, 净光合速率; SPAD, 叶绿素值。H, 草本; S, 灌木; T, 乔木。
Fig. 2 Variation of 8 leaf traits of 18 broadleaf plants among trees, shrubs and herbs in Xiao Hinggan Mountains. Different lowercase letters indicate that the leaf traits of different growth types are significantly different (p < 0.05). Ci, intercellular CO2 concentration; Gs, stomatal conductance; LA, leaf area; LDMC, leaf dry matter content; LMA, leaf mass per area; LT, leaf thickness; Pn, net photosynthetic rate; SPAD, leaf chlorophyll value. H, herb; S, shrub; T, tree.
图3 小兴安岭18种阔叶植物8种叶性状之间的Spearman相关分析热图。Ci, 胞间CO2浓度; Gs, 气孔导度; LA, 叶面积; LDMC, 叶干物质含量; LMA, 比叶质量; LT, 叶片厚度; Pn, 净光合速率; SPAD, 叶绿素值。***, p < 0.001。
Fig. 3 Correlation among 8 leaf traits of 18 broadleaf plants in Xiao Hinggan Mountains. Ci, intercellular CO2 concentration; Gs, stomatal conductance; LA, leaf area; LDMC, leaf dry matter content; LMA, leaf mass per area; LT, leaf thickness; Pn, net photosynthetic rate; SPAD, leaf chlorophyll value. ***, p < 0.001.
图4 小兴安岭不同生长型对阔叶植物叶性状相关关系的影响。如果性状没有显著相关性(p > 0.05), 则不显示线条。Ci, 胞间CO2浓度; Gs, 气孔导度; LA, 叶面积; LDMC, 叶干物质含量; LMA, 比叶质量; LT, 叶片厚度; Pn, 净光合速率; slope, 斜率; SPAD, 叶绿素值。
Fig. 4 Correlations between leaf traits of herb, shrub and tree broadleaf plants in Xiao Hinggan Mountains. If there is no significant correlation between traits (p > 0.05), lines are not displayed. Ci, intercellular CO2 concentration; Gs, stomatal conductance; LA, leaf area; LDMC, leaf dry matter content; LMA, leaf mass per area; LT, leaf thickness; Pn, net photosynthetic rate; SPAD, leaf chlorophyll value.
图5 小兴安岭乔木、灌木、草本阔叶植物叶片结构性状、生理性状和所有性状的主成分(PC)分析。A, 结构性状的主成分分析。B, 生理性状的主成分分析。C, 所有性状(8个叶性状)的主成分分析。Ci, 胞间CO2浓度; Gs, 气孔导度; LA, 叶面积; LDMC, 叶干物质含量; LMA, 比叶质量; LT, 叶片厚度; Pn, 净光合速率; SPAD, 叶绿素值。颜色用于区分植物的不同生长型。
Fig. 5 Principal component (PC) analysis of structural traits, physiological traits and total traits among tree, shrub and herb broadleaf plants in Xiao Hinggan Mountains. A, Principal component analysis for structural traits. B, Principal component analysis for physiological traits. C, Principal component analysis for all traits (eight leaf traits). Ci, intercellular CO2 concentration; Gs, stomatal conductance; LA, leaf area; LDMC, leaf dry matter content; LMA, leaf mass per area; LT, leaf thickness; Pn, net photosynthetic rate; SPAD, leaf chlorophyll value. Color is used to distinguish three different growth types.
图6 小兴安岭乔木、灌木、草本阔叶植物叶片结构性状第一主成分(PC1)、生理性状PC1和所有性状PC1之间的回归关系。A, 结构性状PC1和生理性状PC1之间的关系。B, 结构性状PC1和所有性状PC1之间的关系。C, 生理性状PC1和所有性状PC1之间的关系。slope, 斜率。
Fig. 6 Regression relationships among first principle component (PC1) of leaf structural traits, PC1 of physiological traits and PC1 of total traits among tree, shrub and herb broadleaf plants in Xiao Hinggan Mountains. A, Relationships between structural traits PC1 and physiological traits PC1. B, Relationships between structural traits PC1 and total traits PC1. C, Relationships between physiological traits PC1 and total traits PC1.
[1] | Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010). Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology, 98, 604-613. |
[2] | Atkinson LJ, Campbell CD, Zaragoza-Castells J, Hurry V, Atkin OK (2010). Impact of growth temperature on scaling relationships linking photosynthetic metabolism to leaf functional traits. Functional Ecology, 24, 1181-1191. |
[3] | Bolmgren K, Cowan PD (2008). Time-size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora. Oikos, 117, 424-429. |
[4] | Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26, 183-192. |
[5] | Bonan GB (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444-1449. |
[6] | Cirtain MC, Franklin SB, Pezeshki SR (2009). Effect of light intensity on Arundinaria gigantea growth and physiology. Castanea, 74, 236-246. |
[7] |
Croft H, Chen J, Luo X, Bartlett P, Chen B, Staebler RM (2017). Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Global Change Biology, 23, 3513-3524.
DOI PMID |
[8] | Cui EQ, Weng ES, Yan ER, Xia JY (2020). Robust leaf trait relationships across species under global environmental changes. Nature Communications, 11, 2999. DOI: 10.1038/s41467-020-16839-9. |
[9] | Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171. |
[10] |
Ghimire B, Riley WJ, Koven CD, Kattge J, Rogers A, Reich PB, Wright IJ (2017). A global trait-based approach to estimate leaf nitrogen functional allocation from observations. Ecological Applications, 27, 1421-1434.
DOI PMID |
[11] | Hasper TB, Dusenge ME, Breuer F, Uwizeye FK, Wallin G, Uddling J (2017). Stomatal CO2 responsiveness and photosynthetic capacity of tropical woody species in relation to taxonomy and functional traits. Oecologia, 184, 43-57. |
[12] |
Hassiotou F, Renton M, Ludwig M, Evans JR, Veneklaas EJ (2010). Photosynthesis at an extreme end of the leaf trait spectrum: How does it relate to high leaf dry mass per area and associated structural parameters? Journal of Experimental Botany, 61, 3015-3028.
DOI PMID |
[13] |
He P, Wright IJ, Zhu S, Onoda Y, Liu H, Li R, Liu X, Hua L, Oyanoghafo OO, Ye Q (2019). Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements. New Phytologist, 223, 607-618.
DOI PMID |
[14] |
Hikosaka K, Shigeno A (2009). The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia, 160, 443-451.
DOI PMID |
[15] | Huxley JD, White CT, Humphries HC, Weber SE, Spasojevic MJ (2023). Plant functional traits are dynamic predictors of ecosystem functioning in variable environments. Journal of Ecology, 111, 2597-2613. |
[16] | Jackson BG, Peltzer DA, Wardle DA (2013). The within- species leaf economic spectrum does not predict leaf litter decomposability at either the within-species or whole community levels. Journal of Ecology, 101, 1409-1419. |
[17] |
Jumrani K, Bhatia VS, Pandey GP (2017). Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean. Photosynthesis Research, 131, 333-350.
DOI PMID |
[18] | Kosová V, Hájek T, Hadincová V, Münzbergová Z (2022). The importance of ecophysiological traits in response of Festuca rubra to changing climate. Physiologia Plantarum, 174, e13608. DOI: 10.1111/ppl.13608. |
[19] | Kvålseth TO (2017). Coefficient of variation: the second-order alternative. Journal of Applied Statistics, 44, 402-415. |
[20] | Leigh A, Sevanto S, Close JD, Nicotra AB (2017). The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions? Plant, Cell & Environment, 40, 237-248. |
[21] | Li J, Chen X, Niklas KJ, Sun J, Wang Z, Zhong Q, Hu D, Cheng D (2022). A whole-plant economics spectrum including bark functional traits for 59 subtropical woody plant species. Journal of Ecology, 110, 248-261. |
[22] | Liang X, Wang D, Ye Q, Zhang J, Liu M, Liu H, Yu K, Wang Y, Hou E, Zhong B, Xu L, Lv T, Peng S, Lu H, Sicard P, et al. (2023). Stomatal responses of terrestrial plants to global change. Nature Communications, 14, 2188. DOI: 10.1038/s41467-023-37934-7. |
[23] | Liu C, Sack L, Li Y, Zhang J, Yu K, Zhang Q, He N, Yu G (2023). Relationships of stomatal morphology to the environment across plant communities. Nature Communications, 14, 6629. DOI: 10.1038/s41467-023-42136-2. |
[24] | Liu H, Ye Q, Simpson KJ, Cui E, Xia J (2022). Can evolutionary history predict plant plastic responses to climate change? New Phytologist, 235, 1260-1271. |
[25] | Liu LB, Xia HJ, Quan XH, Wang YQ (2023). Plant trait-based life strategies of overlapping species vary in different succession stages of subtropical forests, Eastern China. Frontiers in Ecology and Evolution, 10, 1103937. DOI: 10.3389/fevo.2022.1103937. |
[26] | Liu RH, Bai JL, Bao H, Nong JL, Zhao JJ, Jiang Y, Liang SC, Li YJ (2020). Variation and correlation in functional traits of main woody plants in the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China. Chinese Journal of Plant Ecology, 44, 828-841. |
[刘润红, 白金连, 包含, 农娟丽, 赵佳佳, 姜勇, 梁士楚, 李月娟 (2020). 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联. 植物生态学报, 44, 828-841.] | |
[27] | Liu Z, Hikosaka K, Li F, Jin G (2020). Variations in leaf economics spectrum traits for an evergreen coniferous species: tree size dominates over environment factors. Functional Ecology, 34, 458-467. |
[28] | Lobry JR, Bel-Venner MC, Bogdziewicz M, Hacket-Pain A, Venner S (2023). The CV is dead, long live the CV! Methods in Ecology and Evolution, 14, 2780-2786. |
[29] | Lü XT, Hu YY, Zhang HY, Wei HW, Hou SL, Yang GJ, Liu ZY, Wang XB (2018). Intraspecific variation drives community-level stoichiometric responses to nitrogen and water enrichment in a temperate steppe. Plant and Soil, 423, 307-315. |
[30] | Luo T, Yu FY, Lian JY, Wang JJ, Shen J, Wu ZF, Ye WH (2022). Impact of canopy vertical height on leaf functional traits in a lower subtropical evergreen broad-leaved forest of Dinghushan. Biodiversity Science, 30, 4-17. |
[罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉 (2022). 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例. 生物多样性, 30, 4-17.] | |
[31] |
Martinez-Garcia JF, Rodriguez-Concepcion M (2023). Molecular mechanisms of shade tolerance in plants. New Phytologist, 239, 1190-1202.
DOI PMID |
[32] | McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185. |
[33] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Chinese Journal of Plant Ecology (Chinese Version), 31, 150-165. |
[孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
DOI |
|
[34] |
Midolo G, De Frenne P, Hölzel N, Wellstein C (2019). Global patterns of intraspecific leaf trait responses to elevation. Global Change Biology, 25, 2485-2498.
DOI PMID |
[35] | Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013). A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28, 167-177. |
[36] | Münzbergová Z, Hadincová V, Skálová H, Vandvik V (2017). Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. Journal of Ecology, 105, 1358-1373. |
[37] | Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/ phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8, 636-642. |
[38] |
Osnas JLD, Katabuchi M, Kitajima K, Wright SJ, Reich PB, van Bael SA, Kraft NJB, Samaniego MJ, Pacala SW, Lichstein JW (2018). Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proceedings of the National Academy of Sciences of the United States of America, 115, 5480-5485.
DOI PMID |
[39] | Pérez-Ramos IM, Matías L, Gómez-Aparicio L, Godoy Ó (2019). Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nature Communications, 10, 2555. DOI: 10.1038/s41467-019-10453-0. |
[40] | Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008). Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52. |
[41] | Plourde BT, Boukili VK, Chazdon RL (2015). Radial changes in wood specific gravity of tropical trees: inter- and intraspecific variation during secondary succession. Functional Ecology, 29, 111-120. |
[42] | Poorter L (1999). Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology, 13, 396-410. |
[43] | Rawat M, Arunachalam K, Arunachalam A, Alatalo JM, Pandey R (2021). Assessment of leaf morphological, physiological, chemical and stoichiometry functional traits for understanding the functioning of Himalayan temperate forest ecosystem. Scientific Reports, 11, 23807. DOI: 10.1038/s41598-021-03235-6. |
[44] |
Rosas T, Mencuccini M, Barba J, Cochard H, Saura-Mas S, Martínez-Vilalta J (2019). Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. New Phytologist, 223, 632-646.
DOI PMID |
[45] |
Rowe N, Speck T (2005). Plant growth forms: an ecological and evolutionary perspective. New Phytologist, 166, 61-72.
PMID |
[46] |
Sassi R, Bond RR, Cairns A, Finlay DD, Guldenring D, Libretti G, Isola L, Vaglio M, Poeta R, Campana M, Cuccia C, Badilini F (2017). PDF-ECG in clinical practice: a model for long-term preservation of digital 12-lead ECG data. Journal of Electrocardiology, 50, 776-780.
DOI PMID |
[47] | Spicer ME, Mellor H, Carson WP (2020). Seeing beyond the trees: a comparison of tropical and temperate plant growth forms and their vertical distribution. Ecology, 101, e02974. DOI: 10.1002/ecy.2974. |
[48] |
Taylor SH, Franks PJ, Hulme SP, Spriggs E, Christin PA, Edwards EJ, Woodward FI, Osborne CP (2012). Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytologist, 193, 387-396.
DOI PMID |
[49] | Thakur D, Hadincová V, Schnablová R, Synková H, Haisel D, Wilhelmová N, Dostálek T, Münzbergová Z (2023). Differential effect of climate of origin and cultivation climate on structural and biochemical plant traits. Functional Ecology, 37, 1436-1448. |
[50] | Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216. |
[王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.]
DOI |
|
[51] |
Wang J, Zhu J, Ai XR, Yao L, Huang X, Wu ML, Zhu Q, Hong JF (2019). Effects of topography on leaf functional traits across plant life forms in Xingdou Mountain, Hubei, China. Chinese Journal of Plant Ecology, 43, 447-457.
DOI |
[王进, 朱江, 艾训儒, 姚兰, 黄小, 吴漫玲, 朱强, 洪建峰 (2019). 湖北星斗山地形变化对不同生活型植物叶功能性状的影响. 植物生态学报, 43, 447-457.]
DOI |
|
[52] | Wang JL, Wen XF, Zhao FH, Fang QX, Yang XM (2012). Effects of doubled CO2 concentration on leaf photosynthesis, transpiration and water use efficiency of eight crop species. Chinese Journal of Plant Ecology, 36, 438-446. |
[王建林, 温学发, 赵风华, 房全孝, 杨新民 (2012). CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响. 植物生态学报, 36, 438-446.]
DOI |
|
[53] | Wang ZY, Chen XP, Cheng Y, Wang MT, Zhong QL, Li M, Cheng DL (2021). Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains. Chinese Journal of Plant Ecology, 45, 242-252. |
[王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁 (2021). 武夷山49种木本植物叶片与细根经济谱. 植物生态学报, 45, 242-252.] | |
[54] |
Westerband AC, Funk JL, Barton KE (2021). Intraspecific trait variation in plants: a renewed focus on its role in ecological processes. Annals of Botany, 127, 397-410.
DOI PMID |
[55] | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159. |
[56] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra- Manriquez G, Martinez-Ramos M, Mazer SJ, Muller- Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, et al. (2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99, 1003-1015.
DOI PMID |
[57] |
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, et al. (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
DOI PMID |
[58] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[59] | Xun YH, Di XY, Jin GZ (2020). Vertical variation and economic strategy of leaf trait of major tree species in a typical mixed broadleaved-Korean pine forest. Chinese Journal of Plant Ecology, 44, 730-741. |
[荀彦涵, 邸雪颖, 金光泽 (2020). 典型阔叶红松林主要树种叶性状的垂直变异及经济策略. 植物生态学报, 44, 730-741.] | |
[60] | Yan Z, Sardans J, Peñuelas J, Detto M, Smith NG, Wang H, Guo L, Hughes A, Guo Z, Lee CKF, Liu L, Wu J (2023). Global patterns and drivers of leaf photosynthetic capacity: the relative importance of environmental factors and evolutionary history. Global Ecology and Biogeography, 32, 668-682. |
[61] | Ye ZP, Yu Q (2009). Mechanism model of stomatal conductance. Chinese Journal of Plant Ecology, 33, 772-782. |
[叶子飘, 于强 (2009). 植物气孔导度的机理模型. 植物生态学报, 33, 772-782.]
DOI |
|
[62] | Zheng SX, Shangguan ZP (2007). Photosynthetic characteristics and their relationships with leaf nitrogen content and leaf mass per area in different plant functional types. Acta Ecologica Sinica, 27, 171-181. |
[郑淑霞, 上官周平 (2007). 不同功能型植物光合特性及其与叶氮含量、比叶重的关系. 生态学报, 27, 171-181.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[6] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[7] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[8] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[9] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[10] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[11] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[12] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[13] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[14] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[15] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19